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Abstract: Determining whether an entangled state of interest can be asymptotically prepared
by realistic open-system dynamics has important applications across quantum engineering. This
problem has been recently solved for purely dissipative quasi-local dynamics described by a
continuous-time Markovian semigroup. Here, we extend our previous analysis by addressing the
role of internal Hamiltonian dynamics as well as of Hamiltonian control resources for achieving
the same task. We show how Hamiltonians that are not frustration-free can genuinely extend
the class of stabilizable states. In particular, we present stabilizing Hamiltonians, along with
necessary and sufficient conditions for their existence, for maximally entangled GHZ-states and
translationally invariant W-states, none of which are generally stabilizable by dissipation alone.
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1. INTRODUCTION

Entanglement is arguably one of the most intriguing fea-
tures of quantum theory, allowing for a composite sys-
tem to exist in states that exhibiting correlations beyond
what is possible in a classical probabilistic framework.
While entangled states are ubiquitous in matter, gen-
erating and manipulating entanglement in a controlled
fashion is an outstanding challenge across quantum in-
formation processing and quantum engineering. In par-
ticular, entangled states are both an essential resource
for quantum communication protocols and play an im-
portant role in boosting the efficiency of quantum algo-
rithms over their classical counterpart (see e.g. Nielsen
and Chuang (2000)). Remarkably, certain entangled states
of (two- or three-dimensional) quantum registers, the so-
called “cluster states”, suffice for universal quantum com-
putation within the one-way measurement-based model
proposed by Raussendorf and Briegel (2001). Likewise,
multi-particle entangled states of matter as well as light
can enhance the sensitivity of estimation in quantum
metrology applications, see e.g. Cappellaro et al. (2005);
Boto et al. (2000). In order to practically exploit these
advantages, these quantum states have to be generated
and “kept alive” until ready for the intended use.

In addition to more traditional coherent-control strategies
for generating entangled states based on the implemen-
tation of suitable sequences of unitary quantum gates,
the use of engineered dissipation has recently attracted a
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growing attention as a tool for robust state preparation, by
either relying on controlled interactions between the target
interest with auxiliary ones, or by implementing measure-
ments and feedback control loops (Poyatos et al. (1996);
Beige et al. (2000); Carvalho et al. (2001); Ticozzi and
Viola (2008)). With respect to unitary control protocols,
open-system schemes based, in particular, on Markovian
semigroups have the important feature of defining time-
invariant dynamical models which, for stabilization pur-
poses, are robust with respect to the initial condition.

A number of theoretical results on Markovian dynamics
for entangled state preparation have been recently es-
tablished (Kraus et al. (2008); Verstraete et al. (2009);
Ticozzi and Viola (2009); Perez-Garcia et al. (2008);
Ticozzi and Viola (2012)), including methods for per-
forming universal quantum computation in a dissipative
fashion (Verstraete et al. (2009)) and for dissipatively
preparing novel phases of matter (Diehl et al. (2008)),
along with experimental demonstrations of digital simula-
tion of continuous-time Markov dynamics in trapped ions
(Barreiro et al. (2011)) and macroscopic entangled-state
engineering (Krauter et al. (2011)). In particular, in our
earlier contribution (Ticozzi and Viola (2012)), we have
provided necessary and sufficient conditions for an entan-
gled state to be stabilizable by purely-dissipative means in
the presence of realistic locality constraints. While these
conditions translate into both an explicit stabilization test
and an explicit form for the set of dissipative actions to
be engineered, our derivation relied on two non-generic as-
sumptions: first, we assumed that no uncontrolled (“drift”)
component of the dynamical generator was present; sec-



ond, that no Hamiltonian control resources were available,
in addition to the dissipative ones.

In this work, we explore the general case, namely the
possibility of achieving global asymptotic stabilization
of a given entangled state for quasi-local, continuous-
time Markov dynamics, by employing both Hamiltonian
and dissipators, possibly in the presence of an internal
drift dynamics. We develop necessary conditions on the
Hamiltonian to make a state asymptotically stable under
quasi-local constraints, in cases where dissipation alone
is insufficient. In particular, we provide examples for
Hamiltonians satisfying these properties and stabilizing
physically relevant classes of multipartite entangled pure
states. In the last Section, we discuss the role of underlying
drift dynamics (both Hamiltonian and dissipative) for
stabilization purposes, showing how different scenarios can
be recast into the former drift-less problem, or can be
otherwise tackled by adapting our previous results.

2. PRELIMINARIES

2.1 Quantum dynamical semigroups and locality notions

We consider a multipartite system Q, composed of n
(distinguishable) subsystems, labeled with index a =
1, . . . , n, with associated da-dimensional Hilbert spaces
Ha. Thus, HQ =

⊗n
a=1Ha. In the standard quantum-

statistical framework, a state for Q is described by a
density operator ρ, which is a trace-one, positive operator
on the system Hilbert spaceH. We shall denote with D(H)
the set of density operators on H.

The dynamical models we are interested in are associated
to Lindblad Master Equations (ME) (~ = 1):

ρ̇(t) =L(ρ(t)) (1)

=−i[H, ρ(t)] +
∑

k

(
Lkρ(t)L†k −

1
2
{L†kLk, ρ(t)}

)
,

that represent the general form of generators of completely-
positive, trace-preserving continuous Markov semigroups
{eLt, t ≥ 0} acting on D(H). Here, H is an Hermitian
operator associated with the Hamiltonian of the system,
whilst the noise (or Lindblad) operators {Lk} specify the
non-Hamiltonian part of the generator, resulting in non-
unitary irreversible dynamics.

The locality constraints on the semigroup dynamics are
introduced by limiting the action of each operator Lk

to affect only certain subsets of subsystems, which we
call neighborhoods, with an equivalent condition being
imposed on H. Following Ticozzi and Viola (2012), the
neighborhoods can be specified in full generality as subsets
of the set of indexes labeling the subsystems, that is,

Nj ⊆ {1, . . . , n}, j = 1, . . . ,M.

We say that a noise operator L is Quasi-Local (QL) if there
exists a neighborhood Nj such that:

L = LNj
⊗ IN̄j

,

where LNj
accounts for the action of L on the subsystems

included in Nj , and IN̄j
:=
⊗

a/∈Nj
Ia is the identity on

the remaining subsystems. Similarly, a Hamiltonian is QL
if it admits a decomposition into a sum of QL terms:

H =
∑

j

Hj , Hj = HNj
⊗ IN̄j

.

A ME will be called QL if both its Hamiltonian and
noise operators are QL 1 . The introduction of locality con-
straints based on neighborhoods allows us to encompass in
a single definition different specific notions that have been
used in the physical literature, where the locality notions
are typically associated with sets of nearest-neighbor sites
on a graph or lattice, or with Hamiltonian and noise gen-
erators being forced to act on a given maximum number
t of subsystems (so-called “t-body” interactions), see also
Kraus et al. (2008); Verstraete et al. (2009).

2.2 Standard form for QL stabilizing dynamics

A state ρd for a system driven by (1) is said to be Globally
Asymptotically Stable (GAS) if for every initial condition
ρ0 we have

lim
t→∞

eLt[ρ0] = ρd.

A necessary condition for a state ρd = |Ψ〉〈Ψ| to be GAS
is that the state be invariant for the dynamics, namely
L(ρd) = 0: the following proposition, that has been proved
in Ticozzi and Viola (2012), provides us with a simple way
to check its invariance:
Proposition 1. Let the dynamics be driven by L. Then
ρd = |Ψ〉〈Ψ| is invariant for the dynamics if and only if

Lk|Ψ〉= `k|Ψ〉, `k ∈ C, ∀k,
H̃|Ψ〉= h|Ψ〉, h ∈ R, (2)

with H̃ = H + i
2

∑
k(`∗kLk − `kL†k).

Building on the above result, we introduce below a con-
venient standard form, or more precisely, an equivalent
representation of a stabilizing generator in terms of new
Hamiltonian and noise operators with some useful proper-
ties.
Lemma 1. If a generator L associated to {H,Lk} makes
ρd = |Ψ〉〈Ψ| GAS, then the same generator can be
associated to {H̃,Dk}, in such a way that H̃|Ψ〉 = h|Ψ〉
and Dk|Ψ〉 = 0, for all k.

Proof. Assume that ρd = |Ψ〉〈Ψ| is GAS for (3), then by
Proposition 1 it follows that for all k,

Lk|Ψ〉 = `k|Ψ〉, `k ∈ C,
and H̃|Ψ〉 = h|Ψ〉, with H̃ given in 2. Then, if `k 6= 0,
use Lemma 2 in Ticozzi and Viola (2008) to substitute Lk

with Dk = Lk − `kI. 2

By Lemma 1 we can always, without loss of generality,
consider `k = 0, ∀k, and H̃ an Hamiltonian that has |Ψ〉
as an eigenstate. In other words, we can always transform
the semigroup operators to a standard form, so that `k = 0
for all k. This is similar to what is done in the preliminary
analysis of Kraus et al. (2008), where an equivalent process
is built with the desired state as the unique dark state.
1 While it is well known that the decomposition into Hamiltonian
and dissipative part of Eq. (1) is not unique, it is easy to verify
that the QL property remains well defined since the freedom in the
representation does not affect the tensor structure of H and {Lk}.



Our main task is to find criteria to determine whether a
target state is stabilizable with QL resources:
Definition 1. A pure state ρd = |Ψ〉〈Ψ| ∈ D(HQ), is
Quasi-Locally Stabilizable (QLS) if there exist QL opera-
tors {H̃,Dk}k=1,...,K on HQ, as in Lemma 1, such that ρd

is GAS for the associated generator L.

In Ticozzi and Viola (2012), we restricted our attention to
the case in which H̃ = 0, and the stabilization is enacted
by the dissipators alone, that is:
Definition 2. A pure state ρd = |Ψ〉〈Ψ| ∈ D(HQ), is
Dissipatively Quasi-Locally Stabilizable (DQLS) if there
exist QL operators {Dk}k=1,...,K on HQ, with Dk|Ψ〉 = 0,
such that ρd is GAS for

ρ̇ =
∑

k

(
DkρD

†
k −

1
2
{D†kDk, ρ}

)
. (3)

By virtue of Theorem 1 below, one can show that for DQLS
states we can restrict to the case of a single noise operator
per neighborhood (K = M) without loss of generality.
A characterization of DQLS states, leading to a simple
linear-algebraic algorithm to test whether a state is DQLS,
may be obtained essentially based on the properties of the
reduced states on the neighborhoods. Let us define:

ρNk
= traceN̄k

(ρd), (4)
where traceN̄k

indicates the partial trace over the tensor
complement of the neighborhood Nk, namely HN̄k

=⊗
a/∈Nk

Ha. We thus have the following result (Ticozzi and
Viola (2012)):
Theorem 1. A pure state ρd = |Ψ〉〈Ψ| is DQLS if and only
if

supp(ρd) =
⋂
k

supp(ρNk
⊗ IN̄k

) ≡
⋂
k

HNk
. (5)

The proof of this Theorem leads to explicit connections
with the physically-motivated concept of a parent Hamil-
tonian. In fact, consider a QL Hamiltonian H =

∑
k Hk,

with Hk = HNk
⊗ IN̄k

. A pure state ρd = |Ψ〉〈Ψ| is called
a frustration-free ground state if

〈Ψ|Hk|Ψ〉 = min λ(Hk), ∀k,
where λ(·) denotes the spectrum of a matrix. A QL
Hamiltonian is called a parent Hamiltonian if it admits
a unique frustration-free ground state (Perez-Garcia et al.
(2007)). Suppose that a pure state admits a QL parent
Hamiltonian H. Then the QL structure of H may be
naturally used to derive a stabilizing semigroup, and it
is easy to show that this condition is also necessary:
Corollary 2. A state ρd = |Ψ〉〈Ψ| is DQLS if and only if it
is the ground state of a QL parent Hamiltonian.

We refer the reader to Ticozzi and Viola (2012) for a more
detailed discussion of the relation of these results with
those derived relying on the so-called matrix product state
formalism, see also Perez-Garcia et al. (2007, 2008).

3. CAN A QL HAMILTONIAN STABILIZE
NON-DQLS STATES?

A first natural question is the following: Are all QLS states
also DQLS states? In other words, can the addition of a
QL Hamiltonian to an engineered dissipative process of

the form (3) make a non-DQLS state GAS for the new
dynamics? In this section we provide a set of conditions
that H and {Dk} have to obey for this to happen.

The first result regards the {Dk}: this variation of Lemma
4 in Ticozzi and Viola (2012) shows that the support of a
QLS state must be, as in the DQLS case, contained in the
kernel of the noise operators written in standard form:
Lemma 2. Assume that the operators {H̃,Dk} make ρd =
|Ψ〉〈Ψ| QLS. Then, for each k, we have supp(ρNk

) ⊆
ker(D̃Nk).

Proof. In order to be QLS, the state must be invariant for
L. Hence, by Proposition 1, |Ψ〉 must be in the kernel of
each Dk. Thus, with respect to the decomposition

HQ = HΨ ⊕H⊥Ψ,
with HΨ = span{|Ψ〉}, every Dk must be of block form
(Ticozzi and Viola (2009)):

Dk =
[

0 DP,k

0 DR,k

]
,

which immediately implies DkρdD
†
k = 0. It then follows

that traceN̄k
(DkρdD

†
k) = 0 = traceN̄k

(DNk
⊗ IN̄k

ρdD
†
Nk
⊗

IN̄k
). Therefore, it also follows thatDNk

ρNk
D†Nk

= 0. If we
consider the spectral decomposition ρNk

≡
∑

j qj |φj〉〈φj |,
with qj > 0, the latter condition implies that, for each
j, D̃Nk

|φj〉〈φj |D̃†Nk
= 0. Thus, it must be supp(ρNk

) ⊆
ker(D̃Nk), as stated. 2

Given Theorem 1 above, if the support of ρd is exactly the
intersection of these kernels, then the state is DQLS. Let
us then assume that

H0 ≡
⋂
k

HNk
, dim (H0) = n0 ≥ 2,

so that ρd is not DQLS. With this notation, we have the
following:
Proposition 2. ρd is QLS but not DQLS only if HΨ ≡
span|Ψ〉 is an invariant subspace for the Hamiltonian H̃,
and no other invariant subspace is contained in (or equal
to) H0. In particular, one can choose H̃ so that H̃|Ψ〉 = 0.

Proof. If there were another invariant subspace for the
Hamiltonian with support in H0, the latter would be,
by definition of H0, also in the kernel of each Dk, and
hence it would be invariant. The dynamics in this invariant
subspace would be Hamiltonian, thus it would admit as
many invariant states as the the dimension of the subspace.
It then follows that ρd could not be GAS. If H̃|Ψ〉 =
λ|Ψ〉, λ 6= 0, we can always choose H̃ ′ = H̃ − λI instead,
which is also QL if H̃ was. 2

When such a H̃ exists, one must look for noise operators
{Dk} such that HΨ is the only invariant subspace for
the whole generator, and hence makes ρd GAS. Lemma
2 suggests that the most effective choice of noise operators
can stabilize H0, but cannot go further. In order to specify
what the action of a stabilizing Hamiltonian would be, it
is convenient to pick an orthonormal basis for H0, which
includes the target state:

H0 = span{|Ψ〉, |φ1〉, . . . , |φr〉}, r = n0 − 1.



One would hope that H̃|φj〉 /∈ H0 for each j. However,
fulfilling these conditions is clearly not necessary, and in
fact it need not be possible given the QL constraint. In
general, determining whether a QL H̃ exists for any non-
DQLS state remains an open problem. Nonetheless, in
the simple case where n0 = 2, the above idea leads to
a specialized formulation of Proposition 2:
Corollary 3. ρd is QLS but not DQLS, with H0 =
span{|Ψ〉, |φ1〉}, only if there exists a QL Hamiltonian H̃

such that H̃|Ψ〉 = 0 and

H̃|φ1〉 /∈ H0. (6)

The necessary conditions summarized in the results above
clearly show that a “good” effective Hamiltonian cannot be
a frustration-free Hamiltonian, that is, it must destabilize
H0. In the following section we will employ Corollary
3 to show that such an Hamiltonian does exist for two
important classes of multipartite entangled states: maxi-
mally entangled GHZ states and translationally invariant
W states for multi-qubit systems. Both these classes are
never DQLS: for any number of qubits and non-trivial
locality constraints the conditions of Theorem 1 cannot
be satisfied (Ticozzi and Viola (2012)). However, we will
explicitly show below that there exists a stabilizing H̃,
proving they are QLS.

Remark: Even if we succeed in finding a Hamiltonian H̃
satisfying Proposition 2, we still do not have in general a
constructive procedure for determining the stabilizing Dk.
What can be shown, as we will illustrate with an example
in Section 4.1, is that not all choices of {Dk} satisfying
Lemma 2 are effective. In fact, one needs to be careful
in ensuring that the interplay between H̃ and the noise
operators introduces enough “mixing” and does not allow
for the existence of other invariant sets. We claim that
a generic choice of noise operators that satisfy Lemma
2 and stabilize H0 will suffice: while a formal proof will
provided elsewhere, the basic idea is to follow the argument
of Section III.B of Ticozzi et al. (2011).

4. DQLS 6= QLS: EXAMPLES

4.1 GHZ states

Let the system be a n-qubit quantum register, with total
dimension N = 2n. A representative of the Greenberger-
Horne-Zeilinger (GHZ) class 2 is the state ρGHZ = |Ψ〉〈Ψ|,
where

|Ψ〉 ≡ |ΨGHZ〉 = (|000 . . . 0〉+ |111 . . . 1〉)/
√

2.
As shown in Ticozzi and Viola (2012), GHZ states are not
DQLS, except in cases where the QL constraint becomes
trivial. In fact, any reduced state on any (nontrivial)
neighborhood is an equiprobable mixture of |000 . . . 0〉 and
|111 . . . 1〉. It is then immediate to see that

H0 = span{|000 . . . 0〉, |111 . . . 1〉} =
⋂
k

supp(ρNk
⊗ IN̄k

),

and thus ρGHZ is not DQLS.

2 Observe that the QLS property is invariant under arbitrary local
unitary transformations, similar to the DQLS case examined in
Ticozzi and Viola (2012).

We now show how adding a QL Hamiltonian can render
ρGHZ GAS. Given Corollary 3, we need H̃ such that:

H̃(|000 . . . 0〉+ |111 . . . 1〉)/
√

2 = 0,

H̃(|000 . . . 0〉 − |111 . . . 1〉)/
√

2 /∈ H0.

In order for this to happen, we need to find H̃ such that
H̃|000 . . . 0〉 = −H̃|111 . . . 1〉.

We now take into account the QL structure of H̃ =∑
k Hk, and the fact that each QL component acts on

at most a finite number nk of “symbols”, that is, 0 or
1 in the factorized components of the states |0〉⊗n, |1〉⊗n,
respectively. If we assume that nk < n/2, it follows that

H̃|000 . . . 0〉∈ span
{
|x1, . . . , xn〉, xj ∈ {0, 1},

∑
j

xj < n/2
}
,

H̃|111 . . . 1〉∈ span
{
|x1, . . . , xn〉, xj ∈ {0, 1},

∑
j

xj > n/2
}
.

Hence, the two vectors must be orthogonal, since they
belong to subspaces spanned by two orthogonal sets of
vectors. This means that a Hamiltonian satisfying the
requirements of Corollary 3 does not exists. In other words,
we need H̃ to be able to “flip” at least n/2 qubits in the
completely factorized basis states |0〉⊗n, |1〉⊗n.

If we take the neighborhood to include nk = n/2 qubits,
we can always construct a QL Hamiltonian such that

H̃(|000 . . . 0〉 = (|1 . . . 10 . . . 0〉 − |0 . . . 01 . . . 1〉)/
√

2,

H̃(|111 . . . 1〉 = (−|1 . . . 10 . . . 0〉+ |0 . . . 01 . . . 1〉)/
√

2,
with the vectors in the r.h.s. containing exactly n/2 zeroes
and n/2 ones, which clearly satisfies the requirement. This
can be obtained by considering two disjoint sets S`=1,2

each including one half of the qubits if n is even (or
(n + 1)/2, (n − 1)/2 in the odd-n case), and for ` = 1, 2,
choose

H̃` = (−1)`−1
( ⊗

a∈S`

σ(a)
x

)
⊗ IS̄`

.

If, compatibly with our QL constraints, there exists two
neighborhoods Nk1,k2 such that

S`=1,2 ⊂ Nk`=1,2 ,

then, with a proper choice of the noise operators, a GHZ
state can then be rendered GAS. For example, for 3 qubits
on a line, we can choose S1 = {1},S2 = {2, 3}, so that
under 2-body QL constraints N1 = {1, 2},N2 = {2, 3}, we
can implement:

H̃ = σ(1)
x − σ(2)

x ⊗ σ(3)
x ,

D1 = I2 ⊗ (|00〉〈01|+ |11〉〈10|),
D2 = I2 ⊗ (|00〉〈01|+ i|11〉〈10|).

Remark: The phase factor in D2 is not coincidental: in fact,
the more symmetric choice D′2 = I2⊗ (|00〉〈01|+ |11〉〈10|)
would leave the −1-eigenspace of

⊗
a=1,2,3 σ

(a)
x invariant

for the generator associated to H̃,D1, D
′
2, while ρGHZ is

the unique invariant state for H̃,D1, D2.

This simple example is enough to prove that DQLS ( QLS,
namely that there exist pure entangled states that are not
stabilizable by dissipation alone but can be made GAS by
the addition of a suitable QL Hamiltonian.



Furthermore, this way of making GHZ states GAS is
general, and, in the light of the observation above, it
requires neighborhoods of the minimum possible size.
Notice that the neighborhood size scales linearly (≈ n/2)
with the overall system size, thus as n→ +∞ the needed
range of interaction size goes to infinity.

4.2 W states

Consider again an n-qubit system with the same notation
as in the previous example. A representative of the W class
is the state ρW = |Ψ〉〈Ψ|, with
|Ψ〉 ≡ |ΨW〉 = (|100 . . . 0〉+|010 . . . 0〉+. . .+|000 . . . 1〉)/

√
n.

This state is a permutation-invariant superposition of all
computational basis states with a single 1, and has reduced
states on any non-trivial neighborhood that are statistical
mixtures of |000 . . . 0〉 and a smaller W state |ΨW′〉, of the
dimension of the neighborhood. Accordingly,

H0 = span{|000 . . . 0〉, |ΨW〉} =
⋂
k

supp(ρNk
⊗ IN̄k

),

and thus ρW is not DQLS. We are still in a case where
Corollary 3 can be applied.

It is easy to show that, for example, the following 2-body
Hamiltonian satisfies the requirements of Corollary 3:

H̃ = σ(1)
x ⊗ P0 − P0 ⊗ σ(n)

x (7)

= σ(1)
x ⊗

( n−1∑
a=2

(σ(a)
z − (n− 3)I(a))

)
+
( n−1∑

a=2

(σ(a)
z − (n− 3)I(a))

)
⊗ σ(n)

x , (8)

where P0 is an operator on
⊗n−1

a=2 Ha such that:

P0|ΨWn−2〉 = 0, P0|0〉⊗(n−2) = |0〉⊗(n−2).

While we derived this particular Hamiltonian relying on
symmetry considerations, to our scope it suffices to verify
by direct computation that

H̃|ΨW 〉 = 0, H̃|0〉⊗n = |10 . . . 0〉 − |0 . . . 01〉,
as needed. This shows how W-states on an arbitrary
number of qubits can in principle be QLS by allowing for
arbitrary 2-body interactions.

5. QL STABILIZATION WITH DRIFT DYNAMICS

We will now address the possibility of a pre-existing QL
drift dynamics. It will be convenient to discuss the case
of having a given Hamiltonian component first, and to
introduce the more general case next.

5.1 Drift Hamiltonian

Imagine that a drift QL Hamiltonian H0 describes the free
dynamics of the system of interest, and that as before the
target state is ρd = |Ψ〉〈Ψ|.
In order to establish whether ρd can be made GAS by
purely dissipative dynamics together with the action of H0,
we can first check whether H0|Ψ〉 = λ|Ψ〉, in which case
the state is invariant. If not, consider a QL decomposition

of H0 =
∑

k Hk, and decompose Hk in matrix blocks
according to H = HΨ ⊕HR, that is:

Hk =
[
HS,k HP,k

H†P,k HR,k

]
.

For each k, define:

D′k =
[
1 D′P,k

0 0

]
, D′P,k = 2iHP,k.

By Corollary 1 in Ticozzi and Viola (2008), it follows
that adding D′k as a noise operator for each neighborhood
makes ρd invariant for the global dynamics. Hence, we
can find an alternative (equivalent) representation of the
generator with the added noise operators {D′′k} in standard
form and H ′0 obeying H ′0|Ψ〉 = 0. Now we can proceed to:

(1) Determine whether ρd would be DQLS in the absence
of H ′0, by applying Theorem 1.

(2) If ρd is DQLS, then a generic choice of stabilizing
{Dk} will make ρd GAS.

(3) If ρd is not DQLS, we can check whether H ′0 satisfies
the necessary conditions of Proposition 2. If it does,
we know that under some suitable locality notions,
there can exist stabilizing dissipators. If not, ρd can-
not be made GAS.

Note that if complete QL Hamiltonian control is available
as an additional resource, the situation is obviously sim-
pler: since the QL H0 is known, a control Hamiltonian
H1 = −H0 can be added to cancel the action of the drift.
Then the problem becomes completely equivalent to the
drift-less case, for which we have Theorem 1 in the DQLS
case or, in the QLS case, the set of necessary conditions
given in Lemma 2, Proposition 2 and/or Corollary 3.

5.2 Drift Hamiltonian and dissipation

Assume that a QL Markovian drift dynamics is driving the
system of interest, say, ρ̇ = −i[H0, ρ]+LD[ρ], where LD[ρ]
denotes some noise generator in Lindblad form, associated
to QL noise operators {Lk}.
The first thing to check is whether, for each neighborhood
Nk, Lk|Ψ〉 = λk|Ψ〉. In fact, this is a necessary condition
for the invariance of ρd that must be satisfied by all
noise operators irrespective of them being controlled or
not (Corollary 1 in Ticozzi and Viola (2008)). Hence, if
Lk|Ψ〉 6= λk|Ψ〉 for some k, then ρd cannot be made GAS.

If Lk|Ψ〉 = λk|Ψ〉 for all k, then using Lemma 1 we
can write an equivalent generator in standard form, with
operators {H̃0, L̃k} such that L̃k|Ψ〉 = 0. These noise
operators must satisfy Lemma 2. In this way, we have
mapped the problem back the one considered in Section
5.1, where we had only Hamiltonian drift.

(1) In case we have only dissipative control capabilities,
we need to determine if the Hamiltonian H̃0 desta-
bilizes the desired state. A destabilizing Hamiltonian
can then be compensated in a way similar to the one
given in the previous section, but now choosing

D′P,k = 2iHP,k − L̃†S,kL̃P,k.

The free dynamics plus the QL {D′k} can then be
associated to operators in standard form {H ′0, D′k}.



(2) If the state is DQLS in the absence of H ′0, then again
a generic choice of {Dk} will suffice. If the state is
not DQLS, we can check whether H ′0 satisfies the
conditions of Proposition 2 and/or Corollary 3. If so,
we are left with the problem of finding effective QL
noise operators, otherwise the state is not QLS.

(3) In case we also have complete QL Hamiltonian con-
trol, we can cancel H ′0 as above, and the problem is
reduced to determining whether ρd is DQLS or QLS.

6. QL STABILITY AND STABILIZATION: WHERE
DO WE STAND?

Building on our previous analysis and results (Ticozzi and
Viola (2012)), we have provided evidence that for certain
quasi-locality notions the set of DQLS states is strictly
smaller than the set of QLS states, as the latter contains
also the celebrated GHZ and W states. This points to QL
control Hamiltonians as key resources for dissipative en-
tanglement engineering in multipartite quantum systems.

While a characterization of QLS states is still missing,
we have provided in Proposition 2 and/or Corollary 3
necessary conditions for a QL Hamiltonian to be an
effective aid in stabilizing the desired entangled pure state.
If such a Hamiltonian exists, we have so far been able
to easily find effective QL noise operators that make the
desired state GAS (and hence QLS) on a case-by-case
basis. Our claim is that a generic choice of the noise
operators {Dk} is effective, provided that they satisfy
Lemma 2 and that the only invariant subspace for the
dissipative part of the dynamics is:

H0 =
⋂
k

supp(ρNk
⊗ IN̄k

) =
⋂
k

HNk
.

A detailed proof of this claim will be worked out elsewhere,
relying on the fact that the sub-manifold of states that
can be made invariant by adding an Hamiltonian to a
dissipative generator has a lower dimensionality with re-
spect to the whole set, and exploiting representation tools
for Markovian dynamics such as the “dissipation-induced
decomposition” introduced in Ticozzi et al. (2011).

The key remaining open problems are then to provide an
explicit characterization of QLS states, possibly suggesting
a way to classify states at least for commonly used QL
constraints, and to find a systematic way to synthesize,
whenever possible, QL Hamiltonian satisfying Proposition
2. Addressing the scalability of both DQLS and QLS sta-
bilization procedure is another challenging yet practically
important area for further investigation. The possibility of
considering switched dynamics, feedback control and time-
dependent generators offer promising research directions
in this sense, in the effort of surpassing the stringent
limitations imposed by QL continuous-time dynamics.
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