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Abstract

Even for the easy and apparently well known quantum “coherent

control” problem, the standard analysis methods of system theory can

give some deeper insight and natural formalization of two fundamental

properties: stability and robustness. A weak Input to State Stabil-

ity is demonstrated for unitary evolution. The Robustness idea is

quantitatively formulated in a classical control theory framework and

verified by comparing the analysis results with the evaluations found

in literature.
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1 Introduction: a Simple Model

We consider an isolated n-dimensional quantum system with time evo-

lution described by the following Schrödinger equation:

i~|ψ̇(t)〉 = H(t)|ψ〉. (1)

Here |ψ(t)〉 is a vector of unit norm in Cn representing the state of

the system at time t. The unitary time evolution of the system is

governed by the system Hamiltonian:

H(t) = H0 +
m∑
j=1

Hjuj(θ, t). (2)

The internal Hamiltonian H0 ∈ Cn×n is an Hermitian matrix describ-

ing the free evolution of the system. The control Hamiltonian

Hc(t) =
m∑
j=1

Hjuj(θ, t),

where Hj ∈ Cn×n are also Hermitian matrices, accounts for the ef-

fects of the control inputs u1(θ, t), ..., um(θ, t) on the dynamics of the

system. We assume that these control functions depend on a finite

number of real parameters θ = (θ1, ..., θp), θk ∈ T , with T being an

open set in Rp. This kind of assumption is reasonable if we think of

the small set of parameters we can control in an experimental setting.

We consider the problem of steering the system from a given initial

state |ψ0〉 = |ψ(0)〉 to a final state |ψ1〉, where |ψ0〉 and |ψ1〉 are unit

vectors in Cn. We assume that the transition occurs (at t=T) when

θ = θ∗, which we take as “nominal” value of the parameters. Clearly,

if θ 6= θ∗, the transition will, in general, not occur.

2



2 Quantum Stability?

2.1 Classical stability concepts and Isolated

Quantum Systems

Let us recall briefly two well established approaches to stability char-

acterization. In classical system theory we can evaluate:

Lyapunov’s Stability or stability with respect to the initial condi-

tion. Consider a continuous time system in the form ẋ = f(x).

A stationary point (x̄ such that f(x̄ = 0) is said to be stable if

∀ε > 0∃δ||x(0)| < δ ⇒ |x(t)| < ε∀t > 0.

The stationary point is said asymptotically stable if it is stable

and for limt→∞ x(t) = x̄. This kind of stability is local for non-

linear systems.

Input-Output Stability or Bounded-Input-Bounded-Output stabil-

ity. Considering the system as a map between signals sets, it

is called BIBO stable if to every bounded input corresponds a

bounded output. This is a global characteristic of the system.

Before trying to use these approaches in order to characterize the

dynamical behavior of the model presented in the previous section, it

is fundamental to remember that:

(a) The time evolution is driven exclusively by the Hamiltonian H

that is an Hermitian matrix. This implies that:

1. Hamiltonian eigenvalues are real;

2. Evolution is unitary;

3. If we consider normalized states (i.e. states with unit norm)

as initial condition for the evolution, the final states will

also be unitary.
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(b) The overall phase of a state vector has no physical meaning (i.e.

it cannot be observed by a measure process).

Thus, both the classical approaches make a little sense in the isolated

quantum dynamics. In fact, even extending the stationary point defi-

nition to comprehend the energy eigenvectors (the natural stationary

states, thanks to the observation (b)), the unitary evolution ensures

us that the norm of the vector connecting the initial condition of the

evolution and a stationary state will be conserved. This implies that

the norm of “errors” will be preserved. The system is always stable,

but cannot be asymptotically stable. Another way to see it is to con-

sider the eigenvalues for the bilinear system (??) with constant input

functions. Since the Hamiltonian eigenvalues are real, the eigenvalues

for i
~H are purely imaginary, and use the well known results from

linear system theory.

Nevertheless, the Input-Output stability is always guaranteed di-

rectly by unitary evolution if we consider as the system output the

system state.

Unitary evolution has a lot of other relevant consequences for the

isolated system. Consider, for instance, two probabilistic mixtures

of states ρ =
∑n

i pi|αi >< αi|, σ =
∑n

j qi|βj >< βj |, with
∑

i pi =∑
j qj = 1. A natural “index” of the mixed state distinguishability is

the Kullback-Liebler pseudo-distance, defined as:

D(ρ‖σ) = Tr(ρ log ρ− ρ log σ).

It is not properly a metric (It is positive, but not symmetric and

triangular inequality does not hold), but emerges as a relevant pseudo-

distance in many aspects of quantum information theory.

Can be easily demonstrated that as long as evolution is unitary,

driven by the same Hamiltonian (it follows directly from Schrödinger

equation that i~ρ̇ = [Htot, ρ], i~σ = [Htot, σ]), holds that:

∂

∂t
D(ρ‖σ) = − i

~
Tr(Htot, [ρ log σ]) = 0.
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In other words, also distinguishability between statistical mixtures of

states is preserved under the same Hamiltonian evolution.

2.2 Input to State Continuity

The (simple) stability with respect to initial condition can be seen as

continuity of the system trajectory (with the sup norm) with respect

to the initial condition in a neighborhood of a stationary point. An-

other form of continuity can be easily proven: the final state of the

evolution over a finite time interval is a continuous with respect to

input variations.

To simplify the exposition, in the following demonstration it is

considered the usual finite dimensional system driven by a single input

function, although the extension to multi-input infinite dimensional

systems does not present extra-difficulties. Consider the model (1-2)

in the m = 1 case, which becomes:

∂

∂t
|ψ(t〉) =

H0 + u1(t)H1

i~
|ψ(t)〉;

suppose that:

• [t0, t1] is the (fixed) time interval in which evolution take place;

• |ψ0〉 = |ψ(to)〉 is the initial state for the evolution;

• u∗(t) is an effective control choice that leads |ψ0〉 to the target

state |ψf 〉 = |ψu∗(t1)〉.

We want to analyze the effect of a “perturbed” input u(t) :=

u∗(t) + δu(t) on the final state of the evolution, where we are as-

suming δu small in an opportune norm (i.e. ‖δu‖ = sup[t0,t1] |δu(t)|).
The evolution is then determined by solving the following Schrödinger

equation:

i~
∂

∂t
|ψδ(t)〉 = H0|ψδ(t)〉+ + u∗(t)H1|ψδ(t)〉+ δuH1|ψδ(t)〉;

5



Comparing with the unperturbed one:

i~
∂

∂t
(|ψδ(t)〉 − |ψ(t)〉) = H0(|ψδ(t)〉 − |ψ(t)〉) + u∗(t)H1(|ψδ(t)〉+

− |ψ(t)〉) + δuH1|ψδ(t)〉. (3)

Define the “difference” vector as: ∆ψ(t) = |ψ(t)〉 − |ψδ〉.
Reformulating the stability issue, we are wondering if ∀ ε > 0 ∃ δ > 0

such that, if:

‖δu(t)‖ < δ ⇒ ‖∆ψ(t1)‖ < ε,

where with‖ · ‖ we intend the sup norm.

Then rewrite (3) as:

∂

∂t
∆ψ(t) = (H0 + u∗(t)H1) ∆ψ(t) +H1(|ψδ(t)〉)δu(t). (4)

In a compact form;

∂

∂t
∆ψ(t) = H(t)∆ψ(t) + f(t). (5)

In the hypothesis we have done ∆ψ(0) = 0, H1 is constant and |ψδ(t)〉
is bounded: Forcing δu(t) to be smaller than δ, we can obtain that

‖f(t)‖ is arbitrarily small.

Introducing the Green’s function for the system Φ(t0, t), the gen-

eral solution for ∆ψ(t) is of the form:

∆ψ(t) = Φ(t0, t)∆ψ(0) +
∫ t

t0

Φ(t0, σ)f(σ)dσ, (6)

where ∆ψ(0) = 0,Φ(t0, t) is bounded and for the second term it can

be obtained, for every ε:

‖
∫ t

t0

Φ(t0, σ)f(σ)dσ‖ < ε,

opportunely choosing δ, with ‖δu(t)‖ < δ. Thus we have shown that,

taking t = t1, the final state is a continuous function of the input.
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3 Quantum Robustness

3.1 Pursuing a Coherent Definition

In classical control theory, plant uncertainty is described by a set

P of possible plants [5]. This uncertainty can be either structured

(parametrized by a finite number of scalar parameters or a discrete

set of plants) or unstructured (disc-like uncertainty). A controller is

said to be robust with respect to some property if this property holds

for every plant in P.

In the coherent quantum control, the expression “robustness of

the control strategy” means that the control performance is insensible

to errors in the control implementation. In [10], a control strategy is

considered robust “if significant local changes in the amplitude and the

form of the pulse and of the chirp do not change significantly the final

transfer probability.” The pulse and the chirp, in the NMR setting, are

the system inputs parameters. A quantitative definition of robustness

is, however, missing.

Here we show that it is quite simple to reformulate this kind of

property as a particular case of structured-like classical robustness.

We need two basic ingredients:

• A set of systems P that models the uncertainty;

• A characteristic or a “performance index” to be maintained for

all the systems in P.

To specify the uncertainty system set, we can transfer the uncer-

tainty from the control parameters to the internal Hamiltonian as in

[11]. In fact, by defining δui(θ) = ui(θ)− ui(θ∗) we can write:

H(t) = H0 +
m∑
i=1

Hi (ui(θ∗) + δui(θ))

= H0 +
m∑
i=1

Hiδui(θ) +
m∑
i=1

Hiui(θ∗)
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= (H0 + ∆Hu(θ)) +
m∑
i=1

Hiui(θ∗). (7)

where ∆Hu(θ) =
∑N

i=1Hiδui(θ). Such a cosmetic transformation

shows that our control strategy uncertainty can be seen as a par-

ticular case of the plant uncertainty (with control inputs ui(θ∗)). The

plant set P is here given by:

P = {(H0 + ∆Hu(θ),H1, ...,Hm)|θ ∈ T }.

On the other hand, in order to formulate the most natural re-

quest for a “robust” control strategy we need to introduce the er-

ror probability for each control strategy. Consider the normalized

final state for the time evolution, |ψ(T, θ)〉. It can be written as

|ψ(T, θ)〉 = 〈ψ1|ψ(T, θ)〉|ψ1〉 + |ψ⊥(θ, T )〉 with |ψ⊥(θ, T )〉 orthogonal

to |ψ1〉. If we imagine to perform a discrete measure1 on an observable

that has |ψ1〉 as eigenstate, the probability to obtain the eigenvalue

associated |ψ1〉(that corresponds to the probability of finding the sys-

tem in |ψ1〉 immediately after the measure) is: P|ψ1〉 = |〈ψ1|ψ(T, θ)〉|2.
Then the error probability corresponding to the value θ is:

Perr(T, θ) = 1− |〈ψ1|ψ(T, θ)〉|2

= 〈ψ⊥(θ, T )|ψ⊥(θ, T )〉, (8)

thanks to the fact that |ψ(T, θ)〉 is normalized. By assumption, we

have Perr(T, θ∗) = 0.

We require this probability not to exceed a fixed threshold ε ∈ [0, 1)

at a given T . All the ingredients of a classical robustness problem have

now been specified.

In terms of our model, this concept of robustness can be qualita-

tively formulated as follows: A control strategy is robust when, for

1Quantum measure fundamental postulates can be founded in standard quantum me-

chanics textbooks, see e.g. [9],[8] or [2].
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values of the parameters θ different from the nominal ones, the final

state |ψ(T, θ)〉 is close to the desired one |ψ1〉. This robustness request

is satisfied if Perr(T, θ) is small in the parameter set T . Formally, in-

troduce the ε-robustness set Rε as

Rε = {θ ∈ T |Perr(θ, T ) ≤ ε}. (9)

We give the following definition.

Definition 1 A control strategy {u1(θ∗, t), ..., um(θ∗, t)}, t ∈ [0, T ] is

ε-robust with respect to parameters uncertainty if:

Rε = T . (10)

Notice that only the 0-robustness case ensures us an exact steering of

the system state for all θ ∈ T .

Does this translation in “classical” control theory fit the evalua-

tions and the robustness claims in relevant literature?

3.2 Robustness Evaluation in NMR

Robustness problems in unitary quantum control are mainly discussed

in the NMR quantum control setting. We consider a two level quantum

system, and the associated bi-dimensional Hilbert space. The time

evolution is described by a scaled time Schrödinger equation in the

form:

i~
∂

∂s
|ψ(s)〉 = TH(s)|ψ(s)〉, (11)

where s = t/T and

H(s) =

(
−∆(s) Ω(s)

Ω(s) ∆(s)

)
is represented in the canonical (diabatic) base. The control functions:{

∆(s) = ∆0Φ(s)

Ω(s) = Ω0Λ(s)
,
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are the inputs, with Φ(s), Λ(s) fixed envelops and ∆0, Ω0 ∈ R+ am-

plitude parameters. In this picture we have ∆(s) = u1(s,∆0) and

Ω(s) = u2(s,Ω0). Thus θ = (θ1, θ2) = (∆0,Ω0) are the parameters we

are interested in. In the contest of particle-laser field interaction and

the RWA (Rotating Wave Approximation [1]), these functions depend

on the chirp (detuning) and the amplitude (time-dependent Rabi fre-

quency) of the active pulse2. This model can be seen as a particular

case of model (1-2), and it is suitable to describe control techniques

based both on magnetic resonance and adiabatic passage.

Here we consider the state-flip problem. Given the initial normal-

ized state of the system, the control aim is to steer the system to the

orthonormal state in the state space. A simple way to obtain such a

transfer is to use the magnetic resonance phenomena: Under properly

tailored oscillating fields, the state vectors rotate between the two ba-

sis states [9, 7]. This kind of effect can be generated by the following

fields-control functions: {
∆(s) = 0

Ω(s) = Ω0Λ(s),
(12)

where Λ(s) is the Ω-pulse envelope. This parametrization, and some

easy calculations [9], lead to the following expression for the error

probability:

Perr(T,Ω0, AΛ) = cos2
[
TΩ0

∫ sf

si

Λ(s)ds
]

= cos2 Ω0TAΛ, (13)

with AΛ the Ω-pulse envelope area.

Robustness for the control strategy should be carefully evaluated,

since ε-robustness can be guaranteed only in small neighborhoods of

the error probability zeros (13).

2To find some detailed information about the physical meaning of these parameters

and about the resonance phenomenon see i.e. [12],[7].
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More subtle techniques have been developed, using the adiabatic

approximation for sufficiently slow and smooth evolution 3. Without

entering the technical discussion, it is instructive to evaluate our ε-

robustness for such an adiabatic model.

The Allen-Eberly [1] parametrization allows to obtain an exact

expression for the error probability and, in the Ω0 = ∆0 case, forces

the state time evolution along the energy level lines, maintaining the

energy eigenvalues ε(Ω(s),∆(s)) = c, c constant for every s [10]. This

kind of choice leads to good results in terms of error probability even

quite far from the ideal T → ∞ condition, as we are going to show.

In terms of control functions, we consider: ∆(s) = ∆0

√
1− sech2(s) = ∆0 tanh(s)

Ω(s) = Ω0sech(s).
(14)

Then, the exact expression for the error probability is:

Perr(T,Ω0,∆0) = cosh2

(
πT
√

∆2
0 − Ω2

0

)
sech2 (π∆0T ) , (15)

for every regime, adiabatic or not. We can notice that, for large T

and for ∆0 ≥ Ω0, the error probability can be bounded by:

Perr(T,Ω0,∆0) ≤ 4e−2πT (∆0−
√

∆2
0−Ω2

0). (16)

Thus, for every ∆0 and Ω0, ∆0 ≥ Ω0, the error probability decreases

exponentially to zero in the adiabatic limit. The best choice for the

parameters values is to take the largest ∆0 = Ω0. In the case Ω0 > ∆0,

the error probability becomes:

Perr(T,Ω0,∆0) = cos2
(
πT
√

Ω2
0 −∆2

0

)
sech2 (π∆0T ) . (17)

This expression tends to zero with dumped oscillations, due to the

term cos2
(
πT
√

Ω2
0 −∆2

0

)
. Again, larger ∆0 make Perr converge

3Demonstration of adiabatic theorem is given in [8], a description of the consequent

techniques can be found in [12, 10].
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faster. Thus, for each fixed ε, we can compute a Tε such that the

error probability Perr(T,Ω0,∆0) < ε for every T > Tε. Indeed, it is

easy to see that

Tε = max{−
ln ε

4

2π(∆0 −
√

∆2
0 − Ω2

0)
, − ln ε

2π∆0
}.

This control strategy is therefore intrinsically robust for T sufficiently

large. According to the Landau-Zener case, every choice of Ω0 6= 0 and

∆0 6= 0 drives the system to the target state. The level line condition

(∆0 = Ω0) and large Ω0 give faster convergence to the desired state.

These results is coherent to the observations found in [10], due

mainly to simulations verifying the analysis of the error probability

based on DDP ([6, 4]) formula.

4 Conclusions

The present paper fills two significant holes in the coherent quantum

control analysis.

Although a number of works can be found about the reachability-

controllability properties (i.e.[3]), a systematic approach to the sta-

bility analysis is missing. Here we investigated the advantages and

limits of considering a unitary evolution, reviewing the classical sta-

bility characterizations and showing a natural, weak (non converging)

Input-to-State stability property.

In the relevant literature, robustness with respect to control errors

has been claimed but not demonstrated, since a precise definition was

missing. We have formulated a coherent definition, which allows pre-

cise robustness evaluation and, in some cases, control tuning once the

uncertainty of the parameter has been specified. Throughout the pa-

per we present some reenforcing examples of the main ideas presented.

Having in mind a real quantum control problem, however, decoher-

ence effects should be considered. The intrinsic, conservative, simple
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stability due to the unitary evolution is no longer guaranteed, but the

convergence feature appears, opening new prospectives both towards

new sinthesis and analysis methods.
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