
Functional and Performance Analysis of
CalRadio 1 platform

Riccardo Manfrin, Andrea Zanella and Michele Zorzi
Department of Information Engineering – University of Padova, Italy

Consorzio Ferrara Ricerche
E-mail: {rmanfrin, zanella, zorzi}@dei.unipd.it

Abstract—
CalRadio 1 is an open 802.11b-compatible development plat-

form, designed and developed at UCSD with the aim of providing
the research community with an open and fully reprogrammable
board for experimental purposes. In this work we describe the
hardware and software architecture of the board and we provide
an accurate analysis of the limiting performance achieved by
CalRadio 1 in comparison with commercial 802.11b wireless
interfaces. The analysis offers a clear vision of the real potential
and limitations of the CalRadio 1 board, pointing out the aspects
of major concern for prospective developers.

Index Terms—CalRadio 1, DSP, ARM, MAC 802.11b

I. INTRODUCTION

In the last few years the literature has been teeming with
papers that propose novel algorithms and protocols for wireless
networks. In most of these papers, performance analysis is
obtained by means of mathematical models or, more often, com-
puter simulations. Although the importance of these methods
of analysis is undeniable, it is also recognized that simulation
and mathematical models cannot fully capture the very complex
and often unpredictable interactions that characterize a real
system, nor include the practical constraints that have to be
dealt with when implementing any novel idea in the real
world. As a consequence, the results obtained by using these
classical tools of analysis cannot be blindly trusted, since they
might significantly differ from what observed when the system
is deployed in a real environment. The scientific community
has recognized the necessity of supporting “ethereal” analysis
with “earthly” observations that can be obtained by means of
experimental campaigns on real-world testbeds. Unfortunately,
most commercial devices do not provide access to low-level
functionalities and components of the board, thus preventing
any modification of the software and firmware modules that
control the device.

For these reasons, in the last years many actors have been
designing and commercializing a number of open wireless
communication platforms that permit fast implementation and
testing of new algorithms and protocols. Examples of such
platforms include the Universal Software Radio Peripheral
(USRP) [1] and the related software GNURadio [2], Wireless
Open-Access Research Platform (WARP) [3], FlexRadio [4] and
CalRadio 1 [5], [6].

In this paper, we focus on the CalRadio 1 platform, an
802.11b [7] compliant, standalone board that can potentially
provide the above mentioned functionalities for fast develop-
ment and testing of communication algorithms and protocols.

CalRadio 1 is equipped with a 802.11b PHY layer in hard-
ware. The advantage brought by the board is that the MAC
layer is run on a DSP and can therefore be reprogrammed in
standard ANSI C.

This work was partially supported by the EU through the ARAGORN project
(FP7 ICT-216856) as part of the Seventh Framework Programme ICT-2007.1.1
“The network of the future”

In this work, we provide a functional and performance
analysis of the board features, with the intent of giving to
prospective developers a clear vision of the actual potential and
limitations of the board. To this end, we start by describing the
hardware and software architecture of CalRadio 1 in Sec. II.
Then, in Sec. III we present and comment the results of a
number of experiments that have been designed to evaluate the
limiting performance of the device. The obtained results are
then discussed in Sec. IV.

II. CALRADIO 1 ARCHITECTURE

This section is devoted to the detailed description of the
hardware architecture and of the software design of CalRadio 1,
with the aim of providing the technical and practical information
that we consider of interest for prospective developers.

A. Hardware
The CalRadio 1 platform consists of four main components,

namely an ARM (ARMv7TDMI) processor, a Digital Signal
Processor (TI 5471 DSP) [8], a Baseband (BB) processor
(Intersil HFA3863) [9] and an RF transceiver (MAX28281)
[10]. ARM and DSP are integrated in a single dual-core chip
(TMS320VC5471) produced by Texas Instruments. With re-
spect to the ISO/OSI reference protocol stack, the ARM proces-
sor supports the “higher layer” functionalities, from the network
layer up, the DSP carries out the data link layer (DLL) function-
alities, including Medium Access Control (MAC), whereas the
physical layer (PHY) functionalities are implemented by the
Baseband processor and the RF transceiver, as schematically
represented in Fig. 1.

Figure 1. Hardware/software architecture

1) Modules interconnection: The different parts are con-
nected to one another, in a hardware chain.

ARM and DSP are connected by means of a memory-
mapped shared buffer residing on the DSP that is used for
exchanging both data and control information. In order to
avoid possible race conditions the buffer is spin-locked before
accessing it. Reading and writing of the shared memory involves
the Arithmetic-Logic Unit (ALU) of the DSP that, therefore,



cannot perform other operations in parallel. This characteristic
also represents a potential bottleneck for the performance of the
CalRadio 1 board. In fact, data reading/writing on the shared
buffer may take a relatively long time that contributes to the
overall packet delivery delay of the board.

Conversely, data transfer between DSP and Baseband pro-
cessor is managed through Direct Memory Access (DMA)
channels. Therefore, packet transfers from and to the Baseband
do not engage the DSP, which can meanwhile perform other
operations, such as rate selection, error checking and so on.

Communications between Baseband processor and RF
transceiver are operated by means of dedicated channels and
registers and occur without involving the DSP.

Besides the WiFi interface, CalRadio 1 offers a 10/100 Mbit/s
Ethernet port for fast file transfers, and a serial connection, that
is commonly used to control the device, and for code debugging
purposes.

2) DSP functionalities: The feature that distinguishes Cal-
Radio 1 from common commercial WiFi cards is the ability
to access and reprogram the DLL and MAC protocols, which
are run on the DSP. Moreover, the DSP controls the Baseband
processor and the RF transceiver setup, thus permitting to
directly play with most of the PHY settings also in runtime.

The DSP software can be written in ANSI-C language and
compiled on an external PC. The generated binary code can
be transferred to the ARM via standard File Transfer Protocol.
However, the DSP only provides 72 kwords (of 16 bits each)
of memory for storing the DLL/MAC software.

The DSP is also equipped with a single hardware timer, which
is used to provide the absolute system time reference and for
debugging purposes. The timer is clocked by a relatively fast
(100 MHz) quartz with clock period TCLK = 10 ns.

It must be noted that the timer should never expire, in order to
maintain time consistency in tasks scheduling. This aspect may
represent a limitation of the board, since it forces the developer
to consider timer maintenance in software design.

3) Baseband and RF transceiver functionalities: As men-
tioned, the PHY functionalities are realized by the Baseband
processor and the RF transceiver. In particular, the Baseband
processor controls the IEEE 802.11 Clear Channel Assessment
(CCA) signal according to the idle or busy status of the RF
channel. Moreover it updates the Received Signal Strength
Indication (RSSI), which describes the power level of each well-
formed IEEE 802.11 received signal. The low level function-
alities of the PHY layer, such as selection of the RF channel
or RF signal modulation are carried out by the RF transceiver.
Among others, a remarkable feature offered by the module is
the ability to change the carrier frequency from 2.4 GHz to
2.499 GHz with a resolution of 1 MHz, thus permitting a very
fast and fine spanning of the ISM band.

B. Software
CalRadio 1 is shipped with a minimal software development

kit, which includes µCLinux [11] kernel, the toolchains for
ARM and DSP, and a basic implementation of the Medium
Access Control (MAC) protocol that permits bidirectional com-
munication with legacy IEEE 802.11b cards in ad hoc mode.
Fig. 2 provides a sketch of the software architecture.

1) Main Loop (ML): The implementation of the MAC layer
on the DSP is based on an endless Main Loop (ML). Fig. 3
shows the flow of operations performed by the DSP in the ML.
At the beginning of the ML, the DSP fetches any new data that
the ARM has written onto the shared buffer. Data can consist
of either commands for the DSP or data packets.

Figure 2. MAC software implementation

Once completed the transmission phase, the DSP checks
whether its reception buffer has new packets coming from the
RF transceiver. Any new packet is hence copied into the shared
buffer, from which it will be read by the ARM. After this, the
ML starts anew. In order to permit asynchronous data transfer
between ARM and DSP, different segments of the shared buffer
are allocated to ARM-to-DSP and DSP-to-ARM data exchange.

Figure 3. Main Loop operations flow

2) Packet Reception routine: All the above operations are
executed in sequential order, once per ML cycle. However,
asynchronous events may generate hardware interrupts that
freeze the execution of the ML in order to let the DSP exe-
cute appropriate interrupt routines. In particular, when the RF
transceiver locks a signal with a valid preamble, ML sequential
code execution is blocked to invoke the reception interrupt
handler. In the reception routine, the incoming data packet is
demodulated by the RF transceiver and Baseband processor
and copied into the DSP reception buffer through the DMA
channels. These operations do not involve the DSP, which can
use the packet reception time to set up in advance some critical
operations that need to be performed immediately after the
completion of the packet reception within strict time constraints.
For instance, the IEEE 802.11b standard requires that, after a
packet has been correctly received, the node transmits an ACK
frame to the sender within a Short Inter-Frame Space (SIFS)
of 10µs, before the ACK timeout expires on the other host, as
shown in Fig. 4. In this period of time the DSP needs to perform
a number of operations, such as executing the data consistency
check on the received packet, checking the destination address
of the packet, creating the acknowledgement frame (ACK),
when required, setting the transmission rate to the basic rate
of 1 Mbit/s, and so on. It is then clear that the reception routine
has to be carefully designed and optimized in order to allows
the DSP to perform all these tasks while respecting the time



boundaries dictated by the standard.

Figure 4. Transmission handshake

An asynchronous event, such as a new packet reception, can
interrupt the execution of the ML in any instant. However, the
DSP can act on an Interrupt Mask Register and an Interrupt
Flag Register to selectively enable/disable the different types
of interrupt in order to avoid recursive routine calls and/or
interruption of critical operations that have to be kept atomic.

III. PERFORMANCE ASSESSMENT

In this section we present the results of some basic exper-
iments to compare the CalRadio 1 performance with respect
to commercial cards and for identifying opportunities and
drawbacks of the board as an open platform for experimental
research. More specifically, we are interested on the following
timing and throughput performance figures:

• minimum time required for: changing carrier frequency
(RF channel), varying PHY rate, reading CCA register;

• maximum transfer rate from: ARM to DSP, DSP to PHY,
ARM to PHY and application to application.

A. Timing performance figures
Timing measurements were obtained by using the DSP

hardware timer (with time unit set to δ = 100ns), which
offers enough precision without exposing the timer to frequent
maintenance procedures.

1) ARM to DSP packet fetching time: The first important
measurement regards the time required for a packet to be
fetched by the DSP when found on the shared buffer. Fig. 5
reports the time taken by the DSP to fetch a packet from the
shared buffer, when varying the packet size. The measurements
have been performed by modifying the ML in order to avoid
any other operation and disabling all the interrupts that could
block the execution of the code. As can be seen, the fetching
time grows linearly with the packet size with a slope of
16 Mbit/s, which is of the same order of magnitude of the
maximum transmission speed provided by the 802.11b PHY
layer (11 Mbit/s). Therefore, the delay undertaken by a packet
from the instant it has been written by the ARM to the shared
buffer to the instant it is passed to the transmission procedure is
comparable to the time required to transmit the packet through
the wireless interface at the maximum admissible rate.

2) DSP to PHY packet transfer time: Even though the DSP
is virtually not involved in DSP to PHY memory transfers,
it is actually blocked to prevent critical errors that would
occur, for instance, in case PHY settings are modified when
transmission is still ongoing. Therefore, the data transfer from
DSP to PHY represents another potential source of performance
loss. In Fig. 6 we report the DMA transfer speed for various

Figure 5. DSP packet fetching speed (from shared buffer)

packet sizes, when the PHY rate was set to 1 Mbps. As can
be observed, the DMA transfer rate is almost independent of
the packet size and slightly lower than the PHY rate. This small
deviation from the reference rate can be ascribed to the fact that
the time measurement actually includes some operations (such
as timer maintenance) that cannot be avoided and that introduce
unpredictable extra delay in the measured latency, thus lowering
the measured transfer speed.

Figure 6. DMA transfer speed (PHY trasmission @ 1 Mbps)

3) Carrier-shifting time: Spectrum agility, dynamic spectrum
access, spectrum-sniffing are just some examples of functional-
ities that require fast channel switching. Therefore, one of the
aims of our analysis was to determine the time required by the
CalRadio 1 card to change frequency channel. A carrier shifting
operation involves the RF stage registers, which only allow write
operations. Since the register cannot be read, it is not possible
to directly measure the time taken by the RF-transceiver to
actuate the command. To overcome this drawback, we set up an
experiment in two stages. In the first stage, the same packet was
continuously and repeatedly transmitted on a single frequency
many times. In order to avoid any source of randomness in
the measure, the DSP code was modified in order to bypass
all the DLL and MAC procedures, such as backoff mechanism,
physical and virtual carrier sense, retransmission procedure and
so on. The receiver was programmed to keep track of the
reception time of the different packets, which reflected only
the latency due to the transfer of the data packet from the
DSP to the Baseband, the time to transmit the data on-air, and
the very limited processing delay required to manage the basic
reception operations. In the second stage of the experiment,
before each packet transmission, the sender switched the carrier
frequency to a different channel and then immediately back
to the original channel. In this way, all the packets were still
transmitted on the same channel (thus permitting to keep the
receiver on the same frequency), but each transmission was
delayed by the time required to change the frequency twice.
The average time difference between the two sets of results,
reported in Fig. 7, gives the time required to perform two
frequency shifting operations that amounts to approximately



14µs. Therefore, the time for a single carrier shifting operation
is about 7µs.

Figure 7. Time difference introduced by carrier shifting operations

Carrier shifting operations need to be kept atomic in order to
avoid abnormal behavior, a requirement that introduces a small
additional delay (that we accounted for in the obtained result)
in order to disable/enable the proper interrupts.

4) PHY Rate-switching time: While frequency shift opera-
tions are carried out by the RF-transceiver, a change of the
PHY rate involves the Baseband processor. Clearly, also rate
switching has to be performed in an atomic fashion. Our
measurements were performed in two different ways; a first
series of results were obtained by writing and subsequently
reading the register responsible for PHY rate switching. As
reading and writing operations on the Baseband processor are
symmetric, the amount of time required for each of them is the
same and we can simply divide the resulting latency by 2 to
obtain our measure.

The second method aims at confirming that there are no
additional latencies introduced by the Baseband, once the rate
setup has been written to the appropriate register. Such trial
measures the difference between two consecutive transmissions
performed without changing rate, and two transmissions with a
rate switch in between. The measured time required to perform
a rate switch operation was confirmed by both tests to be 4.3µs.

It is important to understand that a change in PHY rate could
need to be invoked for every single packet transmission. An
additional delay is required to setup the packet duration on the
Baseband. The responsible function must calculate the symbol
length through the packet length in bytes and the selected rate
for the subsequent transmission. Once the length is calculated,
the Baseband must be notified about it, to know the transmission
duration. All these tasks generate an additional delay of 8.2µs.

With reference to Fig. 4, it is clear that rate adaptation
requires software design optimization, as the update of the rate
and packet length values for transmitting the ACK might take
longer than the ACK timeout.

5) CCA reading time: The last local measure we performed
refers to the CCA reading time. In particular, we were interested
in determining how much time is left after a CCA check to
perform other operations within an IEEE 802.11 time slot.
While most of the 802.11 information elements are accessable
through the Baseband processor registers, the CCA is direcly
mapped to a dedicated input port of the DSP. This allows the
developers to simply treat such signal as a volatile readable in-
ternal register always ready to be checked. This not only allows
to read the CCA anytime during code execution, but grants to

such operation a very high speed and independence from lower
layers hardware constraints. We estimated the required time to
be around 0.2µs, which permits to develop rather sophisticated
channel sensing procedures and leaves time to perform many
other operations during a time slot.

B. Throughput measurements
In this section we will evaluate CalRadio 1 throughput

efficiency through a set of measurements. First we will compare
the different PHY rates with the real sustainable throughputs
achieved, hence extracting an efficiency metric. We will then
compare such result with the performance of Atheros commer-
cially available WiFi boards.

Figure 8. CalRadio transmission efficiency upper bound

In Fig. 8 we can observe a performance upper bound, derived
from the results found in the above sections. The upper bound is
based on the assuption that the device is only transmitting and
we do not take into account the additional latencies introduced
by MAC mechanisms such as backoff or acknowledgements.
For the test, we set the packet size to 1000 bytes.

It can be seen that for higher PHY rates, the throughput
efficiency decreases, as constant terms such as DSP fetching
time become the major contributions to the overall transmission
time. We can observe the same behavior in Fig. 9 for an ad
hoc communication between two commercial WiFi interfaces
(Atheros chipset).

Figure 9. Atheros saturated tx performance

When switching the PHY rate from 1Mbps to 2Mbps, the
throughput efficiency decreases. For the same reason, when
increasing the packet length, the efficiency increases, as the idle
time between two consecutive transmissions becomes negligi-
ble, compared to the transmission time.

For a final comparison, in Fig. 10 we report the efficiency
results obtained for two Atheros commercial boards in ad hoc
mode on the 13 available channels. In order to get accurate
timings, disregarding any additional software introduced laten-
cies, we chose to perform our measurements at the receiver, by



Figure 10. Atheros per channel throughput efficiency

sniffing the packets with a third Atheros interface in monitor
mode. This gave us the required accuracy and independence
from possible unpredictable packet queuing phenomena, inside
the kernel buffers. In these tests, we chose to send unicast UDP
packets in order to measure the efficiency with the various IEEE
802.11b rates. For a fair comparison that would not consider
backoff and retransmissions, we measured the additional delay
introduced when transmitting unicast packets instead of broad-
cast (PHY rate = 1Mbps, pkt length = 1000B) and removed
this delay from the collected data.1 Moreover, by means of
artificially introduced sequence numbers, we considered only
the timings between two packets successfully transmitted on
the first try. The additional delay introduced by the unicast
transmission is shown in Fig. 11. Its average value is 300µs.

Figure 11. Atheros UC vs BC additional delay

By checking the sequence numbers, we managed to see that
the majority of the packets were transmitted only once and
correctly received. As a result, most of the delay is due to the
ACK reply time, whose value fairly confirms the theoretical
timings defined by the IEEE 802.11 standard. By subtracting
this delay from the collected data, we managed to show the
efficiency, based only on the additional time introduced by inter-
nal processing (and not by backoff/ACK timeout/retransmission
mechanisms) and compare this with the CalRadio.

1) Measurement set-up: In order to figure out any possible
bottleneck in CalRadio 1 architecture, we made our throughput
measurements in two different fashions.

A first set of tests were performed decoupling the DSP from
the ARM. This allowed the measurement of the pure transmis-
sion without the interference of the slower kernel processing

1We were forced to use unicast, as a broadcast transmission would not allow
us to play with different rates

at the ARM side. In order to bypass the ARM processing,
we pushed a packet from the kernel onto the DSP. Here we
transmitted the packet but did not notify the ARM of the end
of the transmission. Moreover, we did not clean the shared
buffer from which the packet is fetched by the DSP. Through
this hack, we prevented the ARM from pushing new packets
onto the DSP and kept finding a packet to transmit on the
DSP for each new loop cycle. By disabling retransmissions
and backoff mechanisms, we managed to see the maximum
throughput available on the CalRadio 1, if the DSP did not
have a MAC layer running on it and an ARM with a TCP/IP
stack on top, controlling the flow of packets.

In the second set of measurements, we checked the ARM
introduced delay by pushing packets through the entire TCP/IP
stack in the kernel (we used UDP for the purpose).

2) DSP-PHY throughput: In order to monitor the CalRadio 1
transmission timings we set an Atheros interface in monitor
mode and parsed the timestamps from incoming packets (with
the help of libpcap [12]). On the CalRadio we sent a unicast
packet towards a fake node and disabled the retransmission
mechanism. Once the packet was loaded onto the shared buffer,
the DSP started to transmit it. To evaluate the pure transmission
efficiency, we also disabled reception on the DSP. Still some
random operation (such as timer maintenance) could interrupt
the code flow. With a sufficient number of collected timestamps,
we obtained the results shown in Fig. 12.

Figure 12. Distribution of the delay introduced by DSP processing for
transmission

The resulting average delay introduced by the DSP process-
ing, between the end of a packet transmission and the beginning
of a new one (hence excluding PHY transmission time), is
593µs. Assuming to transmit a 1000 bytes long packet, with
RPHY @ 1Mbps, we obtain the real efficiency of the CalRadio 1
with the following equation:

η@1Mbps
1000B

=
Ttx

Ttx + ∆DSP

=

=
Lpr + LPLCP + Ldata

RPHY · (Lpr+LP LCP +Ldata

RP HY
+ ∆DSP )

=

' 0.9322;

where Ttx is the packet RF transmission time, Ldata are the
1000 bytes of the packet sent, Lpr is the long preamble length
(18 bytes), LPLCP the PLCP header length (6 bytes) and ∆DSP

is the average delay of 593µs, introduced by the DSP between
the end of a transmission and the beginning of a new one.

Again it must be noted that we are considering a non re-
ceiving device, hence not taking into account any acknowledge
mechanism, just like we did by transmitting broadcast packets
on the Atheros chipset. Thanks to this approach, we can fairly
compare the chipsets in terms of efficiencies.



There is another consideration that needs to be made re-
garding the reception. When getting a packet from the RF
stage, the DSP is stuck into a loop to check the DMA transfer
until it is complete. Different approaches, possibly followed by
other cards, could exploit these idle periods to perform other
operations, hence allowing a higher efficiency.

Regarding the code and hardware implementation of the
CalRadio 1, as mentioned above, we can see that the absence
of a pipelined architecture represents one of the major elements
that shape (and flatten) the efficiency upper bound. As for
the transmission, we can assume that including the reception
procedure would affect the transmission efficiency. This does
not come from the additional RF reception time, which is
something that affects every card, but again from the absence
of a pipelined procedure to carry the packet out of the DSP,
while it is being received by the RF.

3) ARM-PHY throughput: The last measurement we provide
is the ARM introduced additional latency in the network traffic.
In this case, every transmission is initiated by the ARM and then
entrusted to the DSP. Before performing the measurement we
disabled the virtual carrier sensing, retransmission mechanisms
and the RF reception as well. This approach allows a com-
parison with the above results found for the DSP introduced
lantency. The measurement results are shown in Fig. 13.

Figure 13. Distribution of the delay introduced by the ARM and the DSP
processing for transmission

The average delay introduced when enabling the whole trans-
mission chain from the TCP/IP stack on the ARM down to the
transceiver is 909µs. An important note is that, compared to the
delay distribution found for the sole DSP transmission (Fig. 12),
the presence of the ARM introduces a greater variance in the
delay. As a result we have few packets affected by longer delays,
which could represent a threat for time sensitive applications
such as video/audio streaming. Comparing this result with the
transmission time of a 1000 bytes long packet at 1Mbps we can
find the efficiency

η@1Mbps
1000B

= 0.90;

As we can see the ARM processor introduces an additional de-
lay between two adjacent transmitted packets. While this delay
does not particularly affect the efficiency when considering slow
PHY bitrates, it becomes more important for higher bitrates.
This behavior is shown in Tab. I where we report the throughput
efficiencies of the CalRadio 1 for the various 802.11b PHY
rates. We derived these results from the efficiencies found at
1Mbps, considering that a difference in the used PHY rate only
affects the average transmission time, while it does not modify
the amount of required kernel and DSP processing.

IV. CONCLUSION

In this paper we gave a brief overview of CalRadio 1, a
flexible architecture equipped with a DSP controlled 802.11b

PHY Rate ηDSP ηARM

1Mbps 0.93 0.90
2Mbps 0.87 0.82
5.5Mbps 0.73 0.64
11Mbps 0.60 0.50

Table I
CALRADIO THROUGHPUT EFFICIENCIES

interface for ready implementation and testing of MAC/PHY
algorithms. Specifically, we analyzed the platform in terms of
maximum throughput efficiency obtainable and measured its
performance based on the time required for basic operations
such as rate/channel switching or transmission setup. Through
the results found the reader has the means to define the
boundaries for the set of applications and algorithms that can
or cannot be implemented on the CalRadio 1 platform. As
an example, the measurement of the PHY rate switching time
proved that it is possible to implement rate adaptation on the
CalRadio 1 under the assumption of using optimized code and
smart software design choices.

Other considerations can be made with regard to channel
occupancy and selected PHY rate. Depending on the packet
size and on the number of nodes competing for transmission,
we can choose a slower PHY rate than the optimal one. This
way we can match the CalRadio 1 DSP/ARM introduced delay
with the time the channel shall be busy due to other transmitting
nodes.

In the last part of this article we compared CalRadio 1 with
standard commercially available 802.11b interfaces. The result
showed that the CalRadio presents a comparable behavior to
these commercial devices in terms of efficiency, while allowing
a much greater degree of flexibility through a completely
reconfigurable software MAC.

As we proved the feasibility of rate adaptation on the CalRa-
dio, under the above mentioned conditions, our future work will
focus on the modifications to the driver in order to support our
algorithms. Specifically we will identify the critical operations
in the code flow and will work on their optimization. The target
of this work will be the developement of a module allowing
direct plugin of any rate adaptation algorithm, to validate its
effectiveness via experimental testing.

REFERENCES

[1] M. Ettus, USRP User’s and Developer’s guide.
[2] E. Research, “Universal Software Radio Peripheral - The Foundation for

Complete Software Radio Systems Research.”
[3] K. Amiri, Y. Sun, P. Murphy, Hunter, J. R. Cavallaro, and A. Sabharwal,

“WARP, a Unified Wireless Network Testbed for Education and Research,”
in IEEE International Conference on Microelectronic Systems Education
(MSE ’07), 2007.

[4] N. C. 3KNC, “FlexRadio Systems FLEX-5000A Software Defined Radio
Transceiver,” Oct. 2008.

[5] C. I. for Telecommunications and I. Technology, “Calradio website.”
[Online]. Available: http://calradio.calit2.net/calradio1.htm

[6] A. Jow, C. Schurgens, and D. Palmer, “CalRadio: A Portable, Flexible
802.11 Wireless Research Platform,” in 1st international workshop on
System evaluation for mobile platforms, Jun. 2007.

[7] ANSI/IEEE Std 802.11, 1999 Edition, IEEE Std., Jun. 2003.
[8] T. Instruments, TMS320VC5471 Fixed-Point Digital Signal Processor

Data Manual, Dec. 2002.
[9] Interil, HFA3863 Direct Sequence Spread Spectrum Baseband Processor,

Apr. 2000.
[10] Maxim, MAX2820/2821 2.4GHz 802.11b Zero-IF Transceivers, Nov.

2003.
[11] D. J. Dionne and M. Durrant, “uCLinux - Embedded Linux/

Microcontroller Project.” [Online]. Available: http://www.uclinux.org/
[12] V. Jacobson, C. Leres, and S. M. (LBNL), “tcpdump/libpcap.” [Online].

Available: http://www.tcpdump.org/


