COVER FEATURE

lgorithms and

enome Sequencing:
ldentifying Driver

athways in Gancer

Fabio Vandin, Eli Upfal, and Benjamin J. Raphael, Brown University

Two proposed algorithms predict which
combinations of mutations in cancer ge-
nomes are priorities for experimental
study. One relies on interaction network
data to identify recurrently mutated sets
of genes, while the other searches for
groups of mutations that exhibit specific
combinatorial properties.

ancer is a disease driven by somatic mutations
in an individual’s DNA sequence, or genome,
that accumulate during the person’s lifetime.
These mutations arise during DNA replication,
which occurs as cells grow and divide into two daugh-
ter cells. Mutations arise as errors in the DNA replication
process and distinguish the DNA in the daughter cells
from the parental cells. They take place on a continuum
of scales—ranging from single “character” substitutions
(the nucleotides A, C, T, and G of DNA) to structural vari-
ants that duplicate, delete, or rearrange larger genome
segments. Single-nucleotide substitutions occur at a rate of
approximately 10, so that on average each daughter cell
contains around six somatic mutations. Most are benign,
or inconsequential for the organism. However, in certain
circumstances, dangerous somatic mutations can accu-
mulate in a collection of cells and lead to cancer.
Theodor Boveri first articulated the idea that mutations
cause cancer in 1914, a remarkable insight as the structure
of DNA, or even the concept of a gene, was not yet known.
Decades later, cytogenetic techniques that researchers
use to directly visualize chromosomes in cells led to the
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discovery of chromosomal abnormalities in cancer cells,
resulting from large-scale rearrangements of the DNA
sequence. In some types of leukemia, for example, chro-
mosomes 9 and 22 undergo a translocation that swaps
DNA between these chromosomes. Unfortunately, finding
other important large-scale rearrangements has been a
challenge. Many cancer cells contain dozens of chromo-
somal abnormalities, and these differ among individuals
with the same type of cancer. A natural question is whether
some or all of these rearrangements contribute to cancer
or are merely random occurrences.

ADVANCES IN DNA SEQUENCING

The emergence of DNA sequencing enabled biologists
to measure single-nucleotide mutations with increasing
speed and accuracy. These studies showed that the “typi-
cal” cancer genome might have hundreds to thousands of
somatic mutations of different types. However, most of the
somatic mutations in a cancer cell are benign passenger
mutations. A much smaller fraction of driver mutations are
important for cancer development, with current estimates
ranging from 10 to 20 driver mutations per tumor.

Because cancer cells have a large variety of relatively
rare mutations, genome-wide studies for identifying cancer
driver mutations require sequencing numerous patients.
This task became feasible in the past five years with the
development of next-generation sequencing technologies
such as Roche’s 454, Illumina’s Genome Analyzer, and
Applied Biosystems’ SOLiD (Sequencing by Oligonucle-
otide Ligation and Detection), which provide low-cost,
high-throughput sequencing through massive parallel-
ism.! While each has unique characteristics, all of these
technologies collect dozens or hundreds of millions of
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short DNA sequences or reads simultaneously, correspond-
ing to billions of DNA nucleotides. Improvements in these
technologies are continuing at a rapid pace and are near-
ing the goal of producing a human (or cancer) genome at
extremely low cost (less than $1,000).

Next-generation DNA sequencing has enabled large
cancer-sequencing efforts including The Cancer Genome
Atlas (TCGA; http:/lcancergenome.nih.gov) in the US and
many others worldwide through the International Cancer
Genome Consortium (ICGC; www.icgc.org). These projects
identify somatic mutations in hundreds to thousands of
patients with different types of cancer by sequencing each
patient’s tumor and, in some cases, the healthy tissue as
well. In particular, TCGA aims to comprehensively identify
genomic changes—including somatic mutations and other
types of data—from about 20 different cancer types by
2014. For each cancer type, researchers will collect and
analyze some 500 samples.

A key question for such projects is how to use the result-
ing DNA sequence to understand the mutations that cause
specific properties of cancer cells.

The ability to measure mutations far
exceeds the capacity to experimentally
evaluate each mutation’s function.
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COMPUTATIONAL CHALLENGES

There are presently two main computational challenges
in applying next-generation DNA sequencing to cancer
genomes.

The first is how to derive catalogs of mutations in a
genome from the data generated by a DNA sequencing
machine. Although these machines produce a remarkable
number of DNA sequences, these sequences are only reads
(about 30 to 1,000 nucleotides), not full-length genomes.
Obtaining the catalog of somatic mutations from such
short sequences requires algorithmic techniques, an active
area of investigation in recent years.?

Assuming we have obtained a list of all somatic mu-
tations in the cancer genome, the second challenge is
to distinguish the functional driver mutations from the
random passenger mutations. The ultimate determinant
of function is a biological experiment, but the ability to
measure mutations far exceeds the capacity to experi-
mentally evaluate each mutation’s function. One way to
predict candidate driver mutations is to examine the so-
matic mutations measured in a large population of cancer
patients and identify recurrent mutations that occur more
frequently than expected by chance, or, alternatively, re-
currently mutated genes, which are genes that are mutated
more frequently than expected.

COMPUTER

CANCER GENE IDENTIFICATION

To formalize the problem of predicting recurrently mu-
tated genes, we represent the measured somatic mutations
as a binary mutation matrix with patients on the rows and
genes on the columns, where a 1 in an entry indicates
that the corresponding gene is mutated in the correspond-
ing patient. Given a mutation matrix, the goal is to find
genes that are mutated in more patients than expected
by chance.

Suppose we were to predict driver genes as the genes
that are mutated in the largest number of patients. For
example, if we examine mutation data from 316 patients
in arecent large-scale sequencing study of ovarian cancer,’
the most frequently mutated gene is TP53 (tumor protein
53), a well-known cancer gene involved in DNA repair and
other functions. The second most frequently mutated gene,
TTN, is also special, but not because of a biological func-
tion in cancer: it is the largest gene in the human genome.
Thus, TTN’s high mutation frequency is explained by its
exceptional length, not by its function. Distinguishing such
cases requires a probabilistic model.

PROBABILISTIC MODEL

Our probabilistic model for cancer mutations, like many
probabilistic models, is based on a coin-flipping experi-
ment. Suppose that mutations occurred randomly with
probability g. Then, for a given gene in one patient, the
status of a gene (mutated or not) is an experiment with two
possible outcomes. We model this as a coin flip resulting
in Hor T, with Pr[H] = gand Pr[T] = 1 - g. For simplicity,
assume that the coin is fair—thatis, g = 1/2.

Given a set of N patients, the total number of heads in
N coin flips is described by a binomial random variable of
parameters N and g = 1/2. Since our goal is to find genes
that harbor nonrandom mutations, we want to identify
coins that are not fair, and to reject the claim of the coin
being fair only if we are fairly certain. In mathematical
terms, this means rejecting the claim if the probability of
observing numerous heads is small.

We construct an algorithm, CoinFlip, that decides
whether or not to reject the claim that the coin is fair based
on the observed number R of heads, and a threshold o for
rejecting the claim. CoinFlip is a special case of hypothesis
testing. Formally, we define the null hypothesis that the
coin is fair and the alternative hypothesis that the coin is
biased toward heads. For a given threshold o, we reject
the null hypothesis in favor of the alternative if the tail
probability—the probability of obtaining at least R heads
assuming the null hypothesis—is less than o.. The smallest
threshold for which we would reject the null hypothesis for
a given observed value R is called the p-value of the test.

We now have a model of “expected by chance” to iden-
tify cancer genes. We run the CoinFlip algorithm for each
gene, and thereby compute the probability, or p-value,




that the observed number of mutated patients or more
is obtained under the null hypothesis. We assume a null
hypothesis where all mutations are passenger mutations
with probability ¢ and then compute the tail probability
using a binomial model. In particular, we examine a single
gene g and model the presence or absence of a mutation in
a patient as the outcome of a coin flip, with a fixed prob-
ability g of becoming heads; g depends on the gene’s length
and on the rate r that passenger mutations occur, which
must be estimated from the data.

Obtaining an accurate estimate of r is challenging
because the passenger mutation rate depends on many
parameters whose values are not easily determined (for
example, the times that tumor cells have divided into
daughter cells). Moreover, r is usually assumed to be the
same for all patients and all genes but in reality differs
among patients and possibly among genes. Current meth-
ods approximate r, but the details of this approximation
and other issues related to single-gene tests of recurrence
are subjects of debate.*

We use the CoinFlip algorithm to determine whether
the number of mutated patients is significantly higher than
expected, as Figure 1 shows. If so, the gene is a candidate
driver gene in cancer. This test (with a more detailed model
for the passenger mutation rate) is essentially current prac-
tice in cancer genome projects.’

MULTIPLE HYPOTHESIS TESTING PROBLEM

We examine the same ovarian cancer data using
the CoinFlip test, where for a given gene the passenger
mutation probability is determined by a mutation rate
per nucleotide and the gene’s length. Three genes have
p-values less than 0.01 and thus could be considered
surprising: TP53, BRCA1, and RB1 (note that TTN is no
longer statistically significant). These are among the most
well-known cancer genes. In addition to the previously
mentioned TP53, genetic variants in BRCA1 give increased
risk of breast cancer and RB1 is mutated in retinoblas-
toma, a childhood cancer. Thus, a modern-day sequencing
machine and straightforward statistical analysis have re-
discovered decades of cancer research!

Unfortunately, the analysis has overlooked one small
detail, what statisticians refer to as the multiple hypothesis
testing problem.

To motivate this problem, we return to the CoinFlip al-
gorithm. Suppose we choose a fixed threshold o to reject
the null hypothesis that the coin is fair. Then, we make an
error if we reject the hypothesis when the coin is fair. The
probability of making an error is exactly o. If we run the
algorithm on 50 fair coins, with a probability of error o
for each coin, then the probability of not making a single
error is (1 - a)°. Alternatively, Pr[at least one error] =
1 - (1 - ®, which is approximately 0.4 when oo = 0.01.
Thus, if we apply CoinFlip to 50 fair coins, there is a 40
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Figure 1. Given the observed somatic mutations in many
cancer patients, CoinFlip—a simple algorithm based on the
binomial distribution—finds those genes that are mutated
in more patients than expected by chance.
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percent probability that we will falsely reject the fair coin
claim at least once. Moreover, the more fair coins we test,
the less likely that all of the coins are called fair. Thus, even
if the threshold o for deciding when to reject the claim of
the coin being fair is small, if we test enough coins, Coin-
Flip will eventually reject the claim for one of the coins.

A more general, but in this case not as accurate, analysis
is to see that the event of an error on at least one coin is the
union of the events of errors on individual coins. Although
these events are not disjoint, the sum of the probabilities
of the single events bounds the probability of their union.
This constitutes the Bonferroni correction, which in our
scenario states that if we are testing n coins and want a
bound o on the probability of incorrectly calling one or
more coins as not fair, we can test each single coin with the
CoinFlip algorithm using as error threshold o/n.

The resulting algorithm accounts for the fact that we
use n coins. If we run this algorithm with a Bonferroni
correction on the ovarian cancer data, the only statistically

Methods that identify groups of genes
with a significant number of mutations
but do not restrict attention to only
known pathways are desirable.
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significant gene is TP53. This is somewhat disappointing
given our knowledge about the importance of BRCA1 and
RB1 in cancer, but statistical significance and biological
significance are not always the same, particularly since
statistical techniques might require many more samples
than the 316 patients here. In fact, using more sophisti-
cated techniques developed in the past 20 years that make
multiple hypotheses corrections based on the false discov-
ery rate (FDR),® we recover these two genes.

However, this data presents a larger problem. Even
with the FDR technique we predict only a total of nine
driver genes, many of which are mutated in only a small
number of patients, and not enough to explain cancer in
all patients. This phenomenon is not unique to the ovarian
cancer data. Single-gene analysis techniques are inher-
ently too weak to identify most driver mutations. This is
due in part to the number of patients that were sequenced
and errors in the mutation data. However, there is also a
biological reason: driver mutations target groups of genes,
or pathways.

DRIVER PATHWAYS

Genes do not act in isolation, but rather interact with
other genes (and the proteins these genes produce) in com-
plex signaling and regulatory networks. Cancer is often
called a disease of pathways, as it is pathways, or groups

COMPUTER

of genes, that are mutated to perturb a particular func-
tion in cancer. There are many ways to deregulate a given
pathway by mutating one of its genes, and each cancer pa-
tient might have mutations in a different subset of genes in
an important pathway. Testing genes independently does
not take into account the fact that genes interact with one
another. Rather than test individual genes, we should test
groups of genes.

Unfortunately, testing groups of genes is difficult to do
exhaustively because there are too many groups to test.
For example, there are about 10* groups of six genes in
the human genome. Not only must we perform a p-value
calculation for each group, but we also must account for
the number of hypotheses or groups that we test, using one
of the multiple hypothesis correction procedures above.
Therefore, standard practice in cancer genome studies is
to assess enrichment of mutated genes only in pathways
known to perform a certain function. Typically, this is done
by treating a known pathway as a “bag of genes” (without
considering the interactions between genes) and assessing
whether mutations are enriched in the “concatenation of
genes” using variations of the single-gene test.

However, this approach will not discover any new group,
nor does it account for the fact that signaling pathways are
interconnected in larger signaling networks. Pathways
cannot be viewed in isolation, as the different pathways
interact. Rather, the genes involved in cancer “affect mul-
tiple pathways that intersect and overlap.””

Thus, methods that identify groups of genes with a sig-
nificant number of mutations but do not restrict attention
to only known pathways are desirable. We recently de-
veloped two algorithms for this purpose. One considers
all interactions within a cell, represented as a network or
graph, and finds subnetworks that are mutated more than
expected. The second algorithm uses no prior information
about interactions between genes, but rather exploits some
properties of the patterns of mutations that are expected
for interacting genes.

HOTNET: MUTATED SUBNETWORKS

The first algorithm, HotNet,® considers a large-scale in-
teraction network and mutation data from many patients,
as Figure 2 shows. HotNet finds subnetworks, or clusters of
interacting genes, that are mutated in a significant number
of patients. The algorithm thus generalizes the analysis of
recurrent mutations in single genes.

Human interaction network

The human interaction network is not presently known.
However, researchers have assembled several large-
scale interaction networks from various data sources
including well-characterized experimental pathways,
high-throughput interaction experiments, and computa-
tional predictions.’ While these networks are incomplete
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Figure 2. The HotNet algorithm combines mutation data and protein-protein interaction network information to find hot sub-
networks, or clusters of interacting genes, that are mutated in a significant number of cancer patients. On each gene, HotNet
places a source of heat proportional to the number of mutations on the gene. The heat diffuses on the network for a fixed time,
revealing the hot subnetworks. Finally, a statistical test assesses the significance of the list of observed subnetworks.

and inaccurate, they encode useful information that re-
searchers can combine with mutation data to identify
genes important in cancer.

As the bottom left of Figure 2 shows, an interaction
network can be represented as an undirected graph with
nodes representing genes and edges representing inter-
actions between them. Connected subgraphs constitute
subnetworks.

One way to find subnetworks that are mutated in a
significant number of patients is to test each possible
subnetwork using an appropriate statistical test. How-
ever, there are two problems with this approach. First,
testing many subnetworks is computationally difficult
and reduces statistical power, as the test’s p-value must
be corrected for the number of subnetworks tested. This
can be quite large for most interaction networks. For
example, the number of subnetworks with at most six
nodes in the network obtained from the Human Protein
Reference Database exceeds 10'°. Second, subnetworks
are not independent. An extreme example is provided
by nodes with high degree, or hubs, in an interaction
network. If these hub genes are mutated, a large number
of subnetworks containing them will be flagged as
significant.

HotNet addresses these problems in two ways. First,
it uses a diffusion process on the interaction network to
retain information about a gene’s local topology while

minimizing spurious connections from hubs. Second, it
employs a new multihypothesis test that bounds the FDR
of hot subnetworks.

Heat diffusion model

To understand the diffusion process, consider two sce-
narios. In one scenario, two mutated genes are connected
by a single low-degree node in the network, while in the
other, a high-degree node connects the mutated genes.
Because there are many paths through the high-degree
node, it is more surprising to see mutated genes connected
by a path through a low-degree node in the network than
mutated genes connected by a path through a high-degree
node.

To formalize this intuition, we use a model of heat dif-
fusion. Each mutation on a gene is a source of heat on the
network and diffuses this heat to its neighbors. We place
an amount of heat on a gene in proportion to the frequency
of the gene’s mutation and allow heat to diffuse over the
edges for some length of time.

If we place the heat source on a low-degree node, heat
will diffuse to the small number of neighbors in the graph,
and thus these neighbors will remain hot for an appre-
ciable length of time. On the other hand, heat placed on a
high-degree node will diffuse to the many neighbors, and
thus none of the nodes will be very hot. After allowing
heat to diffuse for a fixed length of time, highly mutated
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subnetworks will thus become hot spots on the graph;
HotNet breaks the graph by removing cold edges, thus
dividing the network into subnetworks. The algorithm
assesses statistical significance by comparing the size of
the resulting subnetworks to those obtained by performing
the same procedure using an appropriate random model
for mutations. HotNet uses a Laplacian matrix to compute
heat diffusion.

The heat diffusion model is equivalent to a certain
random walk on the graph and thus somewhat resembles
the PageRank algorithm that Google originally used to rank
webpages. However, a key difference is that PageRank and
related algorithms examine only the graph’s topology, while
HotNet considers both the topology and the nodes’ values.

Multihypothesis test

A two-stage multihypothesis test that bounds the FDR
of the entire set of identified hot subnetworks circum-
vents the multiple hypothesis testing problem that arises
if all subnetworks are tested as individual hypotheses.
Our statistic is the number of subnetworks with at least
a certain number of genes. In the first step, we assess
the significance of the number X(s) of subnetworks of a
certain minimize size s. The number of measured genes
now bounds the number of hypotheses to test, which is
much smaller than the number of pathways. We can thus
determine an s such that the number X(s) of connected
components of size > s is significant. However, the fact that
X(s) is significant does not imply that any of the individual
subnetworks is significant. Thus, we add a second step that
rigorously bounds the FDR of the list of hot subnetworks.

Example application

We applied the HotNet algorithm to mutation data from
the 316 ovarian cancer patients whose genes were se-
quenced as part of the TCGA project.” Using a large protein
interaction network with more than 37,000 interactions,
we found 33 hot subnetworks whose genes were mutated
in a significant number of patients. Based on our statisti-
cal test, around one-third of these subnetworks would be
expected to be true discoveries. Moreover, nearly one-third
of these subnetworks corresponded to groups of proteins
with known biological function.

DENDRIX: DE NOVO DRIVER EXCLUSIVITY

Because biological interaction networks are far from
complete, as the number of patients increases, it might
become possible to identify groups of mutated genes with-
out the network. Indeed, the network’s primary utility is
to reduce the number of groups (hypotheses) to test. How-
ever, without the network, there are too many groups of
genes to test exhaustively, since considering all the groups
up to a reasonable size would be computationally ineffi-
cient and result in a loss of statistical power.

COMPUTER

Mutual exclusivity and coverage

Current knowledge of mutations in cancer provides two
constraints on groups of genes to examine. First, because
a driver mutation is rare, if a group of genes (or a pathway)
is important for cancer, typically only a single gene in the
group will be mutated in a patient. Thus, there is a pattern
of mutual exclusivity between driver mutations. Second,
an important cancer pathway will be mutated in most
patients. Thus, the mutations in a pathway important for
cancer show high patient coverage.

These constraints led us to examine particular mutation
patterns in the mutation matrix. First, mutual exclusiv-
ity implies that we want to identify a group of genes, or
columns, in the matrix such that each patient (row) has at
most one mutation. We refer to this as an exclusive sub-
matrix. We define the coverage of a submatrix as the
number of rows with at least one mutation in the group
of columns (genes). We are interested in exclusive subma-
trices that cover many patients—that is, for which many
patients have a mutation in at least one gene.

We thus define the maximum coverage exclusive subma-
trix problem: find the exclusive submatrix with k columns
with maximum coverage. This problem is NP-hard, there-
fore no algorithm efficient in all instances is expected to
exist for its solution. Perhaps more importantly, the ex-
clusivity constraint is too restrictive for real data where
errors or passenger mutations might result in a pathway
important for cancer to present nonexclusive mutations.

We thus focus on finding approximately exclusive
sets of genes (columns) that cover many patients. Let I'(g)
denote the set of patients with a mutation in gene g. We
define the coverage overlap of a set M of genes to be the
difference between the sum of the coverages of the single
genes in the set and the coverage of the set

rm=3%

Our goal is to simultaneously maximize coverage and
minimize coverage overlap. There is an inherent tradeoff
in these criteria, so we define the weight of a set of genes
as the difference between coverage and coverage overlap:

r(g)

We thus define the maximum weight submatrix problem:
find the submatrix with k columns with maximum weight.
This problem is also NP-hard.

T (g) - T (m).

W(M) = |C(M)] - y(M) = 2]C(M) - Y

geM

MCMC-based solution

We developed two algorithms to solve the maximum
weight submatrix problem. The first is a simple greedy
algorithm that yields maximum weight submatrices with
high probability when the data comes from a generative
model well suited for single-nucleotide mutations. The




second algorithm uses a Markov chain Monte Carlo method
to sample submatrices in proportion to their weight. The
MCMC method does not require any assumptions about
the data.

The greedy algorithm iteratively adds columns (genes)
that increase the weight. This algorithm will return the
driver pathway provided the mutations follow a particu-
lar independent-genes model that is reasonable for some
types of cancer data and the number of samples is reason-
ably large. Unfortunately, the bounds obtained require a
number of samples that is an order of magnitude larger
than what is currently available.

Thus, we also developed an MCMC approach. With this
approach, we consider different gene sets of fixed size k
as states of a Markov chain, and transitions are substitu-
tions of a gene in a set. We use the Metropolis-Hastings
procedure to define the transition probabilities between
states so that the Markov chain converges to the desired
distribution where the probability of a set M is proportional
to its weight W(M). According to Markov chain convergence
theory, under certain reasonable assumptions, running the
chain long enough converges to a stationary distribution.
In general, the Metropolis-Hastings procedure is guaran-
teed to converge to the desired distribution, but the time
to convergence can be very long. Thus, MCMC approaches
use various heuristics to determine how many transitions
are necessary before outputting a state.

In our case, we prove that the Markov chain converges
rapidly, making it possible to efficiently sample from the
distribution of gene sets. A major advantage of the MCMC
approach is that it samples from distributions of sets rather
than identifying a single optimal set. Moreover, unlike the
greedy algorithm, it does not require any assumptions
about the mutations.

We implemented the resulting MCMC method as the De
novo Driver Exclusivity (Dendrix) algorithm'® and ran it on
simulated data and real cancer sequencing data. The sets
of genes that Dendrix sampled with high frequency inter-
act or have common interacting partners in well-known
cancer signaling pathways. On brain cancer (glioblas-
toma) data, our method identifies three sets of genes that
form parts of signaling pathways: one consists of three
genes, as Figure 3 shows, and the other two consist of
two genes. Thus, Dendrix automatically discovers groups
of interacting genes solely from the pattern of mutations
in the genes.

he analysis of cancer genome data presents many
computational challenges. Here, we have focused
on one of the key challenges: to distinguish driver
mutations relevant for cancer development from passen-
ger mutations that do not have functional implications and
are not important for cancer. While an experiment pro-

Mutation type
Il Exclusive
I Co-occurring
(] None

Patients
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.

Figure 3. The De novo Driver Exclusivity (Dendrix) algo-
rithm uses a Markov chain Monte Carlo method to sample
submatrices of the mutation matrix with high coverage
and exclusivity. In this case, Dendrix identifies a set of three
genes—CDKN2B, CDK4, and RB1—in brain cancer data cor-
responding to a known important pathway.

vides the ultimate evidence that a mutation is functional,
the large amount of cancer sequences now available
demand new computational approaches to prioritize
mutations for biological validation. Going a step further,
such approaches are also useful to predict which combi-
nations of mutations are driver mutations.

Appropriate algorithms can significantly reduce the
number of combinations of possible driver mutations that
need to be tested in expensive and time-consuming wet
lab experiments. These algorithms need to be time and
space efficient to handle massive datasets, and they must
rely on rigorous statistical methods to reduce the number
of candidate driver mutations (false positives) while also
not eliminating true driver mutations from consideration
(false negatives).

Both of the algorithms that we designed to find groups of
genes that are functionally redundant for the development
of cancer generalize the single-gene test that is commonly
used to identify driver genes by their recurrence in many
cancer patients. Moreover, neither algorithm restricts
groups of genes to those already known to be involved in
cancer, thus allowing the discovery of novel combinations
of mutations. The HotNet algorithm relies on prior knowl-
edge of the interactions between genes, represented as a
graph, to restrict the search space of possible combina-
tions. The Dendrix algorithm exploits some combinatorial
properties of the patterns of mutations that are expected
for driver pathways.

More research is required to develop better algorithms
for the identification of driver genes and driver pathways,
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and to use the resulting information to improve cancer
treatments. While here we focused on mutation data, a
wealth of other types of genomic and epigenomic data—
on gene expression, DNA methylation, and so on—can be
combined to make more accurate predictions. The Cancer
Genome Atlas and other similar projects are collecting
multiple data types on the same patients that can be used
for such research. Finally, identifying the driver mutations
and pathways is only a first step toward understanding
how these mutations affect a particular patient’s prognosis
and treatment.

The data to address all of these questions is being
produced at a rapid pace, and the major challenge for
computational biologists going forward is to interpret
this data.
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