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Abstract—This paper proposes a novel method for
solving localization problems leveraging on node position
constraints. This consists in mappingn wireless nodes onto
n predefined positions in a map. The problem may be
solved by first applying standard localization algorithms to
get an initial estimate of the node positions in the area and,
successively, mapping each estimated position to the closest
admissible point in the map. Results can be improved by
applying algorithms that are explicitly designed to manage
the available information for the constrained problem.
In this study, we propose three algorithms, based on a
greedy, multi dimensional scaling, and belief propagation
approach, respectively. The algorithms are analyzed and
compared by using synthetic data. Results reveal that the
belief propagation approach, suitably modified to account
for the position constraints, outperforms the other algo-
rithms in all the considered settings.

I. I NTRODUCTION

Localization in wireless sensor networks (WSNs) is
a challenging problem that has generated a large body
of literature [1]–[3]. Typically, localization algorithms
encompass the presence of a limited number of nodes,
called anchors(also known as beacons or landmarks),
which are aware of their geographical positions. Anchors
are required to periodically broadcast their coordinates
in order to let the other nodes in the network, referred
to asstrayednodes, infer their own position by means
of some estimation technique.

Although the localization problem has been consid-
ered in many different scenarios (indoor and outdoor,
static and mobile, and so on), a common assumption is
that strayed nodes can occupyany position in the area.
This assumption reflects the vision of randomly deployed
WSNs, where nodes are scattered in an area without
any predetermined scheme. However, in several practical
scenarios, nodes are placed according to predefined
patterns that satisfy application-specific requirements.
For example, sensors can be placed on the regular slots
of a large parking lot to monitor vehicle movements
and parking occupancy, or attached to the works of
art in a museum as anti-theft devices, or planted into
the terrain, forming regular patterns, to monitor the soil
conditions in greenhouses or fields under cultivation. In

these scenarios, the set of positions is known beforehand,
and what needs to be determined is a bijective function
associating nodes and positions.

To the best of our knowledge, this is the first attempt to
add stringentposition constraintsto the classic localiza-
tion problem. Exhaustive search approaches can be used
when nodes are few, but they become soon infeasible
as the size of the problem grows. Another intuitive
approach is to first get an unconstrained localization of
the nodes, by means of standard localization algorithms,
and successively map each node to the closest predefined
point. However, when the localization error of the un-
constrained algorithm is comparable with the mean inter-
node distance, the mapping into the predefined positions
may easily swap close-by nodes.

In this paper, we investigate the constrained localiza-
tion problem by proposing three different algorithms,
called Greedy (GREED), Adapted Multi-Dimensional
Scaling (AMDS), and Constrained Belief Propagation
(CBP). The GREED algorithm iteratively assigns nodes
to the predefined positions based on of a simple greedy
strategy. The AMDS algorithm, instead, first solves the
unconstrained localization problem by using the multidi-
mensional scaling localization algorithm, and then maps
the nodes back to the predefined points in the map.
Finally, CBP is a revisitation of the belief propagation
scheme applied to a graph with loops.

The rest of the paper is organized as follows. Sec. II
reviews the literature; the system model is defined in
Sec. III; the three localization algorithms are described
in Sec. IV, whereas Sec. V presents and discusses our
results. Sec. VI concludes the paper.

II. RELATED WORK

Our review focuses on range–based algorithms, which
make use of physical measurements to estimate the dis-
tance between strayed (non-localized) nodes and anchor
(position-aware) nodes. The Received Signal Strength
Indication (RSSI) is often used for distance estimation,
since it is natively supported by many devices. However,
RSSI-based ranging is usually rather poor due to the



stochastic nature of radio propagation [4], [5]. The reader
can refer to [6]–[8] for a more complete overview of
these techniques.

Reference [3] suggests that location estimation accu-
racy can be improved by adding ranging data obtained
by strayed nodes. A practical algorithm that makes
use of pairwise inter-node range estimates is proposed
in [9], where the authors apply the Multi-Dimensional
Scaling (MDS) method to solve the localization problem.
However, this model does not directly apply, since in our
scenario positions lie on a finite lattice.

Other approaches can be found in [10], [11], where
factor-graph and nonparametric belief propagation ap-
proaches are used. Again, their system models cannot
directly apply to our scenario. Nonetheless, the belief
propagation approach is very attractive, due to its capa-
bility of capturing and managing inter-node interactions
in an effective manner.

III. SYSTEM MODEL

We consider a network withN nodes, out of which
m < N are anchor andn = N −m are strayed nodes.
Nodes are placed inN positions on the map. We denote
by A and S the sets of identifiers of the anchor and
strayed nodes, respectively, and byΦ = {ϕi}

N
i=1 the set

of all admissible positions. Each node occupies a single
position, in an exclusive manner. LetX = [X1, . . . , XN ]
denote the vector of node positions. Anchor node posi-
tions are known beforehand (Pr [Xi = xi] = 1, i ∈ A).
Thus, letΦA = {xi}i∈A andΦS = Φ \ ΦA be the sets
of the positions of the anchor and the strayed nodes, re-
spectively. Since the position of strayed nodes is initially
unknown,Pr [Xj = ϕk] = 1/n , j ∈ S , ϕk ∈ ΦS .
Note that the random variables{Xj}j∈S are identically
distributed, but not mutually independent because of the
exclusivity condition, according to which any position
can be occupied by a single node (Pr [Xi = Xj] =
0 , i, j = 1, . . . , N, i 6= j).

Let Γi,j be the RSSI value for the link between nodes
i and j. We assume by reciprocity thatΓi,j = Γj,i.
Although this condition is not strictly verified in practice,
we can always considerΓi,j as the average of a series
of RSSI samples collected separately by nodesi and j
over a certain time interval. In this way, furthermore,
we also average out the time fluctuations of the received
signal power due to fast fading and mitigate hardware
calibration errors.

According to [12], the power received at distanced
from the transmitter can be roughly expressed as

Γi,j = f(d) + Ψi,j , (1)

where f(d) = Ptx + K − 10η log10

(

d
d0

)

is the de-
terministic path loss function,Ptx is the transmit power

[dBm],K is the nominal received power at the reference
distanced0, η is the path loss coefficient andΨi,j is
a random variable, with densitypΨ(·), that accounts
for the shadow fading. Typically,Ψi,j is modeled as
a zero-mean Gaussian random variable, with standard
deviation σΨ that ranges from2 to 6 dB, depending
on the environment. In this paper, however, we assume
thatΨi,j has a Gumbel distribution, which better fits the
experimental data collected in our testbed [13]. Although
the shadowing in general may present spatial correlation,
for simplicity, we assume it iid in this study.

Thus the PDF ofΓi,j over a distanced can be
expressed as

pΓ(γi,j |d) = pΨ(ψi,j) (2)

whereψi,j = γi,j −f(d). The estimatêd of the distance
between the nodes, given the RSSI valueγi,j , is given
by

d̂(γi,j) = f−1(γi,j) = d010
Ptx+K−γi,j

10η = d10
ψi,j

10η , (3)

which shows that the ranging error is multiplicative with
the distance. Ford < d0 the path loss propagation model
(1) does not hold, so that the accuracy of (3) is limited.

The aim of the constrained localization algorithms
is to determine the most likely node position vector
x = [x1, . . . , xN ], given the (symmetric) matrix of
RSSI observationsg = [{γi,j}i,j ]. Then, denoting by
Φ = [ϕ1, . . . ϕN ] a vector of positions inΦ, we have

x = arg max
Φ

Pr [X = Φ|Γ = g] (4)

where the conditional joint probability can be expressed
as

Pr [X = Φ|Γ = g] = (5)

=

Pr

[

{Γi,j = γi,j}

∣

∣

∣

∣

{Xi = ϕh}

]

· Pr [{Xi = ϕh}]

Pr [{Γi,j = γi,j}]
∝

∝
∏

i∈S

∏

j∈A∪S
j 6=i

pΓ(γi,j | ||ϕh − xj ||)
∏

i∈A∪S

Pr [Xi = ϕh] ;

where||ϕh − xj || is the Euclidean distance between the
positionsϕh and xj associated with nodei and j, re-
spectively. The second and third lines of (5) follow from
the Bayes rule and from the independence assumption of
the shadowing terms in (1), whereasPr [{Γi,j = γi,j}]
is constant sinceγi,j are observations.

IV. CONSTRAINED LOCALIZATION ALGORITHMS

The maximization problem (4) could be solved by
checking the likelihood of each possible permutation of
then positions inΦS (n! possible solutions), but the this
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procedure is infeasible forn greater than a few units.
In the following we propose three algorithms that yield
suboptimal results in polynomial time.

A. Greedy algorithm (GREED)

The design of the GREED algorithm favors the low
computational complexity over the quality of the results.
The algorithm performsn successive stepsdecidingone
strayed node at a time, i.e., permanently assigning it
a position according to a greedy criterion described
hereafter.

Let D(ℓ) andU (ℓ) denote the sets of decided and still
undecided nodes at the beginning of stepℓ = 1, . . . , n,
with D(1) = A and U (1) = S. Similarly, let Φ

(ℓ)
D be

the set of positions assigned to decided nodes, andΦ
(ℓ)
U

the set of still available positions, withΦ(1)
D = ΦA and

Φ
(1)
U = ΦS .
For each undecided nodei ∈ U (ℓ) and eachh ∈ ΦU ,

we compute the conditional probability thatXi = ϕh,
given the vector{γi,j}j∈D(ℓ) of RSSI values, as

Pr

[

Xi = ϕh

∣

∣

∣

∣

Γi,j = γi,j , ∀j ∈ D(ℓ)

]

= (6)

=
∏

j∈D(ℓ)

pΓ(γi,j | ||ϕh − xj ||) Pr [Xi = ϕh]

Pr [Γi,j = γi,j ]

where ||ϕh − xj || is the Euclidean distance between
positionsϕh andxj , andxj is the position permanently
assigned to nodej. The second line of (6) follows from
the Bayes rule and the independence of the shadowing
terms in (1).

We observe that, since thea priori distribution ofXi

over the available positions is uniform, the conditional
probabilities (6) for anyi ∈ U (ℓ) and ϕh ∈ Φ

(ℓ)
U are

proportional to the coefficients

Pi,h =
∏

j∈D(ℓ)

pΨ(γi,j − f(||ϕh − xj ||)) , (7)

where we used (2). These coefficients are collected in
a square matrixP of size n − ℓ + 1, whose rows are
associated to the nodes inU (ℓ), and columns to the
positions inΦ

(ℓ)
U .

Considering that the association between nodes and
positions is bijective, the matrixP should be doubly
stochastic. Unfortunately, this is not always the case,
since the conditional probabilitiesPi,h are computed
independently for each nodei. However, by alternatively
normalizing the rows and columns ofP, according to the
Sinkhorn scaling process[14] and under the condition
that the matrix isscalable, we obtain a sequence of
matrices that converges to a unique doubly stochastic
matrix P̄.

From P̄, we then select the largest term̄Pi,h and we
permanently assign nodei to position ϕh, by setting
xi = ϕh. The state variables are finally updated as
follows:

D(ℓ+1) = D(ℓ) ∪ {i} ; U (ℓ+1) = U (ℓ) \ {i} ;

Φ
(ℓ+1)
D = Φ

(ℓ)
D ∪ {ϕh} ; Φ

(ℓ+1)
U = Φ

(ℓ)
U \ {ϕh} . (8)

The algorithm ends after exactlyn steps, when each
strayed node has been permanently associated to one
position.

B. Adapted Multidimensional Scaling (AMDS)

The Adapted Multidimensional Scaling (AMDS) al-
gorithm simply consists in interlacing the execution of
the original MDS algorithm with a remapping phase
that assigns each node to the closest admissible position.
For space constraints, we omit the details of the MDS
algorithm, for which we refer the reader to [9], and
describe here only its main components. As for GREED,
the algorithm works in consecutive steps, deciding the
permanent association between a strayed node and an
admissible position at each step, and then using the
decided nodes as anchors in the subsequent steps. We
can thus inherit the notation introduced in Sec. IV-A
to indicate which nodes and positions are decided, and
which are still undecided at the beginning of theℓth step.

At every step, the MDS algorithm is run on the
instance of the problem where nodes inD(ℓ) are consid-
ered anchors, and nodes inU (ℓ) are strayed. Note that
the MDS algorithm is also iterative so that each step of
AMDS actually requires several iterations of the MDS
algorithm.

Let X(k) = [X
(k)
1 , . . . , X

(k)
N ] be the vector of posi-

tions assigned to theN nodes, at thekth iteration of
the MDS algorithm. Positions corresponding to decided
nodes are permanent, i.e.,X(k)

j = xj for eachj ∈ D(ℓ).
Conversely, positions of undecided nodes aretemporary
and may change during the execution of the MDS
algorithm. The position of each undecided nodei ∈ U (ℓ)

is initialized by considering the coefficientsPi,h defined
in (7), and selecting the positionϕh ∈ Φ

(ℓ)
U for which

Pi,h is maximum.
Given the position vectorX(k), the MDS algorithm

computes the following cost function [9]

S(X(k)) =
∑

i∈U(ℓ)

N
∑

j=1
j 6=i

[

wi,j

(

d̂(γi,j) − ||x
(k)
i − x

(k)
j ||

)2
]

(9)
whered̂(γi,j) is given in (3) and its accuracy is weighted
by the coefficientwi,j . wi,j = αe−γ2

i,j/P 2
th , γi,j ≥ Pth,

with α = 1 for j ∈ A(ℓ), and α = 2 for j ∈ U (ℓ);
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instead,wi,j = 0 for γi,j < Pth. The parameterPth is
the power threshold below which the RSSI samples are
not used for ranging and usually it coincides with the
minimum received power to correctly decode incoming
packets.

At each iteration, the MDS algorithm adjusts the po-
sitions of undecided nodes to minimize the cost function
(9). Note that, in this phase, node positions are not
constrained to the set of admissible points.

At the kth iteration, the temporary position of each
undecided nodei ∈ U (ℓ) is updated as follows

x
(k+1)
i = aiX

(k)c
(k)
i (10)

where ai =
(

∑

j 6=i wi,j

)−1

and c
(k)
i =

[

c
(k)
i,1 , . . . , c

(k)
i,N

]T

is a column vector with elements

c
(k)
i,j =























wi,j

(

1 −
d̂(γi,j)

||x
(k)
i − x

(k)
j ||

)

, j 6= i ;

∑

s6=i

wi,s
d̂(γi,s)

||x
(k)
i − x

(k)
s ||

, j = i .

(11)

For decided nodesj ∈ D(ℓ), we instead haveX(k+1)
j =

x
(k)
j .
The step is completed at the first iterationt such that

S(X(t−1)) − S(X(t)) < ε for a certainε > 0. At this
point, the AMDS algorithm selects the nodei ∈ U (ℓ)

that has been moved the least during the step, i.e.,

i = arg min
h∈U(ℓ)

{||x
(1)
h − x

(t)
h ||} .

Node i is then permanently assigned to the position
xi = ϕh, whereϕh ∈ Φ

(ℓ)
U is at minimum distance

from ϕ
(t)
h . The state variables are updated according to

(8) and the algorithm proceeds with the following step,
until all nodes are decided.

C. Constrained Belief Propagation (CBP)

The CBP localization algorithm, inspired by the Factor
Graph theory [15] to which the reader is referred for an
in-depth discussion of the subject, attempts to solve the
optimization problem (4) by using a statistical approach
[10], [11].
Basically, if the joint probability function that describes
the problem can be factorized, such factorization can be
represented with a graph. If the resulting graph is acyclic
the calculation of the marginals or of the maximization
problem turns out to be exact exploiting a message
passing technique. Instead, if the graph has cycles, it
is possible to look for a solution iterating the original
procedure as long as convergence is achieved. However
there is no guarantee that the method converges and, even
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Figure 1. Grid topology withσΨ = 2 dB.

if it does, the solution might not be the optimum one.
Notwithstanding these drawbacks, in several scenarios
[16] this iterative approach is shown to achieve very
good results [17], [18]. Moreover, the joint probability
function might be handled to obtain a tractable graph
either by unwrapping it [19] or by means of a generalized
belief propagation junction tree approach [20] in order
to converge to a meaningful solution.
Inspired by these works, we adapted the loopy belief
propagation algorithm so that all system information pro-
vided by the measurements and the network’s constraints
is accounted for.
For each nodei, the algorithm defines abelief function
b
(ℓ)
i (ϕh), ϕh ∈ Φ, that is proportional to the probability

that Xi = ϕh. The belief functions are initialized to
the a priori distribution ofXi as discussed in Sec. III,
i.e., b(0)i (ϕh) = Pr[Xi = ϕh]. In the subsequent steps,
the belief function of each node is updated taking into
account the beliefs of the other nodes and the RSSI-
based range estimates.

To this end, for each tuple of indices{i, j, h, k} , with
i 6= j, we define the coefficients

Θi,j(h, k) =















pΨ(γi,j − f(||ϕh − ϕk||)) , γi,j ≥ Pth, h 6= k;

FΨ(Pth − f(||ϕh − ϕk||)) , γi,j < Pth, h 6= k;

0 , h = k ;
(12)

whereFΨ(·) is the cumulative distribution function of
Ψ. The coefficients{Θi,j(h, k)}i6=j are proportional to
the joint probability thatXi = ϕh andXj = ϕk, given
the RSSI observations{γi,j}i,j . The last row in (12)
accounts for theexclusivity condition, i.e., a position can
not be occupied by more than one node.

Then, at theℓth iteration, the CBP algorithm computes
for each nodei ∈ U and all other nodesj = 1, . . . , N ,
j 6= i, the vector

µ
(ℓ)
j→i(ϕh) ∝

(

N
∑

k=1

Θij(h, k)
b
(ℓ−1)
j (ϕk)

µ
(ℓ−1)
i→j (ϕk)

)

(13)
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Figure 2. Grid topology withσΨ = 4 dB.
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Figure 3. Grid topology withσΨ = 6 dB.

where proportionality is used as we normalize so that
∑N

h=1 µ
(ℓ)
j→i(ϕh) = 1. Roughly speaking,µ(ℓ)

j→i(ϕh) is
a measure of belief thatXi = ϕh from the perspective
of nodej. These vectors are then used to compute the
pseudo-belief function for each nodei as

β
(ℓ)
i (ϕh) = b

(ℓ−1)
i (ϕh)

∏

j 6=i

µ
(ℓ)
j→i(ϕh) , (14)

which is a modification of the original iterative belief
propagation update rule obtained substituting the a priori
probability with the updated one in order topush the
beliefs until they converge to stable vectors with a single
1 and all0s. Finally, in order to avoid the convergence
to infeasible nodes’ configurations, the Sinkhorn scaling
process [14] is applied to the matrixB(ℓ) that collects the
pseudo-beliefβ(ℓ)

i (ϕh) for i, h = 1, . . . , N , in order to
obtain the doubly stochastic matrix̂B(ℓ) whose elements
b
(ℓ)
i (ϕh) are the updated belief functions. The CBP

algorithm ends at stept whenB̂(t) is a doubly stochastic
matrix with only 0s and a single1 element per row that
univocally defines the position assigned to each node.

V. PERFORMANCE ANALYSIS

Here, we will report the results obtained on synthetic
scenarios, where ranging measures are artificially gen-
erated from (3). The scenarios consist of an11 x 11
nodes grid, withm = 9 anchors andn = 112 strayed

nodes. Anchor nodes are placed in the vertices, in the
midpoints of each side and in the center of the grid.
We fixed the parametersK and η of the deterministic
path loss model, and varied the standard deviation of
the shadowing termσΨ from 2 to 4, and 6 dB, which
corresponds to increasingly less reliable range estimates.
The power thresholdPth was set in order to neglect RSSI
samples from nodes farther thanRth = 30 meters, on
average. The grid stepdstep has been varied to2, 5 and
10 meters, corresponding to three different values of the
grid areaV and, in turn, of the node densityδ = N/V .
For each setting, we generated50 realizations of the
RSSI matrix, which have been used in all the localization
algorithms, for the sake of a fair comparison.

Fig. 1 reports results obtained by the three algorithms
for σΨ = 2 dB varying the grid step. The leftmost
graph shows the fraction of misplaced nodes, whereas
the rightmost plot gives the mean positioning error of
misplaced nodes, normalized to the grid step. Fig. 2 and
Fig. 3 show the same metrics forσΨ = 4 and 6 dB,
respectively. Vertical bars represent the95% confidence
intervals.

All the algorithms degrade for increasingσΨ, as the
ranging becomes more noisy. For lowσΨ, AMDS and
GREED exhibit a non-monotonic performance depen-
dence on the grid step, with a step value that minimizes
the fraction of misplaced nodes. Conversely, CBP shows
a monotonic performance loss when the network den-
sity decreases, though it always outperforms the other
algorithms misplacing a few nodes only in the harshest
condition. Comparing the graphs on the right-hand side,
we note that the misplaced nodes are usually within
three grid steps from their actual position for AMDS
and GREED, while CBP misplacement is limited to one
grid step.

A final remark concerns the computational complexity
of the three algorithms. According to our empirical
results we can state that the execution of GREED is
much faster than AMDS that, in turn, is quicker than
CBP. Unfortunately, the iterative nature of AMDS and
CBP does not allow an exact characterization of the
algorithms complexity in terms of number of basic op-
erations. Nonetheless, it is possible to get an idea of the
asymptotic complexity of the algorithms by representing
the number of iterations as a generic functionI(n),
where n is the size of the problem. First of all, we
observe that GREED performsn steps. At the generic
ℓth step, GREED performsm + ℓ operations forn − ℓ
nodes andn−ℓ positions, i.e., order ofn3 operations per
step. Additionally, at the end of each step, the GREED
algorithm executes the Sinkhorn scaling algorithm [14]
to double-normalized the matrix ofn − ℓ elements,
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which requiresCds(n − ℓ) = O((n − ℓ)3) operations
[21]. Thus the overall complexity of the GREED algo-
rithm is not greater thanO(n4) operations. Similarly,
the AMDS algorithm performsn steps. Theℓth step
requires(n − ℓ)(n + m)2 operations for determining
ci,j , which are repeated forIAMDS(n − ℓ) iterations
to reach converge. Overall, then, the complexity of
AMDS is O(n4IAMDS(n)). Finally, the CBP algorithm
requiresn operations for computing the terms in (13),
which are in the order ofn3, and othern operations
for computing then2 elements (14). Furthermore, each
iteration is completed by the execution of the Sinkhorn
scaling algorithm. Therefore, each iteration of CBP takes
a number of operations in the order ofn4 + Cds(n),
so that, the overall complexity of the algorithm is
O(ICBP (n)(n4 + Cds(n))). We observe that, assuming
that IAMBDS(n) and ICBP (n) are of the same order,
the asymptotic complexity of the AMDS and CBP is
equal. However, the number of operations performed
by CBP at each iteration remains constant, whereas
AMDS progressively reduces the size of the problem
at each step. Hence, in practice CBP takes more time
than AMDS.

VI. CONCLUSION

In this work we addressed the problem of mapping
n nodes to as many predefined positions. We pro-
posed three algorithms of increasing complexity, namely
GREED, AMDS and CBP. The simulations performed
on a grid topology, and the experimental results, here
omitted for space constraints, show that CBP largely
outperforms the other algorithms in all the considered
scenarios, in terms of both percentage of successful
matching and mean displacement error. Furthermore, the
dependence of CBP performance on the node density and
the shadowing variance is more predictable than for the
other algorithms. We finally observe that, although in this
study we focused on centralized algorithms, CBP can
actually be realized in a distributed manner, though at
non negligible communication costs. The investigation of
this solution is one of the possible future developments
of this work.
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