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Abstract— Localization and tracking functionalities can ben-
efit a number of applications. Despite the large number of alg-
rithms and technologies that have been proposed in this coext,
the literature still lacks a widely accepted solution, caphle
of cutting a tradeoff between service quality (i.e., localiation
accuracy) and device/architecture cost and complexity. Irthis
paper, we tackle the problem from a different and rather new
perspective: we investigate how the localization accuraayf nodes
can be ameliorated by opportunistically exchanging locatiation
information among heterogeneous nodes that occasionallyabpen
to be in proximity. To this end, we define a simple though acclate
opportunistic meeting model and, then, we develop a math-
ematical framework that permits to analyze the performance
of an opportunistic localization strategy based on a Maximm
Likelihood argument.

I. INTRODUCTION

devices and self-localization hardware, e.g. Crickety#EMS

[3], indoor GPS [4], RSSI-based or none. Nodes are capable of
performing seamless and opportunistic data exchangedin att
certain goals and, in particular, to improve their posiign
estimate. More specifically, we investigate how the loaian
accuracy of nodes can be ameliorated by opportunistically
exchanging localization information with other nodes that
occasionally happen to be in proximity.

This scenario offers a number of research challenges that
include the definition of efficient nodes discovery and link
establishment algorithms for opportunistic data excharee
tween multi-interface devices, the design of suitable oppo
nistic data exchange protocols, the devising and analyfsis o
localization enhancing schemes based on opportuniste dat
exchange. Prior to afford any of such problems, howeves, it i

The problem of locating and tracking of mobile users idesirable to gain some insights on the actual potentiglitie
a given area has been deeply studied in several differéin¢ opportunistic paradigm in the context of nodes loctibira

contexts, from robotics to telecommunications systena)kh

and to get a first understanding of the tradeoffs between the

to the large set of possibilities and optimizations that lhig different performance indexes, such as localization amur
be enabled by knowing the geographical position of the nodegrsus protocol overhead/channel occupancy/energy ogmsu
in a communication system. Whereas most of the solutiotien. Here we provide a first contribution in this direction
proposed in the literature consider homogeneous devices,which is articulated in the following two items.

emerging research trend aims at improving the localization1) We propose a mathematical model of the opportunistic

accuracy by exploiting the device heterogeneity througipeo
erative strategies. This type of systems are usually dedign

information exchange that takes into account some im-
portant design parameters, such as the coverage range,

order to facilitate nodes cooperation, so that the cooperat
interactions occur in a rather controlled and/or pre-ptghn
manner. A totally different approach consists in enablimg t
cooperative interaction between nodes on an occasiona bas 2)
only. In this case, instead of cooperative interactions hadl s
better talk of opportunistic interaction A typical example

the frequency of scan/query phases by which nodes look
for opportunistic interactions and the amount of time
dedicated to such a process.

We apply the model to an opportunistic localization
scheme based on a Maximum Likelihood argument and
investigate the improvements in nodes’ position estimate

of an opportunistic interaction scenario is the seamle¢a da enabled by the opportunistic paradigm for different
exchange between portable devices carried by people incpubl settings of the system parameters.
areas, such as malls, theaters, hotel lounges and so on[1]. IThe rest of the paper is structured as follows. In Section II
this case, people move in a rather uncoordinated mannér, e@e present the state of the art on nodes localization, dveelli
person following her personal purpose, so that data ex&haigon cooperative localization in the specific. Section Il
between devices carried by people can occur on occasiopadsents the mathematical model for the opportunistic data
basis only. exchange. Section IV describes how the information obthine
In this paper, we address the problem of providing accurai¢ the opportunistic interactions is used to improve thedoc
self-localization service in such an opportunistic scenalle tion estimate of the nodes. In Section V we investigate the
envision a number of mobile nodes with different mobilitympact of some system parameters on the performance of the
patterns and equipped with heterogeneous communicatigiportunistic localization scheme. Finally, in Section Wé
conclude with some final remarks.

Il. RELATED WORKS

As mentioned, the self-localization and tracking problems
have been investigated in a humber of papers. Range-based

1This work was partially supported by the European Commissgiothe
framework of the FP7 Network of Excellence in Wireless COMgations
NEWCOM++ (contract n. 216715) and by “Fondazione Cassa sp&imio
Padova e Rovigo” under the project “A large scale wirelessee network
for pervasive city-wide ambient intelligence.”



localization algorithms require that non-localized nodgsd distances. Although the unit-disk model is known to be over-
an estimate of their distance from some reference nodsenplified, it permits to isolate the performance analysisrf
called beacons or landmarks, in order to perform lateratidime characteristics of the radio interface that, at thigestsf the
and triangulation techniques [5], [6] or to apply statigtic work, is left generic. (In any case, the mathematical fraoréw
estimation methods [7]. In this case, the most critical phaderived in the following section can be easily adapted to
is the ranging estimate, which can be obtained by measuringlude more sophisticated radio-propagation models.)

the power of the Received Signal Strength (RSS) or the Time
of Arrival (ToA) of the RF signals sent by the beacons [8],
[9], [10]. Other techniques consisting in multi-step lazation

with a refinement phase have been proposed by Savarese [11]
and Savvides [6].

A more recent research trend addresses the localization
problem in cooperative scenarios, which have been exten-
sively studied, in particular, in the robotic area. A typica
reference case consists in teams of mobile autonomoussrobot
equipped with different sensors that cooperate one another
and, occasionally, interact with simple sensors placechén t
environment to achieve a given goal, such as node localizati
and tracking. Motion tracking algorithms generally legga
on Extended Kalman Filter [12] or Particle Filter [13], [14]
for exploit the correlation among different measuremeimts. Fig. 1. Fly-by model
[15] the authors utilize Markov localization in order to fsel

localize nodes a_nd then probabilistic methods to syncheoni Following independent mobility patterns, nodes can occa-
each robot's estimates when two of them have a contact.sﬁgnauy find themselves in mutual coverage range, an event
distributed Kalman Filter is performed for collective Idiza- gt we callfly-by. In this study, we limit our attention to the
tion in [16], avoiding a centralized data fusion, that is Bot eyents that may occur during the fly-by of nodeandB. The
feasible in a cooperative scenario. An anchor-free appr&ac quration of the fly-by clearly depends on the trajectory dved t
proposed in [17], where robots infer their position onlyngsi mopjlity pattern of the two nodes. For simplicity, we suppos
the information exchanged among them. Similar approach@t nodes’ trajectory are straight and uniform, at leasindu
are proposed for very specific applications as in [18] foewid the fly-by. Hence, centering the reference system on nbde
surveillance and in [19] for autonomous vehicles in mining.ye can describe the relative trajectory of nableduring the
The literature on the opportunistic interaction paradigny.-py by means of two parameters, namely the (relative) dpee
instead, is mainly focused on routing and scheduling issugSand the angle of incidence of B’s trajectory into the circle
whereas, to the authors’ knowledge, the opportunisticHocgf radius R centered ind. With reference to Fig. 1, we define
ization problem has not been yet considered. the following parameters whose inter-relations can beleasi

IIl. OPPORTUNISTIC MEETING MODEL obtained by basic trigonometry:
« 7: time since the beginning of the fly-by event;
« s(7) = v7: distance covered by at time;

In this section, we define a mathematical model of an
opportunistic interaction. The model is based on a simglifie . .
scenario that, although idealized, includes some of the mes ~ * 7> ) = VR + 5(r)2 — 2Rs(7) cos(a) Euclidean dis-
teresting design parameters, such as the maximum range of an tance betweend and B at time r; .
opportunistic communication, the fraction of time devoted ~ * 7m(@) = 2R cos(a)/v: overall fly-by duration;
the opportunistic interactions, and the relative speed/éet o T = 2R/v = 7,,(0): maximum fly-by duration.
the nodes. Then, the model permits to investigate the impactVe assume that opportunistic interaction can occur only dur
of these parameters on some performance indexes that arégfa fly-by and under the condition that both nodes are in the
interest for the opportunistic localization scheme, nanileé  So-calledScan Phasewhich may correspond to an interlaced
probability of occurrence of an opportunistic interactiand Inquiry/Scan phase of Bluetooth or to the Active Scanning
the statistical distribution of the distance between thdeso Procedure of IEEE 802.11 systems. When such conditions

when such an opportunistic data exchange occurs. occur, the nodes immediately perform the opportunisti@adat
. exchange in negligible time. We call this eveenhdezvouand
Assumptions we denote byt,., the instant when it occurs with respect to

In our model, we take into account only a couple othe beginning of the fly-by.
nodes, sayd and B, both equipped with a common wireless In our model, we suppose that all nodes enter the scan phase
communication interface that is used for (opportunistigdad periodically, everyl' seconds, though in an asynchronous and
exchange. Radio propagation is described by means of a simdependent manner, so that the offset between the scaaphas
ple unit-disk model, according to which the radio transibiss of two nodes can be modeled as a random variable with
is always correctly received within a distanég (coverage uniform distribution in the interval0, 7). The duration of the
rangg from the transmitter, whereas it is not received at longscan phase, normalized to the scan pefigds calledduty



cycle and denoted by. Whereas all nodes have equal scafhen, the probability that the hit-distande< z is equal to
periodT, the duty cycle may differ, depending on the specifithe probability that the rendezvous occurs in the time uater
requirements and management policy of each node. Withdut(z, o), t2(x, «)]. Averaging overn, we hence get
loss of generality, in the sequel we considar> §p. /2

Let 7, denote the instant at which the scan phases of thg, () = / [F,, (ta(z,0)) — Fy, (t1(x,0))] f2(6)d6 (5)
two nodes overlap for the first time, measured with respect to —n/2

the beginning of the fly—by, and Ieft;, () and f,, () be the \nich provides the cdf of the “hit-distance”. This distrtimn
corresppndlng probability distribution anq dppsny fuons, o of great interest in the analysis that follows becausetre
respectively. Note that, due to the periodicity of the SC%8rmance of range-based localization schemes closelyndepe

phases, we have, € [0,T]. Whenda +0p < 1, there is a ,, yhe quality of the ranging that, in turn, is a function oé th
positive prob_ablllty that_the scan phase; do not ov.erllam]m real distance between the two communicating devices.
case,F (1) is a defective distribution with upper limit given

by F,(T') = 4+ 6B, which corresponds to the probability of V. OPPORTUNISTIC LOCALIZATION ALGORITHM

gverlgpr;ing peforé:ijfter Some easy algsbra, the probability In our model, we assume that nodes have “native” self-
ensity function (pdf)f-, () turns out to be positioning capabilities, provided by some (non oppowtio)
54056(t) =0 scheme. Accordingly, we denote by and s the real and

- the estimated node’s position in the area, expressed irr pola
fr(7) = (5A+5B)/7; 0<r<T(1-35) () coordinates. For simplicity, we assume that the estimation
2T —7)/T° TOQ-85)<r<T errore = s— § can be modeled as a 2—dimensional Gaussian

whered(t) is the Dirac delta function, which accounts for th andpm Vsr'albl.e r\lNgh tz_egotmdean ‘;nd vana_lmsleAc%ﬁrdmgly, ¢
case in which the two nodes enter the communication ran %” IS a Rayleigh-distributed random variable with parameter

when their are both scanning for opportunistic interactem ¢’ having pdf

that communication can immediately take place apnd= 0. Texp (;12)
Whend, + dp > 1, the scan phases always overlap at some fo (@) = Z N2 ) c 23>0
point in the interval[0, 7] and the pdf, not reported here for ' o} N

space limits, can be obtained following the same rationalge assume that nodes can be classified in differelatsses
explained above. according to the variance? that characterizes their self-
Given o, a rendezvous occurs whep, < 7.,(), s0 that |gcalization accuracy. During a rendezvous, nodes exahang
the cumulative distribution function (cdff?,, (¢, ) of the packets containing their estimated positidns and &5, and
rendezvous time,.,, conditioned oy, can be expressed as he variance associated to the localization class theyngelo
B (ta) = F,. (t, @) for 0<t<m(a) @ to. Furthermore, 'Fhe nodes_ make an estimatioof their by
o \by F, (Tm(a),a) for ¢ > 7, (a) using some ranging _techr_uque, e.g. R_SSI or ToA~ ba_sed [8].
Then, each node refines its own position estimaté using
We note thatF;,  (a, ) is a defective distribution. The uppera Maximum Likelihood (ML) argument. In our opportunistic
limit of Fi_ (a,«) gives to the so-calletiit probability, that localization scheme, the ML equation can be written as
is the probability of observing a rendezvous during a fly-by,

which will be denoted by S4,p = arg max Pr {d, §A7§B|SA73B}
PH(a) = F‘ro (Tm(a)) (3) — arggﬁlas); {f&A (”SA — SA”) fEB (”éB _ SB") . (6)
Averaging over the distributioff, (¢) of « we get the expected R
hit probability fr (dllsA —Sp II) }
/2 R
Py = / Py (0)f.(0)do (4) where§,, Sp andd are the new estimates of nodes’ position
/2 and distance|-| denotes the Euclidean norm, wherga6) is

The hit probability P is an important performance index,the pdf of the ranging, which depends on the specific ranging
since it conveys the possibility of enabling any opporttiais t€chnique used by the nodes. In our study, we use an RSSI-
algorithm in a given scenario. The other performance ind@;_@sed ranging technique which provides a distance estimate
of interest for the localization scheme is the so-called-“higiven by X .
distanced, ie., the distance at which the hit occurs. Applying d=d-10"17

simple geometric arguments, we can easily realize thagngiv . . . .
a, the nodes are at exactly at distanceluring the fly-by in whered is the real distance between transmitter and receiver,

the two instants ~v is the path loss coefficient anilt, x) is a gaussian variable
that models the shadow fading [20]. Hence, the ranging
Rcos(a) F /22 — R?sin(a) estimate turns out to be biased, with a lognormal distrdsuti
t12(x, ) = Unfortunately, the ML equation (6) cannot be solved in ctbse
v form, so that we resort to Monte Carlo simulations.




The first interesting scenario can be naodewith perfect

knowledge of his position, node with gaussian position error

) _ d B
on the gstlmauorB and perfgct ranging. o A e . &
Itis simple to see that in this case the error after the heéaris N d tilde---""~ N
isti i ati A err_A = e 9
opportunistic localization depends only on the anglel B - \@i:::::’ e B"” B’
following this equation A
K Fig. 2. Geometric model of the problem
Ple< K]=2-F, | 2-arcsin (7
2daB
where the distribution of the angle, given the distadag where

betweend and B andop, is

fala) = / +Oopaa(:v)py((Der)tan(oz))-(D+ﬂc)dﬂc (8)
77Di22_ d2c052(a)2
= %eZB(%f %BU§”“MMu—Mﬂ$§§»)
__ D%tan?(a)
or
Fu() = P[BAB <ala < /2] (10)

(D+z) tan(a)
pato) [ Py (y)dydz
0

—+o0
/.

where p,(x) and p,(y) are gaussian pdf with zero mea

and the same varianes;.

If the ranging is affected by an error, the previous equati(s
becomes more complicated. The total position error is giv

by .. the error due to the angle betwedrand B, ande,, the

error due to the erroneous estimation of ranging. We hawe t

arcsin(min($,1))
/ (oD +fy()

Jils) = 2——
T \/s2 — d?sin?(a)
(14)

with f; is a Rayleigh random variable with parameter
oA\/§ The maximization of this equation needs some com-
plexity that is not good in a scenario with low—cost devices
and mobile nodes.

V. RESULTS

In this section, we first investigate the impact of the system
parameters on the hit probability on the hit-distance. This
first analysis allows us to reduce the parameters space by
fixing some values. Then, we forget put temporarily aside
the opportunistic model to focus on the opportunistic lmrat
r+deate algorithm only. In this case, we assume that a ren-
dezvous occurs at a given point during the fly-by and analyze
ne potential improvements tat can be obtained from such an

eraction. Finally, we put all the pieces together andistie
overall performance of the opportunistic localization estie
}Jﬂ‘ different scenarios.

€a = 2d sin(a/2) and givener,mge, then the total estimation A. Opportunistic interaction ana|ysis

e 2 _ 2 2 :
error ise” = e, + €, + 2¢€,€4 sin(a/2)

Therefore we can write the distribution of position error as

d2+(d+6)2 — K2

Ple<K]= jdm fep(8)-2-Fo (2~arccos< Sd(d )

))d& (11)

whereJd is the ranging error.
or, equivalently

2]}? fa(@)(F,y(p2) — F,y(p1))da K<d

P[G < K] = (12)
2 [y fa(a)Fy(p2)da K>d
where p1» = dcos(a) F \/m and § =
arcsin(min(%, 1))

Then it is possible to add the last random effect: the node _ - _
A has a position error, so the estimated angle between the twdg- 3 Hit probability Py when varying the duty—cyclés = o5 =&

nodes is affected also by the imperfect position of A.
The geometric situation is explained in figure 2
Therefore it is necessary to explain the behaviour oh

order to exploit the previous model.

Hence, the distribution of the complete model is

- Ple < K|d = s]f;(s)ds (13)

0

Fig. 3 showsPy versusTy, /T, for different duty cycles,
assumingf,(0) = 1/(2m) with § € [—-n/2,7/2]. The ratio
Ty /T gives themaximumnumber of scan periods that the
two nodes can perform during a fly-by. Note that; /T > 1
does not guarantee that the nodes always perform an entire
scan phase during the fly-by, since the actual duration di eac
fly-by depends orv. We note thatPy grows rather rapidly



till Ty, /T < 2 after which the curves tend rather slowly tescenario where both nodes have the same localization class
their asymptotic value’y = min(1,24), which corresponds with 04 = op = 4. To better appreciate the effect of
to the hit probability when each fly-by lasts more tHEnOn opportunistic localization, we define th@pportunistic gain
the light of these results, in the following we sEt; /T =2. metricA;, i = A, B, as
Fig. 4 shows the distributiod’;(z) of the hit-distance, as

given by (5), when varying the duty—cycbe First of all, we A= oi\/T/2 — €
g /2
.
09 ig:g; where€ is the mean localization error after the opportunistic
o5l -8=05 localization, whereas;/7/2 is the mean localization error
: 6=0.7

of the node obtained by using the native localization scheme
Therefore,A represents the relative gain in the localization
error obtained by using the opportunistic scheme.

Fig. 5 shows the results for the heterogeneous scenario
(solid line) and the homogeneous scenario (dashed lines). W
note that the opportunistic localization can effectivetg\yde
a large performance gain, in particular if the nodes belang t
different classes of accuracy and the opportunistic ictea
occurs at short distances.

0.71{2<8=09

Fig. 4. CDF of the hit-distance when varying the duty-cyclé C. Combined analysis

We now investigate the performance of the complete system.
Fig. 6 reports the results obtained for the heterogeneous
3 enario, when varying the duty cydand the coverage range
R. We observe that also in this case the best performance
are obtained by setting = 0.5 for every coverage range,
though the performance improves for small value Rf as

observe that the curves show a discontinuity whgi® = 1,
which depends on the Dirac impulse observed in (1). We al
observe that the curves do not redglsince the distribution is
defective, the upper limit corresponding to the hitting @e
bility. Recalling that RSSI-based ranging techniques lipua

perform better at short distance, the best §etting &O.is expected. Nonetheless, the scheme offe28% of gain even
0.5. Smaller values of§ would reduce the hit probability, when R = 4m, which is a reasonable distance for this type

whereas larger value would increase the probability that tlaf interactions
rendezvous occurs at the border of the coverage range (we '
consider only the first rendezvous during the fly—by).

0.71

——R=1m

0.8 a = =

D'D-u _A-No eA—GA—l, UB—4
0.7+ \D‘ﬂ _D_NodeB—oA=1, UB=4
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Fig. 6. Relative localization error gain after an opporstioi update for
different values of rangeR in the heterogeneous scenarioy( = 5).
Fig. 5. Relative localization error gain after an opporstici update varying Solid/dashed lines refer to node A/B.
the hit distance

o o . Fig. 7 shows the same results, but for an homogeneous
B. Opportunistic localization analysis scenario in which both nodes have poor native self-locttina
We now focus on the performances of the opportunist@apabilities. The results are substantially similar tasthof the
update when varying the meeting distance. We consider tf@mer case, though the curves are now more compacted and
different cases: an heterogeneous scenario in which nodesrelative error gain is reduced. Nonetheless, we obskate
A and B belong to the different localization classes, witm this situation, the initial localization errors are vdarge,
ca = 1 andop = 4, respectively; and and homogeneouso that a gain 025% is appreciable.
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Fig. 7. Relative localization error gain after an opporstioi update for
different values of rangé? in the homogeneous scenarioy( = 5)

VI. CONCLUSION
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In this paper we propose a novel localization technique

based on opportunistic data exchange between heterogené®ll

nodes.

The results obtained show that the opportunistic scheme

can effectively improve the localization accuracy of theles,

even though the performance strictly depends on the setting
of some system parameters. In particular, the duration ef th
scan period and its duty cycle, as well as the maximal distanc
for opportunistic exchange need to be accurately set inrorde

to attain significative gain.
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