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Abstract— We determine the minimal experimental resources
that ensure a unique solution in the estimation of trace-
preserving quantum channels with both direct and convex
optimization methods. A convenient parametrization of the
constrained set is used to develop a globally converging Newton-
type algorithm that ensures a physically admissible solution to
the problem. Numerical simulation is provided to support the
results, and indicate that the minimal experimental setting is
sufficient to guarantee good estimates.

I. INTRODUCTION

We consider an identification problem arising in the recon-
struction of quantum dynamical models from experimental
data. This is a key issue in many quantum information
processing tasks [11], [5], [12], [10], [4]. For example, a
precise knowledge of the behavior of a channel to be used for
quantum computation or communications is needed in order
to ensure that optimal encoding/decoding strategies are em-
ployed, and verify that the noise thresholds for hierarchical
error-correction protocols, or for effectiveness of quantum
key distribution protocols, are met [11], [5]. In many cases
of interest, for example in free-space communication [15],
channels are not stationary and to ensure good performances,
repeated and fast estimation steps would be needed as a
prerequisite for adaptive encodings. In addition to this, when
the goal is to embed the system used for probing the channel
in a moving vehicle or a satellite, one seeks the simplest
implementation, or at least a compromise between estimation
accuracy and the number of experimental resources needed.

Therefore, we here focus on: (i) characterizing the minimal
experimental setting (in terms of available probe states and
measured observables) needed for a consistent estimation of
the channel; (ii) exploring how a minimal parametrization
of the models can be exploited to reduce the complexity
of the estimation algorithm; and (iii) testing (numerically)
the minimal experimental setting, and compare it to “richer”
experimental resources. In doing this, we present a general
framework for the estimation of physically-admissible trace
preserving quantum channels by minimizing a suitable class
of (convex) loss functions which include commonly used
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Università di Padova, via Gradenigo 6/B, 35131 Padova, Italy
(augusto@dei.unipd.it).

maximum likelihood (ML) functionals. In the large body of
literature regarding channel estimation, or quantum process
tomography (see e.g. [12], [10] and references therein), the
experimental resources are usually assumed to be given.
Mohseni et al. [10] compare different strategies, but focus on
the role of having entangled states as an additional resource,
while we shall assume there is no additional quantum system
to work with. The problem we study is closer in spirit to that
taken in [14] while studying minimal state tomography.
Our analysis of the problem and the standard tomography
methods (including “inversion” and ML methods) leads to
a necessary and sufficient condition for identifiability of
the channel and to the characterization of the minimal
experimental resources (or quorum, in the language of [6])
for Trace-Preserving (TP) channels estimation. While the
existing ML approaches introduce the TP constraint through
a Lagrange multiplier [12], [10], the method we propose
constrains the set of channels of the optimization problem to
TP maps from the beginning. In a d level quantum system,
this allow for an immediate reduction from d4 to d4−d2 free
parameters in the estimation problem. However, determining
which conditions on probe states and output measurements
must be satisfied to ensure identifiability has not been made
explicit so far. Our analysis can also be considered as
complementary to the one presented in [3], where the TP
assumption is relaxed to include losses. We pursue a rigorous
presentation of the results and we try to make contact with
ideas and methods of (classical) system identification. The
same explicit parametrization for TP channels is also used
to develop a Newton-type algorithm with barriers, which en-
sures convergence in the set of physically-admissible maps.
Numerical simulations show that experimental settings richer
than the minimal one do not lead to better performances
(fixed the total number of available ”trials”).

II. PRELIMINARIES: QUANTUM CHANNELS AND
χ-REPRESENTATION

Consider a d-level quantum system with associated an
Hilbert space H isomorphic to Cd. The state of the system is
described by a density operator, namely by a positive, unit-
trace matrix

ρ ∈ D(H) = {ρ ∈ Cd×d|ρ = ρ† ≥ 0, tr(ρ) = 1},
which plays the role of probability distribution in classical
probability. A state is called pure if it is associated by
an orthogonal projection matrix on a one-dimensional sub-
space. Measurable quantities or observables are associated
with Hermitian matrices X =

∑
k xkΠk, with {Πk} the



associated spectral family of orthogonal projections. Their
spectrum {xk} represents the possible outcomes, and the
probability of observing the kth outcome can be computed
as pρ(Πk) = tr(Πkρ). A quantum channel is a map E :
D(H)→ D(H). It is well known [9], [11] that a physically
admissible quantum channel must be linear and Completely
Positive (CP), namely it admits an Operator-Sum Represen-
tation (OSR)

E(ρ) =
d2∑
j=1

KjρK
†
j (1)

where Ki ∈ Cd×d are called Kraus operators. In order to be
Trace Preserving (TP), a necessary condition to map states
to states, it must also hold that

d2∑
j=1

K†jKj = Id (2)

where Id is the d × d identity matrix. TPCP maps can
be thought as the quantum equivalent of Markov transition
matrices in the classical setting. An alternative way to
describe a CPTP channel is offered by the χ-representation.
Each Kraus operator Kj ∈ Cd×d can be expressed as a linear
combination (with complex coefficients) of {Fm}d2m=1, Fm
being the elementary matrix Ejk, with m = (j − 1)d + k.
Accordingly, the OSR (1) can be rewritten as

E(ρ) =
d2∑

m,n=1

χm,nFmρF
†
n (3)

where χ is the d2× d2 Hermitian matrix with element χm,n
in position (m,n). It is easy to see that it must satisfy χ =
χ† ≥ 0 and (following from (2))

d2∑
m,n=1

χm,nF
†
nFm = Id. (4)

The map E is completely determined by the matrix χ.
The χ matrix can be used directly to calculate the ef-

fect of the map on a given state, and the probability of
measurements outcomes for the transformed state, as well
as observable expectations. Before providing the explicit
formulas, we need to recall the definition of partial trace.
Consider two finite-dimensional vector spaces V1 V2, with
dimV1 = n2

1, dimV2 = n2
2. The partial trace can be defined

as the only linear function such that for any pair X ∈Mn1 ,
Y ∈Mn2 :

trV2(X ⊗ Y ) = tr(Y )X.

An analogous definition can be given for the partial trace
over V1. If the two vector spaces have the same dimension,
n1 = n2, we will indicate with tr1 and tr2 the partial traces
over V1 and V2, respectively.

Let Eχ be a CPTP map associated to a given χ: then it
can be shown, by using the properties of the partial trace,
that

tr1(χ) = Id (5)

and for any ρ ∈ D(H), we have

Eχ(ρ) = tr2(χ(Id ⊗ ρT ))
pE(ρ)(Π) = tr(E(ρ)Π) = tr(χ(Π⊗ ρT )).

III. MAIN RESULTS: IDENTIFIABILITY CONDITION AND
MINIMAL SETTING

A. The Channel Identification Problem

Consider the following setting: a quantum system prepared
in a known pure state ρ is fed to an unknown channel E .
The system in the output state E(ρ) is then subjected to
a projective measurement of an observable. By noting that
an observable (being represented by an Hermitian matrix in
our setting) admits a decomposition in orthogonal projections
representing mutually incompatible quantum events, we can
without loss of generality restrict ourselves to consider mea-
surements associated to orthogonal projections Π = Π† =
Π2. For each one of these, the outcome x is in the set {0, 1},
and can be interpreted as a sample of the (classical) random
variable X which has distribution

Pχ(x),ρ =
{
pχ,ρ(Π), if x = 1
1− pχ,ρ(Π), if x = 0 (6)

where pχ,ρ(Π) = tr(Eχ(ρ)Π) is the probability that the
measurement of Π returns outcome 1 when the state is Eχ(ρ).

Assume that the experiment is repeated with a series
of known input (pure) states {ρk}Lk=1, and to each trial
the same orthogonal projections {Πj}Mj=1 are measured N

times, obtaining a series of outcomes {xjkl }. We consider
the sampled frequencies to be our data, namely

fjk :=
1
N

N∑
l=1

xjkl . (7)

The channel identification problem (or as it is referred to
in the physics literature, the quantum process tomography
problem [12], [11], [10]) we are concerned with consists in
constructing a Kraus map Eχ̂ that fits the experimental data
(in some optimal way), in particular estimating a matrix χ̂
satisfying constraints (3),(4).

B. Necessary and sufficient conditions for identifiability

It is well known [13], [12] that by imposing linear con-
straints associated to the TP condition (4), or equivalently
(5), one reduces the d4 real degrees of freedom of χ to
d4 − d2. This will be made explicit in the following, by
parameterizing χ in a “generalized” Pauli basis (also known
as gell-mann matrices, Fano basis or coherence vector rep-
resentation in the case of states [2], [12]). Usually the trace
preserving constraint is not directly included in the standard
tomography method [10], since in principle it should emerge
from the physical properties of the channel, or it is imposed
through a (nonlinear) Lagrange multiplier in the maximum
likelihood approach [12]. Here, in order to investigate the
minimum number of probe (input) states and measured
projectors needed to uniquely determine χ, it is convenient to
include this constraint from the very beginning. Doing so, we
lose the possibility of exploiting a Cholesky factorization in



order to impose positive semidefiniteness of χ: noentheless,
semidefiniteness of the solution can be imposed directly
in the algorithm, e.g. by using a barrier method. Before
proceeding to the main results, a number of definitions
are in order. Consider an orthonormal basis for d2 × d2

Hermitian matrices of the form {σj ⊗ σk}j,k=0,1,...,d2−1,
where σ0 = 1/

√
dId, while {σj}j=1,...,d2−1 is a basis for

the traceless subspaces. We can now write

χ =
∑
jk

sjkσj ⊗ σk.

If we now substitute it into (5), we get:

Id = tr1(χ) =
∑
jk

sjktr(σj)σk =
∑
k

√
d s0kσk,

and hence, since the σj are linearly independent, we can
conclude that s00 = 1, s0j = 0 for j = 1, . . . , d2−1. Hence,
the free parameters for a TP map (at this point not necessarily
CP, since we have not imposed the positivity of χ yet) are
d4 − d2, and we can write any TP χ as χ = d−1Id2 +∑d2−1,d2−1
j=1,k=0 sjkσj ⊗ σk, or, in a more compact notation,

χ(θ) = d−1Id2 +
d4−d2∑
`=1

θ`Q`, (8)

by rearranging the double indexes j, k in a single index `,
and defining the corresponding Q` = σj ⊗ σk. Thus, there
exists a one to one correspondence among χ and the d4−d2-
dimensional real vector θ =

[
θ1 . . . θd4−d2

]T
, and the

χ matrices corresponding to TP maps form an affine space,
its linear part being

STP := span{Q`} = span{σj ⊗ σk}j=1,...,d2−1,k=0,...,d2−1.

In order to find necessary and sufficient conditions for
identifiability, it is convenient to define

Bjk = (Πj − 1
d
I)⊗ ρTk (9)

and B = span{Bjk}j=1,...,M,k=1,...,L. Intuitively, B rep-
resents the space of input/output combination that can be
probed by the set of experimental resources {ρk}, {Πj} we
choose. The definition of the Bjk is motivated by the fact
that, since Q` = σj 6=0 ⊗ σk, it holds that

tr(Q`(Πj ⊗ ρTk )) = tr(Q`Bjk). (10)

By recalling that σj , j = 1, . . . d2 − 1 is a basis for the
traceless subspace of Hermitian matrices it is immediate to
show that B ⊆ STP . Finally, let us introduce the function
g that maps the space of TP channels in the (theoretical)
set of probabilities for the input states/measured projectors
combinations:

g : Rd
4−d2 → RM×L

θ 7→ g(θ)

where the component of g(θ) in position (j, k) is defined as

gjk(θ) = pχ(θ),ρk
(Πj) = tr(χ(θ)(Πj ⊗ ρTk )). (11)

The key result on identifiability is the following:
Proposition 3.1: g is injective if and only if STP = B.

Proof. Given (11), we have that

gjk(θ1)− gjk(θ2) = tr[(χ(θ1)− χ(θ2))(Πj ⊗ ρTk )]
= tr[S(θ1 − θ2)Bjk]
= 〈S(θ1 − θ2), Bjk〉

where S(θ1 − θ2) = χ(θ1) − χ(θ2) =
∑d4−d2
l=1 (θ1,l −

θ2,l)Ql ∈ STP . So, we have that

g(θ1) = g(θ2) ⇔ 〈S(θ1 − θ2), Bjk〉 = 0 ∀ j, k. (12)

Assume STP = B : the only element of STP for which
the r.h.s. of (12) could be true is zero. Since by definition
S(θ1 − θ2) = 0 if and only if θ1 = θ2 , g is injective. On
the other hand, assume that B ( STP : therefore there exists
T 6= 0 ∈ STP

⋂B⊥ such that

T =
∑
`

γ`Q`, 〈T,Bjk〉 = 0 ∀j, k.

But this would mean that θ and θ + γ have the same image
g(θ), and hence g is not injective.

We anticipate here that g being injective is a necessary
and sufficient condition for a priori identifiability of χ,
and thus for having a unique solution of the problem for
both inversion (standard process tomography) and convex
optimization-based (e.g. maximum likelihood) methods, up
to some basic assumptions on the cost functional, see Section
III-D. As a consequence of these facts, we can determine
the minimal experimental resources, in terms of input states
and measured projectors, needed for faithfully reconstructing
χ from noiseless data {f◦jk}, where f◦jk = pχ,ρ(Π). In the
light of Proposition 3.1, the minimal experimental setting is
characterized by a choice of {Πj , ρk} such that STP = B.
Recalling the definition of B, through (9), it is immediate
to see that STP = B if and only if span{Πj − d−1Id} =
span{σj , j = 1, . . . , d2 − 1} and span{ρk} = Cd×d. We can
summarize this fact as a corollary of Proposition 3.1.

Corollary 3.1: g is injective if and only if we have at
least d2 linearly independent input states {ρk}, and d2 − 1
measured {Πj} such that

span{Πj − d−1Id} = span{σj , j = 1, . . . , d2 − 1}.
We call such a set a minimal experimental setting. Notice
that, using the terminology of [12], [6], the minimal quorum
of observables consists of d2 − 1 properly chosen elements.
While in most of the literature at least d2 observables are
considered [7], [10], we showed it is in principle possible
to spare a measurement channel at the output. A physically-
inspired interpretation for this fact is that, since we a priori
know, or assume, that the channel is TP, measuring the
component of the observables along the identity does not
provide useful information. This is clearly not true if one
relaxes the TP condition, as it has been done in [3]: in that
case, by the same line of reasoning, d2 linearly independent
observables are the necessary and sufficient for g to be
injective.



As an example relevant to many experimental situation,
consider the qubit case, i.e. d = 2. A minimal set of projector
has to span the traceless subspace of C2×2: one can choose
e.g.:

Πj =
1
2
I2 + σj , j = x, y, z.

ρx,y =
1
2
I2 + σx,y, ρ± =

1
2
I2 ± σz. (13)

It is clear that there is an asymmetry between the role of
output and inputs: in fact, exchanging the number of {Πj}
and {ρk} can not lead to an injective g.

C. Process Tomography by inversion

Assume that STP = B, and that the data {fjk} have been
collected. Since fjk is an estimate of pχ(θ),ρk

(Πj), consider
the following least mean square problem

min
θ∈Rd4−d2

‖g(θ)− f‖ (14)

where g(θ) and f are the vectors obtained by stacking the
gjk(θ) and fjk j = 1 . . .M, k = 1 . . . L, respectively. In
view of (8) and (11) we have that g(θ) = Tθ+ d−11 where

T =


. . .

...
tr(BjkQ`)

...
. . .

 (15)

and 1 is a vector of ones. Notice that the `th column of T is
formed with the inner products of Q` with each Bjk. Since
STP = B, the Q` are linearly independent and the Bjk are
the generators of B, then T is full column rank, namely has
rank d4 − d2. Hence, in principle, one can reconstruct θ̂ as

θ̂ = T#(f − 1
d

1), (16)

T# being the Moore-Penrose pseudo inverse of T [8]. If the
experimental setting is minimal, the usual inverse suffices.
However, as it is well known, when computing χ from real
(noisy) data, the positivity character is typically lost [12],
[1].

D. Convex methods: general framework

More robust approaches for the estimation of physically-
acceptable χ (or equivalent parametrizations) have been de-
veloped, most notably by resorting to Maximum Likelihood
methods [7], [13], [12], [16]. The optimal channel estimation
problem can be stated, by using the parametrization for
χ(θ) = d−1Id2 +

∑
` θ`Q` presented in the previous section,

as it follows: consider a set of data {fjk} as above, and a
cost functional J(θ) := h ◦ g(θ) where h : RM×L → R is a
suitable function which depends on the data {fjk}. We aim
to find

θ̂ = arg min
θ
J(θ) (17)

subject to θ belonging to some constrained set C ⊂ Rd4−d2 .
In our case C = A+ or C = A+ ∩ I, with A+ =
{θ | χ(θ) ≥ 0}, while I = {θ | 0 < tr(χ(θ)(Πj ⊗

ρTk )) < 1, ∀ j, k}. The second constraint may be used
when a cost functional which is not well-defined for extremal
probabilities, or in order to ensure that the estimated channel
exhibits some noise in each of the measured directions, as
it is expected in realistic experimental settings. Since the
analysis does not change significantly in the two settings,
we will not distinguish between them where it is not strictly
necessary. Finally, it can be proven that C is a bounded set.

Here we focus on the following issue: under which con-
ditions on the experimental setting (or, mathematically, on
the set B defined above) do the optimization approach have
a unique solution? In either of the cases above, C is the
intersection of convex nonempty sets: in fact, STP and χ ≥ 0
are convex and so must be the corresponding sets of θ, and
it is immediate to verify that I is convex as well; all of
these contain θ = 0, corresponding to 1

dId2 , and hence they
are non empty. In the light of this, it is possible to derive
sufficient conditions on J for existence and uniqueness of
the minimum in the presence of arbitrary constraint set C.
Define ∂C0 := ∂C \ (∂C ∩ C).

Proposition 3.2: Assume h is continuous and strictly con-
vex on g(C), and

lim
θ→∂C0

J(θ) = lim
θ→∂C0

h ◦ g(θ) = +∞. (18)

If STP = B, then the functional J has a unique minimum
point in C.
Let us provide the main ides of the proof, leaving the details
for an extended version of this paper: since h is strictly
convex on g(C) and, in view of Proposition 3.1, the linear
function g is injective on C, J is strictly convex on C. So,
we only need to show that J takes a minimum value on C.
In order to do so, it is sufficient to show that the image of
(−∞, r] under the map J−1 is a compact set.

E. ML Binomial functional

Assume a certain set of data {fjk} have been obtained, by
repeating N times the measurement of each pair (ρk,Πj).
For technical reasons (strict convexity of the ML functional
on the optimization set) and experimental considerations
(noise typically irreversibly affects any state), it is typically
assumed that 0 < fjk < 1. The probability of obtaining a
series of outcomes with cjk = fjkN ones for the pair (j, k)
is then

Pχ(cjk) =
(
N

cjk

)
tr(χΠj ⊗ ρTk )cjk [1− tr(χΠj ⊗ ρTk )]N−cjk

(19)
so that the overall probability of {cjk}, may be expressed
as: Pχ({cjk}) =

∏M
j=1

∏L
k=1 Pχ(cjk). By adopting the

Maximum Likelihood (ML) criterion, once fixed the {cjk}
describing the recorded data, the optimal estimate χ̂ of χ
is given by maximizing Pχ({cjk}) with respect to χ over a
suitable set C. Let us consider our parametrization of the TP
χ(θ) as in (8) . If we assume 0 < tr(χ(θ)(Πj ⊗ ρTk )) < 1,
since the logarithm function is monotone, it is equivalent
(up to a constant emerging from the binomial coefficients)



to minimize over C = A+ ∩ I 1 the function

J(θ) = − 1
N

logPχ(θ)({cjk}) +
∑
j,k

log
(

N
cjk

)
= −

∑
j,k

fjk log[tr(χ(θ)(Πj ⊗ ρTk )]

+(1− fjk) log[1− tr(χ(θ)(Πj ⊗ ρTk ))]. (20)

Here, h(X) = −∑j,k fjk log(xjk)+(1−fjk) log(1−xjk)
with xjk = [X]jk and X ∈ RM×L is strictly convex
on RM×L because 0 < fjk < 1 by assumption. Notice
that ∂C0 is the set of θ ∈ A+ for which there exists
at least one pair (̃i, k̃) such that tr(χ(θ)(Πj̃ ⊗ ρT

k̃
)) =

0, 1. Suppose that tr(χ(θ)(Πj̃ ⊗ ρT
k̃

)) → 0 as θ → ∂C0.
Therefore, log[tr(χ(θ)(Πj ⊗ ρTk ))] → −∞. Since cj̃,k̃ > 0
by assumption, we have that

lim
θ→∂C0

J(θ) = −lim
θ→∂C0

∑
j,k

fjk log[tr(χ(θ)(Πj ⊗ ρTk ))]

+(1− fjk) log[1− tr(χ(θ)(Πj ⊗ ρTk ))]
= −fj̃,k̃ lim

θ→∂C0
log[tr(χ(θ)(Πj̃ ⊗ ρTk̃ ))]

= +∞.
In similar way, we obtain the same result from the other
case, and the conditions for existence and uniqueness of the
minimum of Proposition 3.2 are satisfied.

We now discuss consistency of this method. Let θ◦ be the
“true” parameter and χ = χ(θ◦) be the corresponding χ-
matrix of the “true” channel. First observe that, once fixed
the sample frequencies fjk (or, equivalently, cjk),

J(θ) ≥ −
∑
j,k

fjk log[fjk] + (1− fjk) log[1− fjk],

so that if there exists θ̂ ∈ C such that tr[χ(θ̂)(Πj̃ ⊗ ρTk̃ )] =
fjk, then such a θ̂ is optimal. Hence, in particular, the
(unique) optimal solution corresponding to the fjk equal
to the “true” probabilities tr[χ(Πj ⊗ ρTk )] is exactly θ◦. On
the other hand, as the number of experiments N increases,
the sample frequencies fjk tend to the “true” probabilities
tr[χ(Πj ⊗ ρTk )]. Therefore, in view of convexity of J and
of the continuity of J and its first two derivatives, the
corresponding optimal solution tends to the “true” parameter
θ◦. This proves consistency of the estimation.

IV. SIMULATION RESULTS

A. Performance comparison

We use the following notation:
• IN method to denote the process tomography by inversion
of Section III-C.
• ML method to denote the ML method, using the functional
(20) of Section III-E. In order to find θ̂, we used a Newton-
type algorithm with logarithmic barriers (the details will be
presented in a forthcoming publication) converges: After a

1If the optimization is constrained to A+ ∩ I, we are guaranteed that
fjk will tend to be positive for a sufficiently large numbers of trials.

finite number of steps, it converges in a quadratic way to the
minimum point. Here, we want to compare the performance
of IN and ML method for the qubit case d = 2. Consider
a set of CPTP map {χl}100l=1 randomly generated and the
minimal setting (13). Once the number of measurements N
for each couple (ρk,Πj) is fixed, we consider the following
comparison procedure:
• At the l-th experiment, let {cljk} be the data corresponding
to the map χl. Then, compute the corresponding frequencies
f ljk = cljk/N .
• From {f ljk} compute the estimates χ̂INl and χ̂ML

l using
IN and ML method respectively.
• Compute the relative errors

eIN (l) =
‖χ̂INl − χl‖
‖χl‖ , eML(l) =

‖χ̂ML
l − χl‖
‖χl‖ . (21)

• When the experiments are completed, compute the mean
of the relative error

µIN =
1

100

100∑
l=1

eIN (l), µML =
1

100

100∑
l=1

eML(l). (22)

In Figure 1 the results obtained for different lengths N of

0 200 400 600 800 1000 1200 1400 1600

0.05

0.1

0.15

0.2

0.25

N

m
ea

n 
re

la
tiv

e 
er

ro
r

 

 

0 200 400 600 800 1000 1200 1400 1600

50

60

70

80

90

100

N

#F

µIN

µML

Fig. 1. Comparison performance IN vs ML method. N is the total
number of measurements for each (ρk,Πj), µ is the mean relative error as
introduced in (22).

measurements related to {cljk} are depicted. The mean error
norm of ML method is smaller than the one corresponding
to the IN method, in particular when N is small (typical
situation in the practice). In addition, more than half of
the estimates obtained by the IN method are not positive
semidefinite, i.e not physically acceptable, even when N is
large. Finally, we observe that for both methods the mean
error decrease as N grows, providing evidence for their
consistency.

B. Minimal setting

Let TM,L denote the set of the experimental settings with
L input states and M observables satisfying Proposition 3.1.
Accordingly the set of the minimal experimental settings is
Td2−1,d2 . Here, we consider the case d = 2. We want to
compare the performance of the minimal settings in T3,4 with
those settings that employ more input states and observables.
We shall do so by picking a test channel, finding a minimal
setting that performs well, and comparing its performance
with a non minimal setting in TM,L, M > 3, L ≥ 4 that
performs well in this set while the total number NT of trials



is fixed. Consider the Kraus map (1) representing a perturbed
amplitude damping operation (γ = 0.5) with

K1 =
√

0.9
[ √

0.5 0
0 0

]
,K2 =

√
0.9
[

1 0
0
√

0.5

]
,

K3 =
√

0.1/2I2, Kj =
√

0.1/2σl(j), j = 4, 5, 6, l(j) =
x, y, z corresponding to the χ-representation

χ =


0.95 0 0 0.6364

0 0.5 0 0
0 0 0.05 0

0.6364 0 0 0.5

 .
We set the total number of trials NT = 3600. Fixed the set
TM,L M ≥ 3 L ≥ 4, we take into account the following
procedure:
• Set N = NT \ (LM) and choose a randomly generated
collection {Tm}100m=1, Tm ∈ TM,L.
• Perform 50 experiments for each Tm. At the l-th ex-
periment we have a sample data {fmjk(l)} corresponding
to χ and Tm. From {fmjk(l)} compute the estimate χ̂m(l)
using the ML method and the corresponding error norm
em(l) = ‖χ̂m(l)− χ‖/‖χ‖.
•When the experiments corresponding to Tm are completed,
compute the mean error norm µm = 1

50

∑50
l=1 em(l).

• When we have µm for m = 1 . . . 100, compute

µ̄L,M = min
m∈{1,...,100}

µm.

In Figure 2, µ̄L,M is depicted for different values of M

    
0

0.02

0.04

0.06

0.08

µ̄3,4

µ̄4,3 µ̄4,4 µ̄5,4 µ̄5,5

Fig. 2. µ̄L,M for different values of L and M .

and L. As we can see, incrementing the number of in-
put states/observables does not lead to an improvement
in the performance index. Analogous results have been
observed with other choices of test maps and NT . Fi-
nally, in Figure 3 the true χ and the averaged estima-
tion χ̄ML = 1

50

∑50
l=1 χm(l) are depicted, with m =

arg minm∈{1,...,100} µm for M = 3 and L = 4.

V. CONCLUSIONS

In this paper we determined the minimal conditions on
the experimental setting that guarantee a unique and con-
sistent estimation of a CPTP channel, for both inversion
and convex approaches. Then, we employed a maximum
likelihood approach to compare the estimation performances
using the best minimal experimental setting versus the richer
ones. Numerical simulations evidence that a minimal setting
provides an estimation accuracy comparable to “richer” ones.
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Fig. 3. Real and imaginary part of χ (top) and the averaged estimation
χ̄ML (bottom). The vertical scale of the imaginary part has been magnified
in order to show that the errors are below 0.01.

REFERENCES

[1] A. Aiello, G. Puentes, D. Voigt, and J. P. Woerdman. Maximum-
likelihood estimation of mueller matrices. Opt. Lett., 31(6):817–819,
2006.

[2] G. Benenti and G. Strini. Simple representation of quantum process
tomography. Phys. Rev. A, 80(2):022318, 2009.

[3] I. Bongioanni, L. Sansoni, F. Sciarrino, G. Vallone, and P. Mataloni.
Experimental quantum process tomography of non-trace-preserving
maps. Phys. Rev. A, 82(4):042307, 2010.

[4] N. Boulant, T. F. Havel, M. A. Pravia, and D. G. Cory. Robust method
for estimating the lindblad operators of a dissipative quantum process
from measurements of the density operator at multiple time points.
Phys. Rev. A, 67(4):042322, 2003.

[5] D. Bouwmeester, A. Ekert, and A. Zeilinger, editors. The Physics of
Quantum Information: Quantum Cryptography, Quantum Teleporta-
tion, Quantum Computation. Springer-Verlag, 2000.

[6] G. M. D’Ariano, L. Maccone, and M. G. A. Paris. Quorum of
observables for universal quantum estimation. Journal of Physics A:
Mathematical and General, 34(1):93, 2001.
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