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ABSTRACT

The combination of Orthogonal Frequency Division
Multiplexing and space-time block coding is a promising
technique for wireless broadband transmission. In a sce-
nario where other devices generate interference, we pro-
pose a scheme where the transmit gains of eachOFDM
subchannel are adaptively chosen. As a design criteria
we consider both the minimization of the interference and
maximization of the signal to interference plus noise ra-
tio at the detection point. As a particular case we con-
sider also the situation of varying only the amplitude or
the phase of the gains. Indeed, it turns out that when in-
terference is present, an important role is played by the
phase of the transmit gains, and for the case of two trans-
mit antennas we derive the optimum phase of the transmit
gains, under the assumption of equal amplitudes. As per-
formance measure we used the achievable bit rate of the
various solutions for a broadband indoor system denoted
Windflex (European Project). Performance was compared
also with the system capacity obtained by a novel close
form expression.

I. INTRODUCTION

Space diversity has been recently considered with a
growing interest for its ability to significantly improve the
performances of wireless communications in non disper-
sive fading channels. In particular, space-time block cod-
ing (STBC) is attractive as a simple and effective tech-
nique that benefits from spatial diversity. First introduced
by Alamouti for a communication system with up to two
receive and transmit antennas [6],STBCwas further gen-
eralized for a larger number of antennas [7].

At the same time, the need of high bit rates favors
broadband communications, where the transmission chan-
nel is dispersive. The benefits of both spatial and fre-
quency diversity can be easy achieved by the combination
of STBCand orthogonal frequency division multiplexing
(OFDM) [9], which divides the broadband channel into a
number of orthogonal signals, which are modulated on
equally spaced subcarriers. The combined use ofSTBC
and OFDMhas been recently considered for the deploy-
ment of wireless indoor networks in the European Wind-

Flex project [8]. In these networks the devices are orga-
nized into synchronous piconets which can potentially in-
terfere with each other and thus limit considerably the net-
work throughput.

In a STBC OFDMsystem, according to the particular
condition of both the channel and the interfering signals,
adaptation of the antenna gains could be done for each of
the OFDMsubcarriers. However, a fully optimized sys-
tem turns out to be exceedingly complex, hence we fo-
cus our investigation only on the transmit gain adaptation.
Although in general, the transmit gains assume complex
values, to limit complexity we also consider cases where
gains have the same phase or the same amplitude. More-
over, in order to limit complexity, the receiver adopts max-
imum ratio combining whose optimization depends only
on the channel and not on the interference signal. Within
this framework, we consider two cost functions for the
choice of the transmit gains, namely minimization of the
power of the interference at the receiver (MI), and maxi-
mization of the signal to noise plus interference ratio.

In order to have an upper bound on the system perfor-
mance we derive a novel expression of the capacity of a
system with two receive antennas with adaptive transmit
gains. In fact, previous results are limited to the system
where each transmitted signal is the linear combination of
all space-coded data [11].

Simulation results for the Wind-Flex scenario show that
indeed there is a significant tradeoff between performance
and computational complexity of the various solutions.

II. SYSTEM DESCRIPTION

An OFDMwireless system is considered, where data
of each subcarrier is coded by a space-time block code
and transmitted byNt transmit antennas. The receiver is
equipped withNr receive antennas and it receives both
the useful signal and interference generated byN inter-
ferers. We assume that the interferers useOFDMand are
synchronous with the useful transmitter. Hence, by as-
suming that the cyclic prefix [9] is sufficiently long, the
transmission and the interference channels are flat on each
OFDMsubcarrier. Note that if the interference signals are
not synchronous, the cyclic prefix may not absorb the de-



lays of all devices and both intersymbol interference and
intercarrier interference will be present.

We indicate withH
(m)
k,` the frequency response of the

transmit channel from antennak to antennà of them-th
OFDMsubcarrier. WithG(m)

k,` we indicate frequency re-
sponse of the interference channel from thek-th interfer-
ence antenna to thè-th receive antenna of them-th OFDM
subcarrier. Perfect knowledge of the useful and interfer-
ence frequency responses is assumed.

Before transmission, the coded data is scaled by
the complex gainα

(m)
t , for each transmit antenna

t = 1, 2, . . . , Nt and eachOFDMsubcarrierm =
0, 1, . . . , M−1. In order to set a constraint on the transmit
total power, it must be

Nt∑
t=1

|α(m)
t |2 = 1 . (1)

Since the choice of the transmit gain is independent of the
subcarrier, in the following we will omit the index(m).

The data signal is coded by space-time block coding,
according to the schemes of [6, 7], and at the receiver
maximum ratio combining (MRC) of the received signals
is applied, according to the channel coefficients and the
transmit gains. In particular, by indicating withr(q)

t the
received signal at timet on the antennaq, thek-th trans-
mitted signal of thes-th block is obtained by linear pro-
cessing as

ũ
(s)
k =

Nt∑
t=1

Nr∑
q=1

H∗
εt(k),qα

∗
εt(k)δt(k)r(q)

s+t , (2)

where for eachk, εq(k) is a permutation function of
the indexes{1, 2, . . . , Nr} and {δq(k)} depend on the
code. For example, for orthogonal design codesδq(k) ∈
{−1, +1}, [7]. In the following, without loss of general-
ity we will assumes = 0 and we will drop the indexes(s)
and(k).

After theMRC, from (2) the power of the useful signal
is

σ2
u =

(
Nt∑
t=1

|αt|2
Nr∑
r=1

|Ht,r|2
)2

. (3)

while by indicating withi
(r)
t the interference signal re-

ceived at timet on ther-th receive antenna, the power of
the residual interference is

σ2
i = E




∣∣∣∣∣
Nt∑
t=1

Nr∑
r=1

i
(r)
t α∗εt

H∗
εt,rδt

∣∣∣∣∣

2

 . (4)

We indicate withσw the noise variance on each antenna
of each subchannel, before combining.

Hence, the signal to noise plus interference ratio
(SNIR) is given by

Γ =
σ2

u

σ2
wσu + E

[∣∣∣∑Nt

t=1

∑Nr

r=1 i
(r)
t α∗εt

H∗
εt,rδt

∣∣∣
2
] . (5)

III. TRANSMIT GAIN SELECTION

According to the information available at the transmit-
ter and the overall complexity of the device, different cri-
teria for the choice of the transmit gains may be consid-
ered.

As a first option we investigate the minimization of the
interference (MI), regardless of the noise. However, this
choice may decrease the power of the useful signal at the
detection point and hence in general we consider as cost
function the maximization of theSNIR (MSNIR).

As a reduced complexity solution we consider also the
choice of transmit gains with equal amplitude (EA) or
equal phase (power adaptation,EP). For both cases we
adopt theMSNIRcriterion.

A. Minimum interference(MI)

If the interference is the limiting factor for the commu-
nication, a reasonable target for the choice of the transmit
gains is the minimization of the residual interference. In
order to minimize (4) under constraint (1), we apply the
Lagrange multiplier method. Let’s indicate withfm the
inverse function ofεt, i.e.

εfm = m . (6)

By defining the matrixB with entries

[B]`,m =
Nr∑
r=1

Nr∑
q=1

E
[
i
(r)∗
f`

i
(q)
fm

]
H∗

m,rδfmH`,qδf`
, (7)

and the vectorα = [α1, α2, . . . αNt ] collecting theNt

transmit gains, the interference power (5) can be written
in the quadratic form

E




∣∣∣∣∣
Nt∑
t=1

Nr∑
r=1

i
(r)
t α∗εt

H∗
εt,rδt

∣∣∣∣∣

2

 = α∗Bα . (8)

Then the minimization problem is solved by the following
linear system of equations

Bα + λα = 0 , (9)

under the constraint (1). From (9) we conclude that the
minimization of the interference is archived whenα is the
eigenvector ofB corresponding to the minimum eigen-
value ofB.

Note that if the minimum eigenvalue ofB is zero, then
the interference can be completely canceled.



B. Maximum signal to noise plus interference ratio
(MSNIR)

The minimization of the interference can lead to poor
performance when the interference has a similar propaga-
tion characteristic of the useful channel, since the result-
ing received useful signal may also be particularly atten-
uated. Hence we consider here the more general target of
maximizing theSNIR Γ under the constraint (1).

By applying the Lagrange multiplier method to (5) un-
der the constraint (1) a non-linear system of equations is
obtained. In order to find a solution we observe that by
multiplying all transmit gains by a constant real positive
value c2, Γ is multiplied by c. Hence, in order to find
the solution under the constraint (1) first a set of trans-
mit gains{α̃t} which maximizeΓ is found and then (1) is
satisfied by setting

αt =
α̃t∑Nt

t=1 |α̃t|2
. (10)

In order to maximize (5) we minimize its denominator

σ2
w

(
Nt∑
t=1

|α̃t|2
Nr∑
r=1

|Ht,r|2
)

+

E




∣∣∣∣∣
Nt∑
t=1

Nr∑
r=1

i
(r)
t α∗εt

H∗
εt,rδt

∣∣∣∣∣

2



under the constraint that the numerator is a constant, i.e.

Nt∑
t=1

|α̃t|2
Nr∑
r=1

|Ht,r|2 = 1 . (11)

Now, by defining the vectorβ = [β1, β2, . . . , βNt ] with
entries

βn = α̃n

√√√√
Nr∑
r=1

|Hn,r|2 (12)

and the matrixA with entries

[A]`,m =
[B]`,m√∑Nr

r=1 |H`,r|2
, (13)

the Lagrange multiplier method yields the following sys-
tem of equations

Aβ + λβ = 0 , (14a)

Nt∑
t=1

|βt|2 = 1 . (14b)

Hence, first we need to find the eigenvectorβ corre-
sponding to its minimum eigenvalue ofA, then the coef-
ficients{α̃n} can be computed by (12). Lastly, in order to
satisfy the constraint (1), we normalize{α̃n} by (10).

Note that if the minimum eigenvalue is null, then there
is no interference at the decision point and theMSNIRcri-
terion is equivalent to the maximization ofσu as given
by (5). In this case,Γ is maximized by allocating all the
power to the transmit antennat with the maximum value
of

Nr∑
r=1

|Hq,r|2 , q = 1, 2, . . . , Nt . (15)

We examine now two particular cases for the transmit
gains.

C. Equal phase (EP)

When only the gain amplitude adaptation is considered,
this is equivalent to assume that{αt} are real numbers. In
this case, we maximize (5) under the constraint (1) and
we consider only the real solution for the transmit gains.
Hence, the transmit gains that solves the problem is the
solution of the linear system of equations

Re[A]β + λβ = 0 , (16)

whereA andβ are defined by (13) and (12), respectively.
The linear system (16) must be solved under the constraint
(1). In this case, the solutionβ is the eigenvector corre-
sponding to the minimum eigenvalue of Re[A].

D. Equal amplitude (EA)

We consider here the adaptation of only the phase of the
transmit gains, i.e.

αt =
ejθt

√
Nt

, t = 1, 2, . . . , Nt. (17)

From (3) we note that by forming an equal gain amplitude,
the power of the received user signal is independent of the
transmit gains and theMI and theMSNIR criteria yield
the same solution. Additionally, from (8) we have that it
is not restrictive to setθ1 = 0.

Now, by imposing the constraint (17) to (8), we obtain
a problem which in general does not have a close form so-
lution, to the author’s knowledge. However, a close form
solution for the caseNt = 2 is straightforward. From
(8), the interference power is minimized by minimizing
the cost function

([B]1,1 + [B]2,2) + 2|[B]1,2| cos(θ1 + ∠[B]1,2) . (18)

Hence the solution is

θ1 = cos−1

(
2|[B]1,2|

[B]1,1 + [B]2,2

)
− ∠[B]1,2. (19)



IV. CAPACITY CONSIDERATIONS

As an upper bound on the performance of a STBC with
adaptive transmit gains, we give the capacity that can be
achieved by a multi antenna system with adaptive transmit
gains and when interference is present.

Let’s define the matrixH having as entries{Hk,n} for
k = 1, 2, . . . , Nr, n = 1, 2, . . . , Nt, and let’s denote with
Ri theNr×Nr autocorrelation matrix of the interference.
Let’s also indicate withT the Nt × Nt diagonal matrix
having as entries{αn}.

From [1], the capacity of the considered multi antenna
system is given by

C = log2

det[ΓRi + INr
+ ΓHTT HHH ]

det[ΓRi + INr
]

,(20)

Since the denominator ofC in (20) does not depend on
T , the maximization ofC with respect toT yields the
following problem

max
T

log2{det[INr
+ Γ(Ri + HTT HHH)]} (21a)

traceTT H = 1 . (21b)

In [11] Farrokhiet al. computed the matrixT that solve
the above problem in the caseT is not constrained to be
diagonal. In this general case, (21) can be rewritten as

max
T

log2{det(INr + ΓH̃TT HH̃
H

)} (22)

and the solution is attained by diagonalizingH̃TT HH̃
H

.
Hence, by indicating withH̃ = V WU the SVD ofH̃,
the optimum transmit matrix that maximizes the capacity
is T = UHΞ whereΞ is a diagonal matrix with entries
computed according to the water-filling principle [11].

Unfortunately, when we forceT to be diagonal, the ma-

trix H̃TT HH̃
H

cannot be diagonalized and for the a sys-
tem with any number of transmit antennas there is no a
close solution to the problem, to the authors’ knowledge.
However, for the interesting case ofNt = 2 and a general
number of receive antennas, we derive the transmit gains
that maximizes the capacity.

By using the propertydet[I + AB] = det[I + BA],
the equation (22) can be rewritten as

max
T

log2{det[I2 + QTT H ]} , (23)

whereQ = H̃
H

H̃ is a2× 2 matrix with entries[Q]n,m,
m,n = 1, 2. By applying the Lagrange multiplier method
to (23) under the constraint (1), we obtain the system of
equations

[Q]1,1α
∗
1 + det[Q]|α2|2α∗1 + λα∗1 = 0 (24a)

[Q]2,2α
∗
2 + det[Q]|α1|2α∗2 + λα∗2 = 0 , (24b)
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Fig. 1. Achievable bit rate as a function of the signal to
interference ratio (SIR ), for different transmit selec-
tion schemes. The averageSNRat the channel output
is 10dB.

whereλ is the Lagrange multiplier. When

|[Q]1,1 − [Q]2,2|
det[Q]

≤ 1 (25)

the transmit gains that maximize the capacity are given by

|α1|2 =
1
2

+
[Q]1,1 − [Q]2,2

2 det[Q]
(26a)

|α2|2 =
1
2

+
[Q]2,2 − [Q]1,1

2 det[Q]
. (26b)

If (25) is not satisfied, by indicating withk =
argmaxp{[Q]p,p} we setαk = 1, while the other gain is
zero.

Note that, since onlyTT H is present in the capacity
expression (20), the phases of the transmit gains do not
affect the capacity.

V. PERFORMANCE COMPARISON

For the performance comparison we consider the chan-
nel model obtained by the measurements of the indoor
radio channel at 17 GHz for theWind-Flex European
project [8]. An OFDMsystem with64 subcarriers and a
cyclic prefix of length8 was simulated on a line of sight
channel, with a transmission bandwidth of50 MHz, a
meanrms delay spread of27 ns and an averageSNRat
the channel output of10 dB. As a performance measure
we use the bit rate that can be achieved by the system,
assuming perfect channel loading and coding, namely

ABR =
1
T

M−1∑
m=0

log2(1 + Γm) , (27)
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Fig. 2. Complementarycdf of the achievable bit rate
for different transmit gains selection schemes. The
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whereΓm is theSNIR after the combining at the receiver
on them-th OFDMsubcarrier. We considered a system
with Nt = Nr = 2 andN = 2.

In the figures we indicate withSIR the signal to in-
terference ratio at the transmitter, i.e. the ratio between
the power transmitted by the useful device and the over-
all power transmitted by the interfering devices, while the
transmission channel is assumed to have unitary gain on
average.

Fig. 1 shows theABR as a function of theSIR . For
reference, we also plot the performance of the system with
fixed transmit gains,α1 = α2 = 1/

√
2, indicated with the

label Fixed Tx gains . From the figure we observe
that for aSIR of 10 dB both theEAand theEPsolutions
outperform by about 3 dB theFixed Tx gains tech-
nique, while being only 1 dB poorer than the optimum
MSNIRsolution.

Fig. 2 shows the complementary cumulative distribu-
tion function (ccdf ) of theABR for some schemes, in a
scenario with aSIR of 5dB.

VI. CONCLUSIONS

Transmit gain optimization has been derived forSTBC
systems with a multiple transmit and receive antennas,
when co-channel interference is present. The results hold
for a receiver device using maximum ratio combining and
with perfect knowledge of the channel and interference at
the transmitter. Various criteria for the design of the trans-
mit gains were investigated. A close form expression of
the capacity of this system has been derived for the case of
two transmit antennas. Simulations performed on a Wind-
Flex scenario shows that a simple system as the equal
amplitude gain method yields a significant improvement

of the performance, when compared to a scheme with no
adaptation of the transmitter.
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