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ABSTRACT
With the increasing spread of use of mobile devices there
is a growing demand for location-aware services in a wide
variety of contexts. Yet providing an accurate location esti-
mation is difficult when considering cheap off-the-shelf mo-
bile devices, particularly in indoors or urban environments.
In this paper we define and compare different localization
algorithms based on an opportunistic paradigm. In partic-
ular, we focus on range-free and range-based localization
techniques that are based on the solution of a Linear Ma-
trix Inequalities (LMI) problem. The performance achiev-
able with this approach is analyzed in different scenarios,
through extensive simulation campaign. Results show that
LMI-based schemes, especially the range–based one, are po-
tentially capable of yielding very accurate localization even
after a limited number of opportunistic exchange, though
performance is rather sensitive to the accuracy of the other
nodes’ self-localization and to the randomness of the radio
channel.

Categories and Subject Descriptors
C.2.2 [Computer–Communication Networks]: Network
Protocols

General Terms
Performance, Design
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1. INTRODUCTION
Mobile devices are getting more and more popular: they

are simultaneously getting smaller and more powerful. This
spread of use has attracted a lot of interest for location-aware
services and systems.

Researchers have already proposed a number of solutions
to perform accurate positioning in situations where the GPS
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is not available. They generally imply an infrastructure with
reference positions and techniques measuring received signal
strength (RSS), time of arrival, time difference of arrival or
angle of arrival to derive positions using triangulation or
multilateration.

Alternatively, some authors have proposed solutions based
on the collective and opportunistic use of all available posi-
tion estimations. In such a context, our previous work [7]
has shown that a node (user) completely unaware of its
own position but receiving inaccurate position estimations
from other nodes (peers) can still compute accurate posi-
tions. Peers opportunistically deliver inaccurate estimations
of their own positions when they can communicate with the
user.

There are several ways to compute an accurate position
based on inaccurate position estimations from peers. One
of the most promising approaches is based on Linear Matrix
Inequalities (LMI) and was introduced by Doherty et al. [2].
In previous work [7], we proposed a range-free LMI scheme
where the inequalities took into account self-positioning er-
rors as well as a constant maximum communication range.
This paper is the continuation of that work and has the
following contributions (see Section 3).

First, we propose a range-based LMI scheme in which the
Received Signal Strength (RSS) from each peer is used to
estimate an upper bound of the user-peer distance.

Second, we propose a Hybrid approach for LMI scheme
that trades off computational effort for accuracy by selecting
subsets of inequalities before solving the system.

The proposed scheme and improvements are evaluated in
Section 4 through Matlab simulations, in order to investi-
gate the localization accuracy when varying the number of
available contact opportunities in different scenarios.

2. SYSTEM MODEL
This section describes the underlying assumptions and

models of our study.

2.1 Communication model
We assume every node in the network is equipped with a

common wireless communication interface that is used for
(opportunistic) data exchange. Radio propagation is mod-
eled through the classic path loss and shadowing model [3],
so that the power Γr(d) received at distance d from the trans-
mitter is given by

Γr(d) = Γt +K − 10η log
10

„
d

d0

«
+ ψ , (1)

where Γt is the transmission power [in dB], K is a unitless



constant that depends on the environment, d0 is the refer-
ence distance in meters for the antenna far field, and η is
the so–called path loss coefficient that depends on the envi-
ronment. Finally, ψ is a Normal random variable, with zero
mean and variance σ2

ψ, that describes the long term fading
(or shadowing) effect.

We assume that opportunistic data exchange is enabled
only if the received power is above a certain threshold Γth ≥
Γmin, where Γmin is the minimum power level that guaran-
tees successful packet decoding with high probability. The
threshold Γth defines the so-called nominal opportunistic
range Rth given by

Rth = d010
Γt+K−Γth

10η . (2)

In principle, opportunistic data exchange shall be enabled
only between nodes within distance Rth. However, the ran-
dom fluctuations of the received power due to the shadowing
term ψ in (1) makes the actual range Ropp for opportuni-
stic data exchange a log-normal distributed random variable,
given by

Ropp = Rth10
ψ

10η . (3)

We observe thatRopp can take any (positive) value, though
the probability of large values goes rapidly to zero. Since the
opportunistic localization algorithms described later in this
paper require to fix an upper bound on the opportunistic
range, we define Rmax as the distance under which oppor-
tunistic data exchange occurs with probability 0.99, that is
to say

P [Ropp ≤ Rmax] = 0.99 . (4)

We hence assume nodes are uniformly distributed in a
circle with radius Rmax centered in the User and, according
to (1), we admit opportunistic data exchange between Peer
and User only when the received power at the User is above
Γth.

2.2 Ranging model
We assume that, during an opportunistic data exchange,

nodes can perform some sort of ranging, i.e., they can esti-
mate their distance from some physical measurements, such
as the received signal strength indication (RSSI) or the Time
of Arrival (ToA) of the radio signals. In our study, we con-
sider two possible ranging scenarios, namely range-free, and
range-based.

2.2.1 Range-free scenario
In this case, we consider a dummy ranging technique that

provides a constant range estimate

d̂ = Rth , (5)

irrespective of the actual distance between transmitter and
receiver (provided that the received power is above the op-
portunistic threshold Γth). The maximum ranging error is
hence equal to ǫmaxrang = Rmax −Rth , with high probability.

2.2.2 Range-based scenario
In this case we assume an RSSI–based ranging technique,

which uses the value of signal power Γr measured by the

receiver to provide a Maximum-likelihood estimate d̂(Γr) of
the real distance d between transmitter and receiver. The
estimate is obtained by reversing the path-loss equation (1)
once neglected the shadowing term, which yields

d̂ = d010
Γt+K−Γr

10η = d 10
ψ

10η . (6)

From (6) we note that the accuracy of the RSSI-based rang-
ing estimation depends on the shadowing term ψ and is more
accurate for short distances. As for the opportunistic range,
given a distance d, we also define an upper bound dmax on
the RSSI-based ranging estimate, such that

P [d̂ ≤ dmax] = 0.99 . (7)

Hence, the ranging error for a range estimate d̂ with high

probability is limited to ǫmaxrang = dmax − d̂ .

2.3 Self-positioning model used by peers
We assume that peer nodes have “native” self-positioning

capabilities, provided by some (non opportunistic) scheme.

Accordingly, we denote by Pi and bPi the real and the self-
estimated position of the i–th peer. For simplicity, we as-

sume that the estimation error ei = ‖Pi − bPi‖ can be mod-
eled as the module of a 2–dimensional Gaussian Random
Variable [x, y], with zero mean and variance σ2

loc. Conse-

quently, the self-localization distance error ǫ =
p
x2 + y2 is

a Rayleigh-distributed random variable with parameter σloc.
Hence, the parameter σloc defines the accuracy of the native
self-localization mechanism supported by the node. For sim-
plicity, in each simulation we assume that all Peers have the
same σloc. Once again, it is practical to set an upper bound
ǫmaxloc on the self–localization error of Peers, such that

P [ǫ ≤ ǫmaxloc ] = 0.95 . (8)

3. OPPORTUNISTIC LOCALIZATION
ALGORITHMS

As mentioned, User resorts to opportunistic localization
to infer its geographical position. To this end, User op-
portunistically collects information from passing–by Peers.

Information consists of i) bPi, which is the current position
estimate of Peer i, provided by self-localization system; ii)
ǫmaxloc , which is the maximum self-localization error, as given

by (8); iii) a ranging estimate d̂ and maximum ranging error
ǫmaxrang, which depends on the ranging technique adopted by
User, as specified in Sec 2.2. User is assumed to remain still
while collecting information for opportunistic localization.
Then, it performs one of the opportunistic localization al-

gorithms described below to get an estimate cPu of its real
position Pu.

3.1 Centroid algorithm
The Centroid algorithm [1] estimates User’s position as

cPu =
NX

i=1

bPi , (9)

where N is the total number of Peers encountered during
the opportunistic localization phase.

Centroid does not rely upon any ranging information, but
only on Peers self–localization estimations. This scheme is
really simple, not requiring any knowledge about the channel
and self-positioning error models. On the other hand, its
performance strongly depends on the spatial distribution of
Peers. Although this localization algorithm is very basic, it
provides a useful benchmark to compare the performance of
more advanced schemes.

3.2 LMI localization algorithm
The main approach for opportunistic localization consid-

ered in this paper is based on the solution of Linear Matrix



Inequality (LMI) problems. Basically, for each Peer i in-
volved in opportunistic data exchange, User writes the fol-
lowing inequality

‖Pu − bPi‖ ≤ Ri (10)

where ||·|| denotes the euclidian distance, and Ri is the max-
imum admissible distance between User and Peer i given by

Ri = d̂+ ǫmaxrang + ǫmaxloc . The set of inequalities (10) collected
during the opportunistic phase confines User’s position in
the area covered by the intersection of the circles centered

in bPi and having radius Ri, for i = 1, 2, . . . , N . The User’s

position is then estimated by choosing a point cPu within this
area, possible at maximum distance from the area border.
This problem can be formulated as a Linear Matrix Inequal-
ity (LMI) problem [2], which can be solved with standard
techniques.

We observe that, due to the approximate bounding (4),
(7), and (8), it is possible that User receives messages from
Peers farther than Ri, though with very low probability. In
this case, the circles intersection may be empty and the LMI
problem becomes unfeasible. When this event happens, we
solve again the LMI problem after increasing the value of
Ri.

3.3 Hybrid LMI-Centroid algorithm
Although there are efficient numerical methods to solve

an LMI, the resolution time rapidly grows with the number
of inequalities in the system. To cope with this problem,
we propose a Hybrid LMI algorithm (HLMI) that combines
the LMI and Centroid techniques. Basically, to limit the
computational cost of LMI we partition the N inequalities
in K = N/L groups of L inequalities, thus obtaining K

temporary estimates cPu(k), with k = 1, 2, . . . ,K. Then, we
apply the barycentric technique to obtain the final estimate
cPu as

cPu =

KX

k=1

cPu(k) . (11)

The hybrid scheme makes it possible to trade off localiza-
tion accuracy for computational cost.

4. PERFORMANCE ANALYSIS
In this Section, we analyze the results provided by the

three opportunistic localization algorithms, namely Centroid,
LMI and Hybrid LMI, in different scenarios. For all the
experiments, we consider the path-loss channel parameters
Γt = 0 dBm, η = 1.74, K = −36 dB, d0 = 0.1 m and
Rth = 10 m. For each scenario, we ran 60 experiments to
obtain enough statistical accuracy. We calculated the confi-
dence intervals for each scenario. Having less than 10 cm in
the ideal scenario and less than 25 cm when adding sources
of error, we do not show the intervals overlapped on the
curves in the graphs for the sake of clarity.

We first analyze the effects of the different random compo-
nents, i.e. the self–localization accuracy and the shadowing
of the channel, on the behavior of the different algorithms.

As expcected, adding self–localization error to the Peers,
the localization performance decreases. Nonetheless, range–
based LMI shows good performance if the uncertainty of
the self–localization is not too high, i.e. σloc = 2, while the
range–free approach is more sensitive to this error. The rea-
son is that the circles drawn around the Peers are larger due
to the increases of Ri and centered in the wrong point. The
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Figure 1: Localization performance comparison be-
tween range–free and range–based Hybrid LMI with
different values of L, with σψ = 0 dB, σloc = 2 m.

Centroid algorithm shows no significant differences. This
is due to the fact that self-localization errors of Peers are
assumed to have zero mean, so that if Peers are uniformly
distributed in the area, after a sufficient number of contacts
the errors will compensate.

Increasing σψ, the randomness of the signal propagation
brings along ranging errors and unpredictable opportunistic
data exchange range, since communication can occur even at
distances larger thanRth, whereas it may happen that nodes
within Rth do not communicate. With σψ = 2, range–based
LMI performs better than Centroid, whereas increasing the
randomness of the channel using σψ = 4, LMI has quite
poor accuracy, keeping the localization accuracy below the
Centroid only for the first 5 contacts. In this scenario, for
a larger number of contacts, the probability that the LMI
problem becomes unfeasible grows, so that it is necessary to
relax the constraints as explained in Sec. 3.2, thus worsen-
ing performance. The capacity of range–based algorithm to
use small circles, when the contact is performed with close
nodes, increases the estimate accuracy, limiting the intersec-
tion area close to the User. On the contrary the range–free
algorithm has very large circles that means quite poor loca-
lization performance.

In summary, the LMI approach, in particular the range-
based, is potentially capable of yielding good localization,
though it suffers from high computational complexity and
performance degradation for large number of contacts and
unreliable channels. In the following we hence investigate
the performance of the hybrid LMI approach, which may
alleviate some of these problems.

In Fig. 1, the three red solid lines show the performance of
Hybrid LMI with range–free technique, for different values
of L, with deterministic radio channel and unreliable Peers’
self-localization. First, it is possible to notice that, with
L = 3, the Hybrid algorithm achieves basically the same
performance of Centroid. With L = 10 the Hybrid LMI
performs slightly better than Centroid. The blue dashed
lines in Fig. 1 show the same results for range–based Hybrid
LMI scheme. We see that, also in this case, the Hybrid ap-
proach yields better performance than pure-based approach
when the number of contacts increases, in particular when
self-localization error of Peers increases.

When channel conditions become harsh, the problem of
unfeasibility of the LMI solution for large numbers of in-
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Figure 2: Localization performance comparison be-
tween range–free and range–based Hybrid LMI with
different values of L, with σψ = 4 dB, σloc = 2 m.

equalities has a strong impact. Therefore it is more conve-
nient to use a small L, both in range–free and range–based
LMI to achieve better results, as shown in Fig. 2. Where
the classic LMI range–based has worse performance than
the Centroid, the HLMI achieves better performance than
Centroid, and in addition it also decreases the computa-
tional complexity. The same behavior can be seen for the
range–free HLMI: the less the L, the more the accuracy,
approaching very close to the Centroid performance.

5. RELATED WORK
Self-localization problem has been investigated in a num-

ber of papers. Most common localization methods consist
in measuring the power of the received RF signal (RSSI),
the Time of Arrival (ToA) or the Angle of Arrival (AoA) of
the RF signals from the beacons. In this way, every node
estimates a set of distances from the beacons and, then,
guesses its position by means of lateration and triangula-
tion techniques or by using statistical estimation methods.
Overviews of localization techniques based on RSSI and ToA
measurements can be found in [6]. An approach similar
to LMI system is the Min-Max algorithm [4, 5], in which
squares are drawn around beacon nodes and the final esti-
mation is chosen inside the intersection. The main difference
is that in our study, we do not consider a pre–planned bea-
con scenario, but a mobile and opportunistic one. In [2] Do-
herty et al. pioneered the use of semidefinite programming
(SDP) methods in the localization problem. The problem is
considered as a bounding problem containing several convex
geometric constraints mathematically representated as lin-
ear matrix inequalities (LMI). The mechanism proposed in
this paper is based on this approach, taking into estimation
errors and introducing a barycentric improvement over time.

6. CONCLUSION
In this paper, we addressed the problem of the localiza-

tion of strayed node, called User, by means of opportunistic
data exchange with passing by nodes, called Peers, which
are instead capable of self-localization. We studied two main
localization schemes, namely Centroid, in which User esti-
mates its position as average of Peers’ position estimations,
and LMI that takes into account a connectivity model and a
ranging model to provide a bound on the distance between
Peer and User.

We simulated different scenarios, varying the randomness
of the signal propagation and the self-localization accuracy
of Peers. Results revealed that, in favorable scenarios, the
LMI localization achieves very good accuracies, especially
for the range–based scheme. On the contrary, when the sig-
nal propagation is random or Peers self–localization is not
reliable, LMI performance degrades faster than Centroid’s
one. Furthermore, we observed that the LMI localization
performance worsens, compared to the Centroid technique,
when the number of contacts exceeds a given threshold with
unreliable channels, because the constraints considered in
the LMI problem become unfeasible and need to be relaxed.
It is worth to notice that the symmetric choice of nodes
distribution gives an advantage to the performance of the
Centroid algorithm, whereas it suffers in a scenario where
ndoes are deployed asymmetrically with respect to the User.
Hence, we analyzed the Hybrid LMI algorithm that splits
the LMI problem in subproblems of L inequalities that are
resolved independently and, then, computes the barycenter
of the different solutions. In this case, localization accu-
racy strongly depends on the choice of L, though a suitable
tuning of this parameter is effective in counteracting the per-
formance loss due to constraints relaxation in difficult sce-
narios. Furthermore, Hybrid LMI algorithm dramatically
reduces the computational effort.
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