Efficient Incremental Mining of
Top-K Frequent Closed Itemsets*

Andrea Pietracaprina and Fabio Vandin

Dipartimento di Ingegneria dell’Informazione, Universita di Padova, Via Gradenigo
6/B, 35131, Padova, Italy. E-mails: {capri,vandinfa}@dei.unipd.it

Abstract. In this work we study the mining of top-K frequent closed
itemsets, a recently proposed variant of the classical problem of min-
ing frequent closed itemsets where the support threshold is chosen as
the maximum value sufficient to guarantee that the itemsets returned
in output be at least K. We discuss the effectiveness of parameter K in
controlling the output size and develop an efficient algorithm for mining
top-K frequent closed itemsets in order of decreasing support, which ex-
hibits consistently better performance than the best previously known
one, attaining substantial improvements in some cases. A distinctive fea-
ture of our algorithm is that it allows the user to dynamically raise the
value K with no need to restart the computation from scratch.

1 Introduction

The discovery of frequent (closed) itemsets is a fundamental primitive in data
mining. Let 7 be a set of items, and D a (multi)set of transactions, where each
transaction ¢t € D is a subset of Z. For an itemset X C Z we define its conditional
dataset Dx C D as the (multi)set of transactions ¢t € D that contain X, and
define the support of X w.r.t. D, suppp(X) for short, as the number of transac-
tions in Dx. An itemset X is closed w.r.t. D if there exists no itemset Y, with
X CY CZ, such that suppp(Y) = suppp(X). The standard formulation of the
problem requires to discover, for a given support threshold o, the set F(D, o)
of all itemsets with support at least o, which are called frequent itemsets [1].
In order to avoid the redundancy inherent in F (D, o), it was proposed in [5] to
restrict the discovery to the subset FC(D, o) C F(D, o) of all closed itemsets
with support at least o, called frequent closed itemsets.

A challenging aspect regarding the above formulation of the problem is re-
lated to the difficulty of predicting the actual number of frequent (closed) item-
sets for a given dataset D and support threshold ¢. Indeed, in some cases setting
o too small could yield a number of frequent itemsets impractically large, possi-
bly exponential in the dataset size [11], while setting o too big could yield very
few or no frequent itemsets.

* This work was supported in part by MIUR of Italy under project MAINSTREAM,
and by the EU under the EU/IST Project 15964 AEOLUS.

In [10], an elegant variant of the problem has been proposed which, for a
given “desired” output size K > 1, requires to discover the set FCx (D) of top-
K frequent closed itemsets (top-K f.c.i., for short), defined as the set FC(D,0k)
where ok is the maximum support threshold that such that |[FC(D,ok)| > K.
Although one is not guaranteed that |FCx(D)| = K, it is conceivable that pa-
rameter K be more effective than an independently fixed support threshold o
in controlling the output size. In the same paper, the authors present an effi-
cient algorithm, called TFP, for mining the top-K f.c.i. TFP discovers frequent
itemsets starting with a low support threshold which is progressively increased,
as the execution proceeds, by means of several heuristics, until the final value
ok is reached. TFP allows also the user to specify a minimum length min, for
the closed itemsets to be returned. The main drawbacks of TFP are that no
bound is given on the number of non-closed or infrequent itemsets that the al-
gorithm must process, and that an involved itemset closure checking scheme
is required. Moreover, TFP does not appear to be able to handle efficiently a
dynamic scenario where the user is allowed to raise the value K. A number of
results concerning somewhat related problems can be found in [3, 4, 8].

The mining of top-K f.c.i. is the focus of this paper. In Section 2, we study
the effectiveness of parameter K in controlling the output size by proving tight
bounds on |FCk(D)|. In Section 3 we present a new algorithm, TopKMiner, for
mining top-K f.c.i. in order of decreasing support. Unlike algorithm TFP, Top-
KMiner features a provable bound on the number of itemsets touched during the
mining process, and, moreover, it allows the user to dynamically raise the value
K efficiently without restarting the computation from scratch. Section 4 reports
some results from extensive experiments which show that TopKMiner consis-
tently exhibits better performance than TFP, with substantial improvements in
some cases (more than two orders of magnitude). The efficiency of TopKMiner
becomes considerably higher when used in the dynamic scenario®.

2 Effectiveness of K in controlling the output size

Let A(n) be the family of all datasets D whose transactions comprise n distinct
items. Define p(n, K) = maxpea(n)(|FCx (D)|/K), which provides a worst-case
estimation of the deviation of the output size from K when mining top-K closed
frequent itemsets. Building on a result by [2] we can prove the following theorem.

Theorem 1. For everyn > 1 and K > 1, we have p(n, K) < n. Moreover, for
every n > 1 and every constant ¢, there are £2 (n®) distinct values of K such that
p(n, K) € £2(n).

We note that in several tests we performed on real and synthetic datasets with
values of K between 100 and 10000, the ratio |FCx(D)|/K turned out to be
much smaller than n and actually very close to 1. In fact, it can be shown that
p(n, K) = n is attained only for K = 1, and we conjecture that p(n,K) is a
decreasing function of K.

! For lack of space many details have been omitted from the paper and can be found
in the companion technical report [6].

3 TopKMiner

In this section, we briefly describe our algorithm TopKMiner for mining the top-
K f.ci. for a dataset D defined over the set of items Z = {aj,as,...,a,} (the
indexing of the items is fixed but arbitrary). The algorithm crucially relies on
the notion of ppc-extension introduced in [9] and recalled below. For an itemset
X C Z, we define its j-th prefir as X(j) = X N{a; : 1 < i < j}, with
1 < j < n, and define Clop(X) = (,cp, t, which is the smallest closed itemset
that contains X. The core index of a closed itemset X, denoted by core(X), is
defined as the minimum j such that Dy = Dx ;). A closed itemset X is a called
a prefiz-preserving closure extension (ppc-extension) of a closed itemset Y if: (1)
X = Clop(Y U{a,}), for some a; ¢ Y with j > core(Y); and (2) X(j —1) =
Y (5 —1). Clearly, if X is a ppc-extension of Y, then supp(X) < supp(Y). Let
1= Clop(#), which is the possibly empty closed itemset consisting of the items
occurring in all transactions. It is shown in [9] that any closed itemset X #.1
is the ppc-extension of ezactly one closed itemset Y. Hence, all closed itemsets
can be conceptually organized in a tree whose root is |, and where the children
of a closed itemset Y are its ppc-extensions.

TopKMiner generates the frequent closed itemsets in order of decreasing
support by performing a best-first (i.e., highest-support-first) exploration of the
nodes of the tree defined above. Specifically, the algorithm receives in input
the dataset D, the value K for which the top-K f.c.i. are sought, and a value
K* > K. During the course of the algorithm, the user is allowed to dynamically
raise K up to K*. The algorithm makes use of a priority queue @ (implemented
as a max heap), whose entries correspond to closed itemsets. Let E(Y, s) denote
an entry of @ relative to a closed itemset Y with support s. The value s is the
key for the entry. @ is initialized with entries corresponding to the ppc-extension
of L. Then, a main loop is executed where in each iteration the entry E(Y,s)
with maximum s is extracted from @, the corresponding itemset Y is generated
and returned in output, and entries for all ppc-extensions of Y are inserted into
Q.

A variable ¢ is used to maintain an approximation from below to the support
ok~ of the K*-th most frequent closed itemset. This variable is initialized by
suitable heuristics similar to those employed in [10], and it is updated in each
iteration of the main loop to reflect the support of the K*-th most frequent
closed itemset seen so far. The value o is used to avoid inserting entries with
support smaller that o into Q. Also, after each update of o, entries with support
smaller than o, previously inserted into @), can be removed from the queue.

After the K-th closed itemset is generated, its support is stored in a variable
o’. The main loop ends when the last closed itemset of support ¢’ is generated.
At this point the user may decide to raise K to a new value K. In this case,
the main loop is reactivated and the termination condition will depend now on
Kpew- It can be shown that TopKMiner processes (i.e., inserts into () at most
nK* closed itemsets?, while one such bound is not known for TFP [10].

2 In fact, with a slight modification of the algorithm the bound can be lowered to nkK.

Implementation. The efficient implementation of TopKMiner is a challenging
task. For lack of space, we will limit ourself to briefly mention the key ingredients
of our implementation. More details can be found in [6]. As in [7] the dataset D
is represented through a Patricia trie Tp built on the set of transactions with
items sorted by decreasing support. An entry E(Y s) of Q, corresponding to some
closed itemset Y, is represented by the quadruple (Dy,s,¢,Y (i — 1)), where 7 is
the core index of Y. For space and time efficiency, we represent Dy through the
list Lp(Y) of nodes of Tp which contain the core index item a; of Y and belong
to paths associated with transactions in Dy . We observe that (Dy, s,4,Y (i —1))
contains only a prefix, Y (i — 1), of Y. The actual generation of Y is delayed to
the time when the entry (Dy,s,i,Y (i — 1)) is extracted from Q. At this point
a clever traversal of the subtrie of Tp whose leaves are the nodes of Lp(Y), is
employed to generate Y and the quadruples for all of its ppc-extensions to be
inserted into Q.

4 Experimental evaluation

We experimentally compared the performance of TopKMiner and TFP
[10] on all real and synthetic datasets from the FIMI repository
(http://fimi.cs.helsinki.fi). The experiments have been conducted on a
HP Proliant, using one AMD Opteron 2.2GHz processor, with 8GB main mem-
ory, 64KB L1 cache and 1MB L2 cache. Both TopKMiner and TFP have been
coded in C++ and the source code for TFP has been provided to us by its au-
thors. Due to lack of space, we report only a few representative results relative to
datasets kosarac and accidents. The results for the other datasets are consistent
with those reported here. The characteristics of the datasets are reported in the
following table, including the values ox /|D| for K = 1000 and K = 10000:

Dataset |#Items|Avg. Trans. Length|# Transactions|o10o0/|DP||010000/| D)
accidents| 468 33.8 340,183 0.656 0.483
kosarac |41,270 8.1 990,002 0.006 0.002

Figure 1.(a) and 1.(b) show the relative running times of TopKMiner and
TFP on kosarac and accidents, respectively, for values of K ranging from 1000
to 10000 with step 1000. For TopKMiner, we imposed K = K™ so to assess the
relative performance of the two algorithms when focused on the basic task of
mining top-K f.c.i. In another experiment, we tested the effectiveness of the Top-
KMiner’s feature which allows the user to dynamically raise the value K up to a
maximum value K*. To this purpose we simulated a scenario where K is raised
from 1000 to 10000 with step 1000 and run TopKMiner with K* = 10000 mea-
suring the running time after the computation for each value K ended. We com-
pared these running times with those attained by executing TFP from scratch
for each value K and accumulating the running times of previous executions.
The results are shown in Figure 1.(c) for dataset accidents.

We also analyzed the memory usage of TFP and TopKMiner on all datasets,
for K between 1000 and 10000. TopKMiner requires less memory than TFP in
almost all cases and, in the worst case, requires a factor 1.5 more memory.

kosarac accidents accidents

1000]

Runtime (s)

8

400

Runtime (s)

200

G -8 - 0= 0= =G = E = 0= 0=~ 12

— = —TopKMiner] 1
—o-TFP.

= 5 — TopKMiner
-o--TFP

~ %~ TopKMine
-o- TFP

g 3
q
S
.

B it
o -8 0- O

3

Runtime (s)

L@

8

-4 o’

R
e — X m ke = X

[i

A

e e o e w - o - E
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 i

00 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(a) (b) (c)

Fig. 1. Running times of TopKMiner and TFP for: (a) kosarac without dynamic update
of K; (b) accidents without dynamic update of K; and (c) accidents with dynamic
update of K.

References

—

10.

11.

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In Proc. of the ACM SIGMOD Intl. Conference on
Management of Data, pages 207-216, 1993.

E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On maximal frequent and
minimal infrequent sets in binary matrices. Annals of Mathematics and Artificial
Intelligence, 39:211-221, 2003.

Y. Cheung and A. Fu. Mining frequent itemsets without support threshold: with
and without item constraints. IEEE Trans. on Knowledge and Data Engineering,
16(9):1052-1069, 2004.

A. Fu, R. Kwong, and J. Tang. Mining n-most interesting itemsets. In Proc. of
the Intl. Symp. on Methodologies for Intelligent Systems, pages 59—67, 2000.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proc. of the 7th Int. Conference on Database
Theory, pages 398—416, Jan. 1999.

A. Pietracaprina and F. Vandin. Efficient Incremental Mining of
Top-K Frequent Closed Itemsets. Technical Report available at
http://www.dei.unipd.it/"capri/PietracaprinaVTRO7.pdf

A. Pietracaprina and D. Zandolin. Mining frequent itemsets using Patricia tries.
In Proc. of the Workshop on Frequent Itemset Mining Implementations (FIMI03),
Vol. 90, Melbourne, USA, Nov. 2003. CEUR-WS Workshop On-line Proceedings.

J. Seppanen and H. Mannila. Dense itemsets. In Proc. of the 10th ACM SIGKDD
Intl. Conference on Knowledge Discovery and Data Mining, pages 683—-688, 2004.

T. Uno, T. Asai, Y. Uchida, and H. Arimura. An efficient algorithm for enumerating
closed patterns in transaction databases. In Proc. of 7th Intl. Conf. Discovery
Science, pages 16-31, 2004.

J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An efficient algorithm for mining
top-k frequent closed itemsets. IEEFE Trans. on Knowledge and Data Engineering,
17(5):652-664, 2005.

G. Yang. The complexity of mining maximal frequent itemsets and maximal fre-
quent patterns. In Proc. of the 10th ACM SIGKDD Intl. Conference on Knowledge
Discovery and Data Mining, pages 344-353, 2004.

