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Abstract11

We study the problem of identifying differentially mutated subnetworks of a large gene-gene inter-12

action network, that is, subnetworks that display a significant difference in mutation frequency in13

two sets of cancer samples. We formally define the associated computational problem and show14

that the problem is NP-hard. We propose a novel and efficient algorithm, called DAMOKLE15

to identify differentially mutated subnetworks given genome-wide mutation data for two sets of16

cancer samples. We prove that DAMOKLE identifies subnetworks with a statistically signifi-17

cant difference in mutation frequency when the data comes from a reasonable generative model,18

provided enough samples are available. We test DAMOKLE on simulated and real data, showing19

that DAMOKLE does indeed find subnetworks with significant differences in mutation frequency20

and that it provides novel insights not obtained by standard methods.21
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1 Introduction30

The analysis of molecular measurements from large collections of cancer samples has revolu-31

tionized our understanding of the processes leading to a tumour through somatic mutations,32

changes of the DNA appearing during the lifetime of an individual [10]. One of the most33

important aspects of cancer revealed by recent large cancer studies is inter-tumour genetic34

heterogeneity: each tumour presents hundreds-thousands mutations and no two tumours35

harbour the same set of DNA mutations [24].36

One of the fundamental problems in the analysis of somatic mutations is the identification37

of the handful of driver mutations (i.e., mutations related to the disease) of each tumour,38
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18:2 Differentially Mutated Subnetworks Discovery

detecting them among the thousands or tens of thousands that are present in each tumour39

genome [33]. Inter-tumour heterogeneity renders the identification of driver mutations, or of40

driver genes (genes containing driver mutations), extremely difficult, since only few genes41

are mutated in a relatively large fraction of samples while most genes are mutated in a low42

fraction of samples in a cancer cohort [29].43

Recently, several analyses (e.g, [18, 12]) have shown that interaction networks provide44

useful information to discover driver genes by identifying groups of interacting genes, called45

pathways, in which each gene is mutated at relatively low frequency while the entire group has46

one or more mutations in a significantly large fraction of all samples. Several network-based47

methods have been developed to identify groups of interacting genes mutated in a significant48

fraction of tumours of a given type and have been shown to improve the detection of driver49

genes compared to methods that analyze genes in isolation [18, 27, 13, 7].50
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Figure 1 Identification of subnetworks with significant difference in mutation frequency in two
set of samples C, D. The blue subnetwork is significantly more mutated in D than in C, but it is not
be detected by methods that look for the most significantly mutated subnetworks in C or in D or in
C ∪ D, since the orange subnetwork is in each case mutated at much higher frequency.

The availability of molecular measurements in a large number of samples for different51

cancer types have also allowed comparative analyses of mutations in cancer [11, 14, 18]. Such52

analyses usually analyze large cohorts of different cancer types as a whole employing methods53

to find genes or subnetworks mutated in a significant fraction of tumours in one cohort, and54

also analyze each cancer type individually, with the goal to identify:55

i) pathways that are common to various cancer types;56

ii) pathways that are specific to a given cancer type.57

For example, [18] analyzed 12 cancer types and identified subnetworks (e.g., a TP53 sub-58

network) mutated in most cancer types as well as subnetworks (e.g., a MHC subnetwork)59

enriched for mutations in one cancer type. In addition, comparative analyses may also be60

used for the identification of mutations of clinical relevance [36]. For example: comparing61

mutations in a patients that responded to a given therapy with mutations in patients (of62

the same cancer type) that did not respond to the same therapy may identify genes and63

subnetworks associated with response to therapy; comparing mutations in patients whose64

tumours metastasized with mutations in patients whose tumours did not metastasize may65
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identify mutations associated with the insurgence of metastases.66

Pathways that are significantly mutated only in a specific cancer type may not be67

identified by analyzing one cancer type at the time or all samples together (Figure 1), but,68

interestingly, to the best of our knowledge no method has been designed to directly identify69

sets of interacting genes that are significantly more mutated in a set of samples compared to70

another. The task of finding such sets is more complex than the identification of subnetworks71

significantly mutated in a set of samples, since subnetworks that have a significant difference72

in mutations in two sets may display relatively modest frequency of mutation in both set of73

samples, whose difference can be assessed as significant only by the joint analysis of both74

sets of samples.75

Related Work. Several methods have been designed to analyze different aspects of76

somatic mutations in a large cohort of cancer samples in the context of networks. Some77

methods analyze mutations in the context of known pathways to identify the ones significantly78

enriched in mutations (e.g., [31]). Other methods combine mutations and large interaction79

networks to identify cancer subnetworks [30, 18, 5]. Networks and somatic mutations have80

also been used to prioritarize mutated genes in cancer [27, 13, 16, 25, 4] and for patients81

stratification [12, 17]. Some of these methods have been used for the identification of common82

mutation patterns or subnetworks in several cancer types [18, 11], but to the best of our83

knowledge no method has been designed to identify mutated subnetworks with a significant84

difference in two cohorts of cancer samples.85

Few methods studied the problem of identifying subnetworks with significant differences86

in two sets of cancer samples using data other than mutations. [8] studied the problem of87

identifying optimally discriminative subnetworks of a large interaction network using gene88

expression data. [20] developed a procedure to identify statistically significant changes in the89

topology of biological networks. Such methods cannot be readily applied to find subnetworks90

with significant difference in mutation frequency in two sets of samples. Other related work91

use gene expression to characterize different cancer types: [34] defined a pathway-based score92

that clusters samples by cancer type, while [15] defined pathway-based features used for93

classification in various settings.94

Our Contribution. In this work we study the problem of finding subnetworks with95

frequency of mutation that is significantly different in two sets of samples. In particular, our96

contributions are fourfold. First, we propose a combinatorial formulation for the problem97

of finding subnetworks significantly more mutated in one set of samples than in another98

and prove that such problem is NP-hard. Second, we propose DifferentiAlly Mutated99

subnetwOrKs anaLysis in cancEr (DAMOKLE), a simple and efficient algorithm for the100

identification of subnetworks with a significant difference of mutation in two sets of samples,101

and analyze DAMOKLE proving that it identifies subnetworks significantly more mutated102

in one of two sets of samples under reasonable assumptions for the data. Third, we test103

DAMOKLE on simulated data, verifying experimental that DAMOKLE correctly identifies104

subnetworks significantly more mutated in a set of samples when enough samples are provided105

in input. Fourth, we test DAMOKLE on large cancer datasets comprising two cancer types,106

and show that DAMOKLE identifies subnetworks significantly associated with one of the107

two types which cannot be identified by state-of-the-art methods designed for the analysis of108

one set of samples.109
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18:4 Differentially Mutated Subnetworks Discovery

2 Methods and Algorithms110

This section presents the problem we study, the algorithm we propose for its solution, and the111

analysis of our algorithm. In particular, Section 2.1 formalizes the computational problem112

we consider; Section 2.2 presents DifferentiAlly Mutated subnetwOrKs anaLysis in cancEr113

(DAMOKLE), our algorithm for the solution of the computational problem; Section 2.3114

describes the analysis of DAMOKLE under a reasonable generative model for mutations;115

Section 2.4 presents a formal analysis of the statistical significance of subnetworks obtained116

by DAMOKLE; and Section 2.5 describes two permutation test to assess the significance of117

the results of DAMOKLE for limited sample sizes.118

2.1 Computational Problem119

We are given measurements on mutations in m genes G = {1, . . . ,m} on two sets C =120

{c1, . . . , cnC
},D = {d1, . . . , dnD

} of samples. Such measurements are represented by two121

matrices C and D, of dimension m× nC and m× nD, respectively, where nC (resp., nD) is122

the number of samples in C (resp., D). C(i, j) = 1 (resp., D(i, j) = 1) if gene i is mutated123

in the j-th sample of C (resp., D) and C(i, j) = 0 (resp., D(i, j) = 0) otherwise. We are124

also given an (undirected) graph G = (V,E), where vertices V = {1, . . . ,m} are genes and125

(i, j) ∈ E if gene i interacts with gene j (e.g., the corresponding proteins interact).126

Given a set of genes S ⊂ G, we define the indicator function cS(ci) with cS(ci) = 1 if at127

least one of the genes of S is mutated in sample ci, and cS(ci) = 0 otherwise. We define128

cS(di) analogously. We define the coverage cS(C) of S in C as the fraction of samples in C129

for which at least one of the genes in S is mutated in the sample, that is cS(C) =
∑nC

i=1
cS(ci)

nC
130

and, analogously, define the coverage cS(D) of S in D as cS(D) =
∑nD

i=1
cS(di)

nD
.131

We are interested in identifying sets of genes S, with |S| ≤ k, corresponding to connected132

subgraphs in G and displaying a significant difference in coverage between C and D, i.e.,133

with a high value of |cS(C) − cS(D)|. We define the differential coverage dcS(C,D) as134

dcS(C,D) = cS(C)− cS(D).135

In particular, we study the following computational problem.136

The Differentially Mutated Subnetworks Discovery problem: Given a value θ with137

θ ∈ [0, 1], find all connected subgraphs S of G of size ≤ k such that dcS(C,D) ≥ θ.138

Note that by finding sets that maximize dcS(C,D) we identify sets with significantly139

more mutations in C than in D, while to identify sets with significantly more mutations in D140

than in C we need to find sets maximizing dcS(D, C). In addition, note that a subgraph S in141

the solution may contain genes that are not mutated in C ∪ D but that are needed for the142

connectivity of S.143

We have the following.144

I Theorem 1. The Differentially Mutated Subnetworks Discovery problem is NP-hard.145

Proof. The proof is by reduction from the connected maximum coverage problem [30].146

In the connected maximum coverage problem we are given a graph G defined on a set147

V = {v1, . . . , vn} of n vertices, a family P = {P1, . . . , Pn} of subsets of a universe I (i.e.,148

Pi ∈ 2I), with Pi being the subset of I covered by vi ∈ V and value k, and we want to find149

the subgraph C∗ = {vi1 , . . . , vik} with k nodes of G that maximizes | ∪kj=1 Pij |.150

Given an instance of the connected maximum coverage problem, we define an instance of151

the Differentially Mutated Subnetworks Discovery problem as follows: the set G of genes152
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corresponds to the set V of vertices of G in the connected maximum coverage problem, and153

the graph G is the same as in the instance of the maximum coverage instance; the set C is154

given by the set I and the matrix C is defined as Ci,j = 1 if i ∈ Pj , while D = ∅.155

Note that for any subgraph S of G, the differential coverage dcD(C,D) = cS(C)− cS(D) =156

cS(C) and cS(C) = | ∪g∈S Pg|/|I|. Since |I| is the same for all solutions, the optimal solution157

of the Differentially Mutated Subnetworks Discovery instance corresponds to the optimal158

solution to the connected maximum coverage instance, and viceversa. J159

2.2 Algorithm160

We now describe DifferentiAlly Mutated subnetwOrKs anaLysis in cancEr (DAMOKLE), an161

algorithm to solve the Differentially Mutated Subnetworks Discovery problem. DAMOKLE162

takes in input mutation matrices C and D for two sets C, D of samples, a (gene-gene)163

interaction graph G, and integer k, and a real value θ ∈ [0, 1], and returns subnetworks S164

of G with ≤ k vertices and differential coverage dcS(C,D) ≥ θ. Subnetworks reported by165

DAMOKLE are also maximal (no edge can be added to S while maintaining |S| ≤ k and166

dcS(C,D) ≥ θ). DAMOKLE is described in Algorithm 1. DAMOKLE starts by considering167

each edge e = {u, v} ∈ E of G with differential coverage dc{u,v}(C,D) ≥ θ/(k − 1), and for168

each such e identifies subnetworks including e to be reported in output using Algorithm 2.169

Algorithm 1: DAMOKLE
Input: mutation matrices C,D; gene-gene interaction graph G = (V,E); integer

k > 0; θ ∈ [0, 1]
Output: maximal connected subgraphs with dcS(C,D) ≥ θ

1 solutions ← ∅;
2 foreach {u, v} ∈ E do
3 if dc{u,v}(C,D) ≥ θ/(k − 1) then
4 solutions ← solutions ∪ GetSolutions(E,{u, v});
5 end
6 end
7 return solutions;

GetSolutions, described in Algorithm 2, is a recursive algorithm that, give a current170

subgraph S, identifies all maximal connected subgraphs S′, |S′| ≤ k, containing S and with171

dcS′(C,D) ≥ θ. This is obtained by expanding S one edge at the time and stopping when172

the number of vertices in the current solution is k or when the addition of no vertex leads173

to an increase in differential coverage dcS(C,D) for the current solution S. In Algorithm 2,174

N(S) refers to the set of edges with exactly one vertex in the set S.175

The motivation for design choices of DAMOKLE are provided in the next section.176

2.3 Analysis of DAMOKLE177

The design and analysis of DAMOKLE are based on the following generative model for the178

underlying biological process.179

Model.180

For each gene i ∈ G = {1, 2, ...,m} there is an a-priori probability pi of observing a mutation181

in gene i. Let H ⊂ G be the connected subnetwork of up to k genes that is differentially182

WABI 2018
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Algorithm 2: GetSolutions
Input: set E of edges of the graph; current subgraph (solution) S
Output: maximal connected subgraphs containing S with dcS(C,D) ≥ θ

1 nextEdges ← ∅;
2 foreach e ∈ N(S) do
3 if dcS∪{e}(C,D) ≥ dcS(C,D) then nextEdges ← nextEdges ∪{e};
4 end
5 if |nextEdges| = 0 OR |S| = k then
6 if dcS(C,D) ≥ θ then return S;
7 end
8 newSols ← ∅;
9 foreach e ∈ nextEdges do newSols ← newSols ∪ GetSolutions(E,S ∪ {e}) ;

10 return newSols;

mutated in samples of C w.r.t. samples of D. Mutations in our samples are taken from183

two related distributions. In the “control" distribution F a mutation in gene i is observed184

with probability pi independent of other genes’ mutations. The second distribution FH is185

analogous to the distribution F but we condition on the event E(H) =“at least one gene in186

H is mutated in the sample”.187

For genes not in H, all mutations come from distribution F . For genes in H, in a perfect188

experiment with no noise we would assume that samples in C are taken from FH and samples189

from D are taken from F . However, to model realistic, noisy data we assume that with some190

probability q the “true” signal for a sample is lost, that is the sample from C is taken from F .191

In particular, samples in C are taken with probability 1− q from FH and with probability q192

from F .193

Let p be the probability that H has at least one mutation in samples from the control194

model F , p = 1−
∏
j∈H(1− pj) ≈

∑
j∈H pj . Clearly, we are only interested in sets H ⊂ G195

with p� 1.196

If we focus on individual genes, the probability gene i is mutated in a sample from D197

is pi, while the probability that it is mutated in a sample from C is (1−q)pi

1−
∏

j∈H
(1−pj)

+ qpi.198

Such a gap may be hard to detect with a small number of samples. On the other hand,199

the probability of E(H) (i.e., of at least one mutation in the set H) in a sample from C is200

(1− q) + q(1−
∏
j∈H(1− pj)) = 1− q + qp, while the probability of E(H) in a sample from201

D is 1−
∏
j∈H(1− pj) = p which is a more significant gap, when p� 1.202

The efficiency of DAMOKLE is based on two fundamental results. First we show that it203

is sufficient to start the search only in edges with relatively high discrepancy.204

I Proposition 1. If dcS(C,D) ≥ θ, then, in the above generating model, with high probability205

(asymptotic in nC and nD) there exist an edge e ∈ S such that dc{e}(C,D) ≥ (θ− ε)/(k− 1),206

for any ε > 0.207

Proof. For a set of genes S′ ⊂ G and a sample z ∈ C ∪D, let Count(S′, z) be the number of208

genes in S′ mutated in sample z. Clearly, if for all z ∈ C ∪ D, we have Count(S, z) = 1, i.e.209
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each sample has no more than one mutation in S, then210

dcS(C,D) = cS(C)− cS(D) =
∑nC

i=1 cS(ci)
nC

−
∑nD

i=1 cS(di)
nD

211

=
∑nC

i=1
∑
j∈S Count({j}, ci)

nC
−
∑nD

i=1
∑
j∈S Count({j}, di)

nD
212

=
∑
j∈S

(∑nC

i=1 Count({j}, ci)
nC

−
∑nD

i=1 Count({j}, di)
nD

)
≥ θ.213

Thus, there is a vertex j∗ = arg maxj∈S
(∑nC

i=1
Count({j},ci)
nC

−
∑nD

i=1
Count({j},di)
nD

)
such214

that dc{j∗}(C,D) =
∑nC

i=1
Count({j∗},ci)
nC

−
∑nD

i=1
Count({j∗},di)
nD

≥ θ/k.215

Since the set of genes S is connected, there is an edge e = (j∗, `) for some ` ∈ S. For that
edge,

dc{e}(C,D) ≥
θ − dc{`}(C,D)

k − 1 + dc{`}(C,D) ≥ θ

k − 1 .

For the case when the assumption Count(S, z) = 1 for all z ∈ C ∪ D does not hold, let

Mul(S, C,D) =
∑nC

i=1
∑
j∈S Count({j}, ci)

nC
−
∑nC

i=1 cS(ci)
nC

+
∑nD

i=1 Count({j}, di)
nD

−
∑nD

i=1 cS(di)
nD

.

Then
∑
j∈S

(∑nC

i=1
Count({j},ci)
nC

−
∑nD

i=1
Count({j},di)
nD

)
−Mul(S, C,D) ≥ θ, and dc{e}(C,D) ≥216

θ+Mul(S,C,D)
k−1 .217

Since the probability of having more than one mutation in S in a sample from C is at
least as high as from a sample from D, we can normalize (similar to the proof of Theorem 2
below) and apply Hoeffding bound [21][Theorem 4.14] to prove that

Prob(Mul(S, C,D) < −ε) ≤ 2e−2ε2nCnD/(nC+nD).

J218

The second result motivates the choice, in Algorithm 2, of adding only edges that increase219

the score of the current solution (and to stop if there is no such edge).220

I Proposition 2. If subgraph S can be partitioned as S = S′∪{j}∪S′′, and dcS′∪{j}(C,D) <221

dcS′(C,D)− ppj , then with high probability (asymptotic in nD) dcS\{j}(C,D) > dcS(C,D).222

Proof. We first observe that if each sample in D has no more than 1 mutation in S223

then dcS′∪{j}(C,D) < dcS′(C,D) implies that dc{j}(C,D) < 0, and therefore, under this224

assumption, dcS\{j}(C,D) > dcS(C,D).225

To remove the assumption that a sample has no more than one mutation in S, we need226

to correct for the fraction of samples in D with mutations both in j and S′′. With high227

probability (asymptotic in nD) this fraction is bounded by ppj + ε for any ε > 0. J228

2.4 Statistical Significance of the Results229

To compute a threshold that guarantees statistical confidence of our finding, we first compute230

a bound on the gap in a non significant set.231

I Theorem 2. Assume that S is not a significant set, i.e., C and D have the same distribution
on S, then

Prob(dcS(C,D) > ε) ≤ 2e−2ε2nCnD/(nC+nD).

WABI 2018
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Proof. Let X1, . . . , XnC
be independent random variables such that Xi = 1/nC if sample232

ci in C has a mutation in S, otherwise Xi = 0. Similarly, let Y1, . . . , YnD
be independent233

random variables such that Yi = −1/nD if sample di in D has a mutation in S, otherwise234

Yi = 0.235

Clearly dcS(C,D) =
∑nC

i=1 Xi +
∑nD

i=1 Yi, and since S is not significant E[
∑nC

i=1 Xi +236 ∑nD

i=1 Yi] = 0.237

To apply Hoeffding bound [21][Theorem 4.14], we note that the sum
∑nC

i=1 Xi +
∑nD

i=1 Yi
has nC variables in the range [0, 1/nC ], and nD variables in the range [−1/nD, 0]. Thus,

Prob(dcS(C,D) > ε) ≤ 2e(−2ε2)/(nc/n
2
c+nd/n

2
D) = 2e−2ε2nCnD/(nC+nD).

J238

Let Nk be the set of subnetworks under consideration, or the set of all connected239

components of size ≤ k. We use Theorem 2 to obtain guarantees on the statistical significance240

of the results of DAMOKLE in terms of the Family-Wise Error Rate (FWER) or of the241

False Discovery Rate (FDR) as follows:242

FWER: if we want to find just the subnetwork with significant maximum differential243

coverage, to bound the FWER of our method by α we use the maximum ε such that244

Nk2e−2ε2nCnD/(nC+nD) ≤ α.245

FDR: if we want to find several significant subnetworks with high differential coverage, to246

bound the FDR by α we use the maximum ε such that Nk2e−2ε2nCnD/(nC+nD)/n(α) ≤ α,247

where n(α) is the number of sets with differential coverage ≥ ε.248

2.5 Permutation Testing249

While Theorem 2 shows how to obtain guarantees on the statistical significance of the results250

of DAMOKLE by appropriately setting θ, in practice, due to relatively small sample sizes251

and to inevitable looseness in the theoretical guarantees, a permutation testing approach252

may be more effective in estimating the statistical significance of the results of DAMOKLE253

and provide more power for the identification of differentially mutated subnetworks.254

We consider two permutation tests to assess the association of mutations in the subnetwork255

with the highest differential coverage found by DAMOKLE. The first test assesses whether256

the observed differential coverage can be obtained under the independence of mutations in257

genes by considering the null distribution in which each gene is mutated in a random subset258

(of the same cardinality as observed in the data) of all samples, independently of all other259

events. The second test assesses whether, under the observed marginal distributions for260

mutations in sets of genes, the observed differential coverage of a subnetwork can be obtained261

under the independence between mutations and samples’ memberships (i.e., being a sample262

of C or a sample of D), by randomly permuting the samples memberships.263

Let dcS(C,D) be the differential coverage observed on real data for the solution S with264

highest differential coverage found by DAMOKLE (for some input parameters). For both265

tests we estimate the p-value as follow:266

1. generate N (permuted) datasets from the null distribution;267

2. run DAMOKLE (with the same input parameters used on real data) on each of the N268

permuted datasets;269

3. let x be the number of permuted datasets in which DAMOKLE reports a solution with270

differential coverage ≥ dcS(C,D): then the p-value of S is (x+ 1)/(N + 1).271
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3 Results272

We implemented DAMOKLE in Python and tested it on simulated and on cancer data.273

Our experiments have been conducted on a Linux machine with 16 cores and 256 GB of274

RAM. All experiments required less than 10 MB of RAM and at most one day (for the275

largest simulated datasets). For all our experiments we used as interaction graph G the276

HINT+HI2012 network2 [18], a combination of the HINT network [9] and the HI-2012 [35]277

set of interactions. In all cases we considered only the subnetwork with the highest differential278

coverage among the ones returned by DAMOKLE. We first present the results on simulated279

data (Section 3.1) and then present the results on cancer data (Section 3.2).280

3.1 Simulated data281

We tested DAMOKLE on simulated data generated as follows. We simulate data assuming282

there is a subnetwork S of k genes with differential coverage dcS(C,D) = c. In our simulations283

we set |C| = |D| = n. For each sample in D, each gene g in G (including S) is mutated with284

probability pg, independently of all other events. For samples in C, we first mutated each285

gene g with probability pg independently of all other events. We then considered the samples286

of C without mutations in S, and for each such sample we mutated, with probability c, one287

gene of S, chosen uniformly at random. In this way c is the expectation of the differential288

coverage dcS(C,D). For genes in G \ S we used mutation probabilities pg estimated from289

oesophageal cancer data [23]. We considered only value of n ≥ 100, consistent with sample290

sizes in most recent cancer sequencing studies3.291

The goal of our investigation using simulated data is to evaluate the impact of various292

parameters on ability of DAMOKLE to recover S or part of it. To evaluate the impact of293

such parameters, for each combination of parameters in our experiments we generated 10294

simulated datasets and run DAMOKLE on each dataset with θ = 0.01, recording295

1. the fraction of times that DAMOKLE reported S as the solution with the highest296

differential coverage, and297

2. the fraction of genes of S that are in the solution with highest differential coverage found298

by DAMOKLE.299

We first investigated the impact of the differential coverage c = dcS(C,D). We analyzed300

simulated datasets with n = 100 samples in each class, where k = 5 genes are part of the301

subnetwork S, for values of c = 0.1, 0.22, 0.33, 0.46, 0.6, 0.8,. We run DAMOKLE on each302

dataset with k = 5. The results are shown in Figure 2(a). For low values of the differential303

coverage c, with n = 100 samples DAMOKLE never reports S as the best solution found304

and only a small fraction of the genes in S are part of the solution reported by DAMOKLE.305

However, as soon as the differential coverage is ≥ 0.45, even with n = 100 samples in each306

class DAMOKLE identifies the entire planted solution S most of the times, and even when307

the best solution does not entirely corresponds to S, more than 80% of the genes of S are308

reported in the best solution. For values of c ≥ 0.6, DAMOKLE always reports the whole309

subnetwork S as the best solution. Given that many recent large cancer sequencing studies310

consider at least 200 samples, DAMOKLE will be useful to identify differentially mutated311

subnetworks in such studies.312

2 http://compbio-research.cs.brown.edu/pancancer/hotnet2/
3 https://dcc.icgc.org/
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(a)$ (b)$ (c)$

Figure 2 (a) Performance of DAMOKLE as a function of the differential coverage dcS(C, D)
of subnetwork S. The figure shows (red) the fraction of times, out of 10 experiments, that the
best solution corresponds to S and (blue) the fraction of genes in S that are reported in the best
solution by DAMOKLE. For the latter, error bars show the standard deviation on the 10 experiments.
n = 100 and k = 5 for all experiments. (b) Performance of DAMOKLE as a function of the number
k of genes in subnetwork S. n = 100 and dcS(C, D) = 0.46 for all experiments. (c) Performance of
DAMOKLE as a function of the number n of samples in C, D. k = 10 and dcS(C, D) = 0.46 for all
experiments.

We then tested the performance of DAMOKLE as a function of the number of genes k in313

S. We tested the ability of DAMOKLE to identify a subnetwork S with differential coverage314

dcS(C,D) = 0.46 in a dataset with n = 100 samples in both C and D, when the number k of315

genes in S varies as k = 5, 7, 9. The results are shown in Figure 2(b). As expected, when the316

number of genes in S increases, the fraction of times S is the best solution as well as the317

fraction of genes reported in the best solution by S decreases, and for k = 9 the best solution318

found by DAMOKLE corresponds to S only 10% of the times. However, even for k = 9, on319

average most of the genes of S are reported in the best solution by DAMOKLE. Therefore320

DAMOKLE can be used to identify relatively large subnetworks mutated in a significantly321

different number of samples even when the number of samples is relatively low.322

Finally, we tested the performance of DAMOKLE as the number of samples n in each323

set C,D increases. In particular, we tested the ability of DAMOKLE to identify a relatively324

large subnetwork S of k = 10 genes with differential coverage dcS(C,D) = 0.46 as the number325

of samples n increases. We analyzed simulated datasets for n = 100, 250, 500. The results326

are shown in Figure 2. For n = 100, when k = 10, DAMOKLE never reports S as the best327

solution and only a small fraction of all genes in S are reported in the solution. However, for328

n = 250, while DAMOKLE still reports S as the best solution only 10% of the times, on329

average 70% of the genes of S are reported in the best solution. More interestingly, already330

for n = 500, DAMOKLE always reports S as the best solution. These results show that331

DAMOKLE can reliably identify relatively large differentially mutated subnetworks from332

currently available datasets of large cancer sequencing studies.333

3.2 Cancer data334

We use DAMOKLE to analyze somatic mutations from The Cancer Genome Atlas. We335

first compared two similar cancer types and two very different cancer types to test whether336

DAMOKLE behaves as expected on these types. We then analyzed two pairs of cancer types337

where differences in alterations are unclear. In all cases we run DAMOKLE with θ = 0.1338

and obtained p-values with the permutation tests described in Section 2.5.339

Lung Cancer. We used DAMOKLE to analyze 188 samples of lung squamous cell340

carcinoma (LUSC) and 183 samples of lung adenocarcinoma (LUAD). We only considered341
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Figure 3 Results of DAMOKLE analysis of esophagus tumours and stomach tumours and of
diffuse gliomas. (a) Subnetwork S with significant (p < 0.02) differential coverage in esophagus
tumours vs stomach tumours (interactions from HINT+HI2012 network). (b) Fractions of samples
with mutations in genes of S in esophagus tumours and in stomach tumours. c) Subnetwork S

with significant (p<0.01) differential coverage in LGG samples vs GBM samples (interactions from
HINT+HI2012 network). (d) Fractions of samples with mutations in genes of S in LGG samples
and GBM samples.

single nucleotide variants (SNVs)4 and use k = 5. DAMOKLE did not report any significant342

subnetwork, in agreement with previous work showing that these two cancer types have343

known differences in gene expression [28] but are much more similar with respect to SNVs [3].344

Colorectal vs Ovarian Cancer. We used DAMOKLE to analyze 456 samples of345

colorectal adenocarcinoma (COADREAD) and 496 samples of ovarian serous cystadenocar-346

cinoma (OV) using only SNVs5. For k = 5, DAMOKLE identifies the significant (p < 0.01347

according to both tests in Section 2.5) subnetwork APC, CTNNB1, FBXO30, SMAD4,348

SYNE1 with differential coverage 0.81 in COADREAD w.r.t. OV. APC, CTNNB1, and349

SMAD4 are members of the WNT signaling and TFG-β signaling pathways, known to350

be involved in COADREAD [22]. The high differential coverage of the subnetwork is in351

accordance with COADREAD being altered mostly by SNVs and OV being altered mostly352

by copy number aberrations (CNAs) [6].353

Esophagus-Stomach Cancer. We analyzed SNVs and CNAs in 171 samples of eso-354

phagus cancer and in 347 samples of stomach cancer [23].6 The number of mutations in355

the two sets is not significantly different (t-test p = 0.16). We first considered single genes,356

identifying TP53 with high (> 0.5) differential coverage between the two cancer types.357

Alterations in TP53 have then be removed for the subsequent DAMOKLE analysis. We358

run DAMOKLE with k = 4 with C being the set of stomach tumours and D being the359

set of esophagus tumours. DAMOKLE identifies the significant (p < 0.01 for both tests360

in Section 2.5) subnetwork S = {ACTL6A,ARID1A, BRD8, SMARCB1} with differential361

coverage 0.26 (Figure 3a-b). Such subnetwork is not reported as differentially mutated in362

the TCGA publication comparing the two cancer types [23]. BRD8 is only the top-16 gene363

by differential coverage, while ACTL6 and SMARCB1 are not among the top-2000 genes by364

differential coverage. ACTL6A, ARID1A, and SMARCB1 are all members of the chromatin365

4 http://cbio.mskcc.org/cancergenomics/pancan_tcga/
5 http://cbio.mskcc.org/cancergenomics/pancan_tcga/
6 http://www.cbioportal.org/study?id=stes_tcga_pub#summary
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organization machinery, recently associated with cancer [26, 19]. We compared the results366

obtained by DAMOKLE with the results obtained by HotNet2 [18], a method to identify367

significantly mutated subnetworks, using the same mutation data and the same interaction368

network as input: none of the genes in S appeared in significant subnetworks reported by369

HotNet2.370

Diffuse Gliomas. We analyzed single nucleotide variants (SNVs) and copy number371

aberrations (CNAs) in 509 samples of lower grade glioma (LGG) and in 303 samples of372

glioblastoma multiforme (GBM).7 We considered nonsilent SNVs, short indels, and CNAs.373

We removed from the analysis genes with < 6 mutations in both classes. By single gene374

analysis we identified IDH1 with high (> 0.5) differential coverage, and removed alterations375

in such gene for the DAMOKLE analysis. We run DAMOKLE with k = 5 with C being the376

set of GBM samples and D being the set of LGG samples. The number of mutations in C377

and in D is not significantly different (t-test p = 0.1). DAMOKLE identifies the significant378

(p < 0.01 for both tests in Section 2.5) subnetwork S = {CDKN2A, CDK4, MDM2, MDM4,379

RB1} (Figure 3c-d). All genes in S are members of the p53 pathway or of the RB pathway,380

well known glioma cancer pathways [32].381

Interestingly, [2] did not report any subnetwork with significant difference in mutations382

among LGG and GBM samples. CDK4, MDM2, MDM4, and RB1 do not appear among the383

top-45 genes by differential coverage. We compared the results obtained by DAMOKLE with384

the results obtained by HotNet2. Of the genes in our subnetwork, only CDK4 and CDKN2A385

are reported in a significantly mutated subnetwork (p < 0.05) obtained by HotNet2 analyzing386

D but not analyzing C, while MDM2, MDM4, and RB1 are not reported in any significant387

subnetwork obtained by HotNet2.388

4 Conclusion389

In this work we study the problem of finding subnetworks of a large interaction network with390

significant difference in mutation frequency in two sets of cancer samples. This problem is391

extremely important to identify mutated mechanisms that are specific to a cancer (sub)type392

as well as for the identification of mechanisms related to clinical features (e.g., response393

to therapy). We provide a formal definition of the problem and show that the associated394

computational problem is NP-hard. We design, analyze, implement, and test a simple and395

efficient algorithm, DAMOKLE, which we prove identifies significant subnetworks when396

enough data from a reasonable generative model for cancer mutations is provided. Our397

results also show that the subnetworks identified by DAMOKLE cannot be identified by398

methods not designed for the comparative analysis of mutations in two sets of samples. We399

tested DAMOKLE on simulated and real data. The results on simulated data show that400

DAMOKLE identifies significant subnetworks with currently available sample size. The401

results on two large cancer datasets, each comprising genome-wide measurements of DNA402

mutations in two cancer subtypes, shows that DAMOKLE identifies subnetworks that are403

not found by methods not designed for the comparative analysis of mutations in two sets of404

samples.405

While we provide a first method for the differential analysis of cohorts of cancer samples,406

several research directions remain. First, differences in the frequency of mutation of a407

subnetwork in two sets of cancer cohorts may be due to external (or hidden) variables, as for408

7 https://media.githubusercontent.com/media/cBioPortal/datahub/master/public/lgggbm_tcga_
pub.tar.gz

https://media.githubusercontent.com/media/cBioPortal/datahub/master/public/lgggbm_tcga_pub.tar.gz
https://media.githubusercontent.com/media/cBioPortal/datahub/master/public/lgggbm_tcga_pub.tar.gz
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example the mutation rate of each cohort. While at the moment we ensure before running409

the analysis that no significant difference in mutation rate is present between the two sets,410

performing the analysis while correcting for possible differences in such confounding variable411

or in others would greatly expand the applicability of our method. Second, different types412

of mutation patterns (e.g., mutual exclusivity) among two set of samples could be explored413

(e.g., extending the method proposed in [1]). Third, the inclusion of additional types of414

measurements, as for example gene expression, may improve the power of our method. Fourth,415

the inclusion of noncoding variants in the analysis may provide additional information to be416

leveraged to assess the significance of subnetworks.417
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