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Abstract Cancer sequencing projects are now measuring somatic muta-
tions in large numbers of cancer genomes. A key challenge in interpreting
these data is to distinguish driver mutations, mutations important for
cancer development, from passenger mutations that have accumulated
in somatic cells but without functional consequences. A common ap-
proach to identify genes harboring driver mutations is a single gene test
that identifies individual genes that are mutated in a significant number
of cancer genomes. However, the power of this test is reduced by the
mutational heterogeneity in most cancer genomes and by the necessity
of estimating the background mutation rate (BMR). We investigate the
problem of discovering driver pathways, groups of genes containing driver
mutations, directly from cancer mutation data and without prior knowl-
edge of pathways or other interactions between genes. We introduce two
generative models of somatic mutations in cancer and study the algorith-
mic complexity of discovering driver pathways in both models. We show
that a single gene test for driver genes is highly sensitive to the estimate
of the BMR. In contrast, we show that an algorithmic approach that
maximizes a straightforward measure of the mutational properties of a
driver pathway successfully discovers these groups of genes without an
estimate of the BMR. Moreover, this approach is also successful in the
case when the observed frequencies of passenger and driver mutations
are indistinguishable, a situation where single gene tests fail.

1 Introduction

Cancer is a disease driven in part by somatic mutations that accumulate during
the lifetime of an individual. These mutations include single nucleotide substi-
tutions, small indels, and larger copy number aberrations and structural aber-
rations. A key challenge in cancer genomics is to distinguish driver mutations,
mutations important for cancer development, from random passenger mutations
that have accumulated in somatic cells but do not have functional consequences.
Recent advances in DNA sequencing technologies allow the measurement of so-
matic mutations in large numbers of cancer genomes. Thus, a common approach
to identify driver mutations, and the driver genes in which they reside, is to
identify genes with recurrent mutations in a large cohort of cancer patients. The
standard approach to identify such recurrently mutated genes is to perform a



single gene test, in which individual genes are tested to determine if their ob-
served frequency of mutation is significantly higher than expected [11,5,12]. This
approach has identified a number of important cancer genes, but has not revealed
all of the driver mutations and driver genes in individual cancers.

There are two difficulties with the identification of driver genes by a single
gene test of recurrent mutation. First, the test requires a reasonable estimate
of the background mutation rate (BMR), which quantifies the accumulation of
passenger mutations. Obtaining such an estimate is not a straightforward task,
as the BMR is not just the rate of somatic mutation per nucleotide per cell
generation, but also must account for selection and clonal amplification in the
somatic evolution of a tumor [7,11]. Second, it is widely observed that there is
extensive mutational heterogeneity in cancer, with mutations occurring in differ-
ent genes in different patients. This mutational heterogeneity is a consequence
of both the presence of passenger mutations in each cancer genome, and the
fact that driver mutations typically target genes in cellular signaling and reg-
ulatory pathways [8,16]. Since each of these pathways contains multiple genes,
there are numerous combinations of driver mutations that can perturb a path-
way important for cancer. This mutational heterogeneity inflates the number of
patients required to distinguish passenger from driver mutations, as rare driver
mutations may not be observed at frequencies above the background. Thus, a
common alternative to single gene tests is to test the recurrence of mutations in
groups of genes derived from known pathways [6,2] or genome-scale gene interac-
tion networks [3,13]. However, these approaches require prior knowledge of the
interactions between genes/proteins, and this knowledge is presently far from
complete. Moreover, pathway/network based approaches typically also require
an estimate of the BMR.

The availability of somatic mutation data from increasing numbers of can-
cer patients motivates the question of whether is it possible to identify driver
pathways, groups of genes with recurrent driver mutations, de novo; i.e. with-
out prior knowledge of interactions between genes/proteins. At first glance, this
seems implausible because there are an enormous number of possible sets of
genes to consider. For example, there are more than 1026 sets of 7 human genes.
However, we previously showed that mild additional constraints on the expected
patterns of somatic mutations considerably reduce the number of gene sets to
examine, and make de novo discovery of driver pathways possible [14]. These
constraints are consistent with the current understanding of the somatic mu-
tational process of cancer [9,16]. In particular, we assume that an important
cancer pathway should be perturbed in a large number of patients. Thus, given
genome-wide measurements of somatic mutations, we expect that a driver path-
way will have high coverage: i.e. most patients will have a mutation in some
gene in the pathway. Second, a driver mutation in a single gene of the pathway
is often assumed to be sufficient to perturb the pathway. Combined with the
fact that driver mutations are relatively rare, most patients exhibit only a single
driver mutation in a pathway. Thus, we expect that the genes in a pathway ex-



hibit a pattern of mutually exclusive driver mutations, where driver mutations
are observed in exactly one gene in the pathway in each patient [17].

Note that the exclusivity constraint is assumed only for driver mutations
in the same pathway. As a cancer genome likely has multiple driver pathways,
the exclusivity assumption does not preclude the presence of co-occurring, and
possibly cooperative, mutations, examples of which are known [15,4]. It is also
possible that co-occurring mutations are necessary to perturb a pathway. In
this case, there will likely remain a large subset of genes in the pathway whose
mutations are exclusive, e.g. a subset obtained by removing one gene from each
co-occurring pair. The identification of these subsets of genes by the approaches
described here can be a starting point to later identify the other genes with
co-occurring mutations.

1.1 Our Contribution

This work proposes a mathematical framework to study the problem of de novo
discovery of driver genes and pathways. We define two generative models of
driver mutations in cancer and study the algorithmic complexity of the discovery
problem in each of the models, both analytically and in simulations. The two
generative models differ in how conditioning on a sample being from a cancer
patient affects the ratio between the driver and passenger mutation probabilities
in that sample. While the difference is relatively small, it has a major implication
on the practicality of the standard single gene test for identifying the driver
genes. In the first model we prove a bound on the number of patients required
to detect all driver genes with high probability using a single gene test, while in
the second model it is not possible to identify the driver genes using such a test
for any number of patients.

Next, we study a weight function on sets of genes that quantifies the cover-
age and exclusivity properties of a driver pathway. We introduced this function
in [14], and showed that finding sets with high weight provides an alternative
approach for identifying driver mutations. Here, we prove that for both genera-
tive models, when mutation data from enough patients is available, the weight
function is monotone in the number of discovered driver genes and is maximized
by the driver pathway. Based on this observation we prove that a simple greedy
algorithm identifies the driver pathways with high probability. This improves
the result in [14], where we showed that the discovery problem is NP-hard for
arbitrary mutation data and that a greedy algorithm performs well under dif-
ferent conditions that did not arise from a generative model of the data. We
also show that our earlier Markov Chain Monte Carlo (MCMC) approach for
identifying the driver pathways rapidly converges to the driver pathway in both
generative models, thus improving the convergence result of [14] for arbitrary
mutation data. These results show that we can identify driver pathways without
an estimate of the background mutation rate (BMR), giving a more reliable and
robust solution for the problem.

We complement our analytical results with experiments on simulated data
from the first model. We compare the number of patients required to identify



driver genes using the single gene test with the number required using the greedy
algorithm that maximizes the weight function. We show that the number of
patients is similar when a perfect estimate of the BMR is available, but that
the greedy algorithm requires a smaller number of patients when the estimate of
the BMR deviates from its real value. Our analytical and experimental results
help characterize the limitations of detecting driver genes and pathways under
reasonable models of somatic mutation.

2 Stochastic Models for Somatic Mutations in Cancer

In this section we introduce two stochastic models for somatic mutations in
cancer. In both models driver mutations occur in sets of genes, which we refer
to as driver pathways. Passenger mutations occur randomly across all genes.
We assume that mutations have been measured in n genes in a collection of m
cancer patients, and represent the somatic mutations as a m×n binary mutation
matrix A. The entry Aig in row i and column g is equal to 1 if gene g is mutated
in patient i, and it is 0 otherwise. Let G be the set of all columns (genes). In
both models, we assume that the mutation matrix contains a driver pathway : a
subset D ⊆ G of genes, with |D| = k, such that in each patient exactly one of the
genes of D contains a driver mutation. Thus, a driver pathway D exhibits the
properties of high coverage – every patient has a mutation in a gene in D – and
mutual exclusivity – no patient has a driver mutation in more than one gene in
D. In both models, random passenger mutations occur at random in all genes,
including genes in D. The difference between the two models is in the relative
mutation rates in driver and passenger genes. In the following we consider the
case in which the mutation matrix contains only one driver pathway. However,
our results can be generalized to the case of multiple disjoint driver pathways. In
particular the following iterative procedure identifies all driver pathways using
our algorithms: once we identify a driver pathway, we remove its genes from the
mutation matrix, and look for driver pathways in the reduced mutation matrix.

Following the hypothesis that cancer is triggered by a mutation in a driver
gene, the sample of cancer patients can be viewed as a subset of a larger initial
population. The genome of each member of the initial population was subject to
random mutations, where each gene was mutated independently, and our sample
is the subset of the initial population with a driver mutation in a gene of D.

The first stochastic model captures the above intuition by modeling the dis-
tribution of mutations in patients as independent with fixed probability q, con-
ditioning on having a driver mutation. The mutation matrix A is generated by
the following process: in each row (patient) we choose one gene d ∈ D uniformly
at random to contain the driver mutation, and set the corresponding entry Aid

to 1. All other entries at that row are set to 1 with probability q < 1 and to 0
otherwise, and all events are independent. We call the parameter q the passenger



mutation probability3, as it is the probability that a gene contains a passenger
mutation. We denote the model above as the D>P model.

A possible limitation of the D>P model is that it implies a conditional distri-
bution in which driver genes have higher expected frequency of mutation than
the passenger genes (thus the name D>P model) in a cohort of patients. In prac-
tice the driver pathway could contain dozens of genes, and some of them may
have rare driver mutations. Thus the expected frequency of mutation of some
genes in D may be indistinguishable from the expected frequency of mutation of
some passenger genes. To examine this situation we introduce a second model,
which we call the D=P model, in which all genes in G are mutated with the same
probability in the patients, regardless of whether they are driver or passenger
genes. Of course, this is a “worst case” model, as any cancer cohort with a rea-
sonable number of patients will have some driver genes mutated at appreciable
frequency. Nevertheless, we study the D=P model to consider the limits of driver
pathway identification. The mutation matrix A in the D=P model is generated
by the following process: in row (patient) i an entry Aid is chosen uniformly at
random for d ∈ D and is set to 1. All other entries Aid′ for d′ ∈ D are set to 1
with probability r = qk−1

k−1 , and all entries Aig, for g ∈ G \ D are set to 1 with
probability q. All events are independent. We require q ≥ 1/k so that r is a
proper probability. Note that for any g ∈ G the probability that g is mutated is
the same since for d ∈ D, 1

k + (1− 1
k )r = q.

Note that both models differ from a simple binomial model, where each entry
of A is mutated independently with a fixed probability. Since we condition on
each patient having at least one mutation in D, the entries of A corresponding
to genes in D are not independent. In what follows, we let Γ (g) = {i : Aig = 1}
denote the set of patients in which a gene g is mutated. Similarly, for a set M
of genes, let Γ (M) denote the set of patients in which at least one of the genes
in M is mutated: Γ (M) = ∪g∈MΓ (g).

3 Finding Recurrently Mutated Genes

The standard approach to identify the driver genes is to identify recurrently
mutated genes, i.e. those genes whose observed frequency of mutations is signif-
icantly higher than the expected passenger mutation probability [11,5,12]. This
approach assumes a prior knowledge or a good estimate of the passenger mu-
tation probability, the parameter q in our models. This approach is combined
with a multi-hypothesis test to identify a list of genes, each mutated in signifi-
cantly more patients than expected. The pseudocode for such a test is given in
Algorithm RMG (Figure 1). (In Algorithm RMG we use Bonferroni correction for
multiple hypothesis testing. Other corrections, like Benjamini-Hochberg [1] to
control the False Discovery Rate, are possible. The results of this section also
apply to those other corrections.)

3 Note that q is greater than the BMR, since it is the probability that a gene has a
passenger mutation. For example, estimates of the BMR are typically ≈ 10−5, and
since the length of most genes is around 104, we have that q ≈ 10−1.



Algorithm RMG

Input: An m× n mutation matrix A, a probability q that a gene contains a
passenger mutation in a patient, a significance level α.

Output: Set O of recurrently mutated genes.

O ← ∅;1

for g ∈ G do2

Γ (g)← {i : Aig = 1};3

pg ← Pr[B(m, q) ≥ |Γ (g)|];4

if pg ≤ α
n

then O ← O ∪ {g};5

return O;6

Figure 1: Pseudocode of the algorithm for finding recurrently mutated genes, based
on a single-gene test.

We first analyze the D>P model of Section 2. We start by showing that if q is
known and the number of patients is sufficiently large, then Algorithm RMG out-
puts all the driver genes with high probability.

Theorem 1. Suppose an m × n mutation matrix A is generated by the the
D>P model, the family wise error rate of the test is α = 1

2nε and Algorithm RMG out-

puts O. If m ≥ 2k2(1+ε)
(1−q)2 ln 2n for a constant ε > 0, then Pr[O 6= D] ≤ 1

nε .

Proof. The p-value calculations and the Bonferroni correction in Algorithm RMG

guarantee that the probability that any gene g 6∈ D is included in the output

set O is bounded by α = 1
2nε . It remains to prove that if m ≥ 2k2(1+ε)

(1−q)2 ln 2n the

probability that any d ∈ D is not included in O is bounded by 1
2nε .

Consider a gene d ∈ D. Let Xi = 1 if gene d is mutated in patient i, and
Xi = 0 otherwise. Note that for i 6= j, Xi and Xj are independent. Let X
be the number of patients in which d is mutated. We have X =

∑m
i=1Xi. To

compute E[Xi] we observe that a driver gene is mutated with probability 1 when
it contains the driver mutation, and with probability q otherwise. Since the gene
d containing the driver mutation is chosen uniformly at random among all the
k genes in D, we have E[Xi] = 1

k +
(
1− 1

k

)
q. Thus E[X] =

∑m
i=1 E[Xi] =

m( 1
k +

(
1− 1

k

)
q) > mq. Let t = 1

k

(
1−q
2

)
. By the Chernoff-Hoeffding bound:

Pr[X ≤ E[X]− tm] = Pr[X ≤ mE[Xi]− tm] ≤ e− 2m2t2

m ≤ 1

2n1+ε
.

Since |D| < n, by union bound we have:

Pr[∃d ∈ D mutated in ≤ (E[X]− tm) patients] ≤ n 1

2n1+ε
=

1

2nε
.

Thus with probability at least 1 − 1
2nε all genes in D are mutated in at least

E[X]− tm patients. Let B(m, q) be a binomial random variable with parameters



m, q. Using the Chernoff-Hoeffding bound we can upper bound the p-value pd
that Algorithm RMG derives for d ∈ D:

pd ≤ Pr[|B(m, q)−mq| ≥ tm] ≤ e−2 t2m2

m ≤ 1

2n1+ε
.

Thus, with probability at least 1 − 1
2nε for any d ∈ D the number of patients

with a mutation in d is such that its p-value satisfies pd < α/n and thus it is
included in the output set O. ut

Theorem 1 shows that in the D>P model an estimate of the passenger mu-
tation probability q and a sufficient number of patients are enough to identify
the driver genes. This is not the case in the D=P model. It is easy to see that
in D=P model the expected number of rows in which a column g is mutated is
the same for all g ∈ G, that is for all g ∈ G we have E[|Γ (g)|] = qm. In fact,
the number |Γ (d)| of patients in which a gene d ∈ D is mutated and the number
|Γ (g)| of patients in which gene g 6∈ D is mutated are both binomial random
variables B(m, q). We thus have the following.

Fact 1 Under the D=P model, the probability distribution of |Γ (d)| for d ∈ D
and |Γ (g)| for g 6∈ D are the same. Thus Algorithm RMG cannot identify the genes
in D for any number of patients m.

4 A Weight Function to Identify Driver Pathways

In this section we analyze a method that identifies the set D of driver genes with
no prior information on the passenger mutation probability q, and works for both
the D>P and D=P models. The method relies on a weight function W (M), defined
on sets of genes, first introduced in [14]. The measure W quantifies the extent to
which a set simultaneously exhibits both: (i) high coverage: most patients have
at least one mutation in the set; (ii) high exclusivity : nearly all patients have
no more than one mutation in the set. (For lack of space, some proofs of the
results in this section are omitted. They will be included in the full version of
this work.)

For a set of genes, M , we define the coverage overlap ω(M) =
∑

g∈M |Γ (g)|−
|Γ (M)|. Note that ω(M) ≥ 0, with equality if and only if the mutations in M are
mutually exclusive. To account for both the coverage, Γ (M), and the coverage
overlap, ω(M), we define the weight function of M :

W (M) = |Γ (M)| − ω(M) = 2|Γ (M)| −
∑
g∈M
|Γ (g)|.

Finding a set M of genes with maximum weight is in general a computationally
challenging problem (it is NP-hard in the worst case). Nonetheless, we showed
in [14] that under some assumptions on the distribution of mutations in patients,
a greedy algorithm will identify the maximum weight set. We also proposed a



Markov Chain Monte Carlo (MCMC) approach that samples sets of genes with
probability proportional to their weight.

Based on the coverage and exclusivity properties of a driver pathway we
expect it has the highest weight among all sets of size k. In this section we
formalize this intuition for our generative models and show that under the two
models the maximum weight set is easy to compute. We use M∗k to denote the
set of size k with maximum weight (M∗k may not be unique).

We start with the D>P model. Note that the parameter q controls the ex-
pected number of passenger mutations in a set of k passenger genes. Since pas-
senger mutations are relatively rare and k (the number of genes in a driver
pathway) is relatively small, we expect that a set of k passenger genes will not
have a mutation in the majority of the patients. Thus we assume that the prob-
ability 1 − (1 − q)k that a set of k passenger genes contains a mutation is less
than a constant a < 1

2 . Since 1 − (1 − q)k ≈ qk we have q ≤ a
k . For ease of

exposition in what follows we use a = 1
4 , so that q ≤ 1

4k .
Let Mk,` ⊂ G be a set of k genes with exactly ` genes of D, that is Mk,` =

{d1, d2, . . . , d`} ∪ {g1, . . . , gk−`} with dj ∈ D for 1 ≤ j ≤ `, and gj ∈ G \ D for
1 ≤ j ≤ k − `. We first prove that E[W (Mk,`)] is monotone in `.

Lemma 1. Let q ≤ 1
4k . For 0 ≤ ` ≤ k − 1: E[W (Mk,`+1)] ≥ E[W (Mk,`)] + m

2k .

Next we show that for sufficiently large number of patients m, the random
value W (Mk,`) is concentrated near its expectation.

Theorem 2. Suppose A is generated by the D>P model with q ≤ 1
4k . For m ≥

8k3(k + ε) lnn, and for 0 ≤ ` ≤ k − 1, Pr[∃Mk,` s.t. |W (Mk,`)−E[W (Mk,`)| ≥
m
4k ] ≤ 1

nε .

Combining the results of Lemma 1 and Theorem 2 we have

Corollary 1. If m ≥ 8k3(k + ε) lnn, then Pr[M∗k 6= D] ≤ 1
nε .

Corollary 1 shows that with sufficient number of patients the set D can be
identified by finding the set of maximum weight, without an estimate of the
probability q that a gene is mutated as a passenger. It was shown in [14] that
with an arbitrary mutation distribution identifying the set of maximum weight is
NP-Hard. However, a simple corollary of Theorem 2 shows that in our generative
model computing a set of maximum weight is easy.

Corollary 2. If m ≥ 8k3(k + ε) lnn and q ≤ 1
4k , a greedy algorithm that com-

putes the weight function of up to O(nk) sets finds M∗k with failure probability
≤ 1

nε .

Proof. Start with an arbitrary set M of k genes. Now consider the elements
of M = {g1, . . . , gk} one after the other in a greedy process: for gj ∈ M , find
w = arg maxg∈G\M W (M\{gj}∪{g}). If W (M) < W (M\{gj}∪{w}), substitute
gj with w in M ; then move to gj+1. Theorem 2 guarantees that if w is inserted
in M , it is in D, and that when a gene gj ∈ M \ D is considered, it will be
switched with a gene d ∈ D \M . ut



We now consider the D=P model. Analogously to what we proved under the
D>P model, we prove that maximizing the weight function W identifies the driver
pathway D when mutation data from enough patients is available.

Theorem 3. Suppose A is generated by the D=P model. If m ≥
k3(k+ε)

2(1−q)2k+2

(
k−1
k

)2k
lnn, then Pr[M∗k 6= D] ≤ 1

nε .

We prove that a simple greedy algorithm, similar to the one proposed for the
D>P model, identifies the set M∗k of maximum weight under the D=P model.

Corollary 3. If m ≥ k3(k+ε)
2(1−q)2k+2

(
k−1
k

)2k
lnn, a greedy algorithm that computes

the weight function of up to O(n2) sets finds M∗k with failure probability ≤ 1
nε .

Thus under the D=P model we identify the driver pathway D by maximizing
W (M). Recall that Algorithm RMG cannot find driver genes under this model
(Section 3, Fact 1). Also note that when q ≤ 1/2 and the probability (1−q)k that

a set of k genes in G\D is not mutated in a patient is greater than 1
2

(
k−1
k

)k
(this

occurs when passenger mutations are relatively rare, for example when q ≈ 1/k)
the bound on m in Corollary 3 is the same as the bound in Corollary 2. That is,
the weight W identifies the set D under both models with the same number of
patients.

For completeness, we also analyze the Monte-Carlo Markov Chain approach
proposed in [14] to sample sets of genes with distribution exponentially propor-
tional to their weight. The states of the Markov chain are the subsets of G of size
k. If M (t) is the state at time t, M (t+1) is computed choosing uniformly at ran-
dom a gene w ∈ G and a gene v ∈M (t), and setting M (t+1) = M (t) \ {v} ∪ {w}
with probability min[1, ecW (M(t)\{v}∪{w})−cW (M(t))], and M (t+1) = M (t) oth-
erwise. It is easy to verify that the chain is ergodic with a unique stationary

distribution π(M) = ecW (M)∑
R∈Mk

ecW (R) , where Mk = {M ⊂ G||M | = k}. The ef-

ficiency of this algorithm depends on the speed of convergence of the Markov
chain to its stationary distribution.

In [14], we show that there is a non-trivial interval of values for c for which the
chain is rapidly mixing without assuming any generative model for the mutation
matrix. The analysis of [14] applied to D>P and D=P models requires c < 1/k.
However, applying Lemma 1 and 2 under the D>P model, and Theorem 3 under
the D=P model we show that for any c > 0 the process rapidly converges to the
set D.

Theorem 4. Suppose that A is generated by the D>P model with q ≤ 1
4k , or

the D=P model with q ≤ 1/2 and (1 − q)k ≥ 1
2

(
k−1
k

)k
. For m ≥ 8k3(k + ε) lnn

and any c > 0, the MCMC converges to the set D in O(nk log k) iterations with
probability ≥ 1− 1

nε .



5 Experimental Results

In this section we compare the single gene test provided in Algorithm RMG and
the weight function W (M) to detect the set of driver genes using mutation data
simulated using the D>P model. In particular, we use the greedy algorithm of
Section 4 (see Corollary 2) to identify the set M∗k of maximum weight, where
k = |D|.
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Figure 2: Number of patients mR,0.99(s(q)) required to identify the driver pathway D
with Algorithm RMG , for different estimates s(q) of the probability q (dashed). Number
of patients mG,0.99 required to identify D with the greedy algorithm (solid).

We generated mutation data according to the D>P model with k = |D| = 20,
q = 0.0125, n = 10000. We set α = 0.005 for Algorithm RMG which corresponds
to ε = 0.5. To compare the performance of the two approaches, we measured
the minimum number of patients required to detect the driver pathway D over a
range of estimates of the passenger mutation probability q. Specifically, let Es(q)

= “estimate s(q) of q is used by Algorithm RMG”. Let mR,x(s(q)) = minm{Pr[O =
D|Es(q)] > x} be the minimum number of patients required for Algorithm RMG to
output O = D with probability > x over all m×n mutation matrices generated
by the model when the estimate s(q) is used. Similarly, let P be the output of
the greedy algorithm of Corollary 2. Let mG,x = minm{Pr[P = D] > x} be
the minimum number of patients required for the greedy algorithm to output
D with probability > x over all m × n mutation matrices generated by the
model. Recall that mG,x does not depend on s(q) by Corollary 2. Figure 2 shows
the values of mR,0.99(s(q)) and mG,0.99 as a function of s(q). We varied s(q)
starting from s(q) = q (i.e., q is perfectly estimated) and gradually increased s(q)
while maintaining s(q) < 1/k. The latter condition assures that s(q) is strictly
smaller than the expected probability of mutation of any gene in D, a necessary
condition for Algorithm RMG to be able to identify D. To estimate mR,0.99 and
mG,0.99 we generated 100 mutation matrices for each mi = i ∗ 100 patients
for 1 ≤ i ≤ 52. Figure 2 shows that mR,0.99(s(q)) is monotonically increasing
with s(q). When the estimate of q is perfect, the greedy algorithm requires
more patients than Algorithm RMG to correctly identify the set D, but when
the estimate s(q) is larger than the true value of q, mR,0.99(s(q)) increases and



becomes much larger thanmG,0.99. (Typically, an overestimate of q is used so that
the test for recurrent genes in conservative [10]). Note that even when s(q) = q,
mG,0.99 is close tomR,0.99(q), while the bounds in Theorem 1 and Corollary 2 give

mG,0.99

mR,0.99(s(q))
≥ 1000. Similar results were obtained when comparing mR,0.95(s(q))

and mG,0.95; i.e. the minimum number of patients for which Algorithm RMG and
the greedy algorithm report the driver set D at least 95% of the time (data not
shown).

Finally, we consider the case s(q) < q where the estimate of q is smaller than
its true value. In this case, some genes not in D (false positives) are eventually
reported by Algorithm RMG. For example, with s(q) = 0.8q and m = 1000 (for
which the correct result is always reported when s(q) = q), Algorithm RMG reports
false positives in approximately 16% of the datasets.

6 Conclusions

We investigate the problem of detecting recurrently mutated genes and pathways
using two simple generative models of driver mutations in cancer. In the first
D>P model, where the driver mutation probability is larger than the passenger
mutation probability, we prove a bound on the number of patients required to
detect all driver genes with high probability using a single gene test of recurrence.
In the second D=P model, where the driver mutation probability and passenger
mutation probability cannot be distinguished, it is impossible to identify driver
genes using the single gene test for any number of patients. We prove that under
either model, the weight function that we defined in [14] is maximized by a driver
pathway. Thus, with mutation data from enough patients, it is possible to iden-
tify driver pathways without an estimate of the passenger mutation probability
q. In particular, we show that a simple greedy algorithm finds driver pathways
with high probability. We also show that an MCMC approach converges rapidly.
Finally, we present results on simulated data showing that the greedy algorithm
successfully identifies the driver pathway with fewer patients than the single gene
test when the estimate of q deviates from its real value.

In practice, any test that identifies driver genes by recurrent mutations re-
quires a good estimate of q. An underestimate of q leads to false positive pre-
dictions of driver genes, while an over estimate (i.e. a conservative estimate to
minimize false positives) increases the number of patients required to find driver
genes. The passenger mutation probability is derived from the background mu-
tation rate (BMR), which is difficult to measure as it depends on a number of
parameters whose values are not easily determined. There has been extensive
discussion in the community about appropriate ways to estimate the BMR and
find recurrently mutated genes [7,11]. Therefore, methods that do not require
an estimate of the BMR, as the ones we provide here, can give increased power
in the discovery of driver genes. However, further study of more sophisticated
mutation models is necessary. For example, we assume a constant passenger mu-
tation probability q across all genes, but models that allow q to vary by gene
would be useful in applications and warrant further investigation.
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