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Abstract—This paper proposes a novel method for these scenarios, the set of positions is known beforehand,
solving localization problems leveraging on node position and what needs to be determined is a bijective function
constraints. This consists in mapping: wireless nodes onto associating nodes and positions.

n predefined positions in a map. The problem may be L .
solved by first applying standard localization algorithms b To the best of our knowledge, this is the first attempt to

get an initial estimate of the node positions in the area and, @dd stringenposition constraintgo the classic localiza-
successively, mapping each estimated position to the clgse tion problem. Exhaustive search approaches can be used
admissible point in the map. Results can be improved by when nodes are few, but they become soon infeasible
applying algorithms that are explicitly designed to manage 55 the sjize of the problem grows. Another intuitive
the available information for the constrained problem. - . . .
In this study, we propose three algorithms, based on a approach is to first get an unconstram_ed _Iocahzatl_on of
greedy, multi dimensional scaling, and belief propagation the nodes, by means of standard localization algorithms,
approach, respectively. The algorithms are analyzed and and successively map each node to the closest predefined
compared by using synthetic data. Results reveal that the point. However, when the localization error of the un-
belief propagation approach, suitably modified to account  qnstrained algorithm is comparable with the mean inter-
for the position constraints, outperforms the other algo- . o . o\
rithms in all the considered settings. node d|s¢ance, the mapping into the predefined positions
may easily swap close-by nodes.
|. INTRODUCTION In this paper, we investigate the constrained localiza-

Localization in wireless sensor networks (WSNs) ifon problem by proposing three different algorithms,
a challenging problem that has generated a large bocilled Greedy (GREED), Adapted Multi-Dimensional
of literature [1]-[3]. Typically, localization algorithen Scaling (AMDS), and Constrained Belief Propagation
encompass the presence of a limited number of nodéEBP). The GREED algorithm iteratively assigns nodes
called anchors(also known as beacons or landmarks}p the predefined positions based on of a simple greedy
which are aware of their geographical positions. Anchosdrategy. The AMDS algorithm, instead, first solves the
are required to periodically broadcast their coordinatesiconstrained localization problem by using the multidi-
in order to let the other nodes in the network, referremiensional scaling localization algorithm, and then maps
to asstrayednodes, infer their own position by meandhe nodes back to the predefined points in the map.
of some estimation technique. Finally, CBP is a revisitation of the belief propagation

Although the localization problem has been considscheme applied to a graph with loops.
ered in many different scenarios (indoor and outdoor, The rest of the paper is organized as follows. Sec. Il
static and mobile, and so on), a common assumptionrieviews the literature; the system model is defined in
that strayed nodes can occuagy position in the area. Sec. lll; the three localization algorithms are described
This assumption reflects the vision of randomly deployad Sec. IV, whereas Sec. V presents and discusses our
WSNSs, where nodes are scattered in an area withaesults. Sec. VI concludes the paper.
any predetermined scheme. However, in several practical
scenarios, nodes are placed according to predefined Il. RELATED WORK
patterns that satisfy application-specific requirements.Our review focuses on range—based algorithms, which
For example, sensors can be placed on the regular slotake use of physical measurements to estimate the dis-
of a large parking lot to monitor vehicle movementsance between strayed (non-localized) nodes and anchor
and parking occupancy, or attached to the works @position-aware) nodes. The Received Signal Strength
art in a museum as anti-theft devices, or planted intadication (RSSI) is often used for distance estimation,
the terrain, forming regular patterns, to monitor the soflince it is natively supported by many devices. However,
conditions in greenhouses or fields under cultivation. IRSSI-based ranging is usually rather poor due to the



stochastic nature of radio propagation [4], [5]. The read@Bm], K is the nominal received power at the reference
can refer to [6]-[8] for a more complete overview ofdistancedy, n is the path loss coefficient and; ; is
these techniques. a random variable, with densityy(-), that accounts
Reference [3] suggests that location estimation accior the shadow fading. Typicallyl¥; ; is modeled as
racy can be improved by adding ranging data obtainedzero-mean Gaussian random variable, with standard
by strayed nodes. A practical algorithm that makeseviation oy that ranges fron2 to 6 dB, depending
use of pairwise inter-node range estimates is proposed the environment. In this paper, however, we assume
in [9], where the authors apply the Multi-Dimensionathat¥'; ; has a Gumbel distribution, which better fits the
Scaling (MDS) method to solve the localization problemexperimental data collected in our testbed [13]. Although
However, this model does not directly apply, since in ouhe shadowing in general may present spatial correlation,
scenario positions lie on a finite lattice. for simplicity, we assume it iid in this study.
Other approaches can be found in [10], [11], where Thus the PDF ofl'; ; over a distanced can be
factor-graph and nonparametric belief propagation apxpressed as
proaches are used. Again, their system models cannot
directly apply to our scenario. Nonetheless, the belief pr(vi,;ld) = pw (i ;) (2

propagation approach is very attractive, due to its Cal@herer); ; = ;. — f(d). The estimatel of the distance

bility of capturing and managing inter-node interaction§anyeen the nodes given the RSS! valye, is given
in an effective manner. by ' 7

I1l. SYSTEM MODEL . . Pt K—; Vi

We consider a network withV nodes, out of which  4(%i.i) = 7 (7i3) = dol07 70— = 1077, (3)
m < N are anchor ana ?N — m are strayed nodes. vhich shows that the ranging error is multiplicative with
Nodes are placed itV positions on the map. We denotehe distance. Fai < d, the path loss propagation model
by A and S the sets of identifiers of theNanchor and1) does not hold, so that the accuracy of (3) is limited.
strayed nc_>de_s, respgc_tlvely, and by= {%}i:1_the set  The aim of the constrained localization algorithms
of all admissible positions. Each node occupies a singke to determine the most likely node position vector
position, in an exclusive manner. L&t = [X;,..., Xy] x = [x1,...,2N], given the (symmetric) matrix of
denote the vector of node positions. Anchor node pogSs| observationg = [{7; i }i.j]. Then, denoting by
tions are known beforehand{[X; = ;] = 1,i € A). & = [4,,...pn] a vector of positions inb, we have
Thus, let® 4 = {z;}ica and ds = &\ &4 be the sets
of the positions of the anchor and the strayed nodes, re- x = argmaxPr[X = @|I" = g] (4)

spectively. Since the position of strayed nodes is initiall " - .
unknown, Pr (X, = ¢i] = 1/n, j € S, ¢ € Pg where the conditional joint probability can be expressed
1 J — - ) ’ .

Note that the random variablgs\; },c5 are identically &S

distributed, but not mutually independent because of the, X =T =g]= (5)

exclusivity condition according to which any position

can be occupied by a single noder(X; = X;] = Pr {{Fm- =7, {Xi = <Ph}} -Pr[{X; = ¢n}]

0,4,j=1,...,N,i#j). _ -
LetT; ; be the RSSI value for the link between nodes Pr{li; = i}

i and j. We assume by reciprocity thdt; ; = T';;. H H pr(vij | llen —24)) H Pr(X: = onl ;

Although this condition is not strictly verified in practice ;s jcaus iCAUS

we can always considdr; ; as the average of a series J#i

of RSSI samples collected separately by nodesd;j \here||p), — 2;]| is the Euclidean distance between the
over a certain time interval. In this way, furthermoreyositions,;, and x; associated with nodé and j, re-

we also average out the time fluctuations of the receiveflectively. The second and third lines of (5) follow from
signal power due to fast fading and mitigate hardwakfe Bayes rule and from the independence assumption of

calibration errors. , _ the shadowing terms in (1), where®s [{T; ; = i ; }]
According to [12], the power received at distante s constant since; ; are observations.

from the transmitter can be roughly expressed as
IV. CONSTRAINED LOCALIZATION ALGORITHMS

Lij=f(d)+ ¥, (1) L
. The maximization problem (4) could be solved by
where f(d) = P, + K — 10nlogy, (d%) is the de- checking the likelihood of each possible permutation of
terministic path loss function?,, is the transmit power then positions in®g (n! possible solutions), but the this



procedure is infeasible for greater than a few units. From P, we then select the largest terRy;, and we
In the following we propose three algorithms that yielgpermanently assign nodeto position ¢, by setting
suboptimal results in polynomial time. x; = . The state variables are finally updated as

) follows:
A. Greedy algorithm (GREED)

_ _ (t+1) _ (o) . (e+1) _ 77(0) A
The design of the GREED algorithm favors the low =DV Udi}; U =U"A\ {i}s
computational complexity over the quality of the results. &™) — &\ U {p,1; ™ =\ {pr}. (8)

D
The algorithm performs successive steptecidingone .
strayed node at a time, i.e., permanently assigning '€ @lgorithm ends after exactly steps, when each

a position according to a greedy criterion describezir@yed node has been permanently associated to one
hereafter. position.
¢ ¢ : .
Let D) andU(“) denote the sets of decided and stily Adapted Multidimensional Scaling (AMDS)

undecided nodes at the beginning of steg 1,...,n, o ) )
with DM = A and UM = S. Similarly, let &\ be The Adapted Multidimensional Scaling (AMDS) al-

. . . <Ia<ﬁd gonthm _S|mply conS|sts.|n mterlacmg the ex_ecutlon of
the set of P‘?S'“O“_S a35|gne<_j.to deqdeﬂ)nodes, the original MDS algorithm with a remapping phase
the set of still available positions, with,” = ®4 and  hat assigns each node to the closest admissible position.
<I>§}) = Ps. For space constraints, we omit the details of the MDS

For each undecided nodes U(“) and eachh € &y, algorithm, for which we refer the reader to [9], and
we compute the conditional probability thal; = ¢, describe here only its main components. As for GREED,

given the vector; ; } ;e p«y of RSSI values, as the algorithm works in consecutive steps, deciding the
permanent association between a strayed node and an
Pr [XZ— = on|Tij =i, Vje DY| = (6) admissible position at each step, and then using the
decided nodes as anchors in the subsequent steps. We
_ H pr(Yig | llen — ;) PrXs = @] can thus inherit the notation introduced in Sec. IV-A
ieD® Pr(li; =] to indicate which nodes and positions are decided, and

which are still undecided at the beginning of ttle step.
where ||¢, — z;|| is the Euclidean distance between At every step, the MDS algorithm is run on the
positionsy;, andx;, andzx; is the position permanently instance of the problem where nodes/®) are consid-
assigned to nodg. The second line of (6) follows from ered anchors, and nodes (%) are strayed. Note that
the Bayes rule and the independence of the shadowii@ MDS algorithm is also iterative so that each step of
terms in (1). AMDS actually requires several iterations of the MDS
We observe that, since trgepriori distribution of X;  algorithm.
over the available positions is uniform, the conditional | et X*®) = [x . x¥)] be the vector of posi-
probabilities (6) for anyi € U¥) and ¢, € @\ are tions assigned to théV nodes, at the:th iteration of
proportional to the coefficients the MDS algorithm. Positi(z]rg)s corresponding to decided
nodes are permanent, i.&(,"”’ = x, for eachj € D,
Pin = H pe(ig = len —2;l)), (@) Conversely, positions of uhdecided nodes teraporary
jept and may change during the execution of the MDS
where we used (2). These coefficients are collected atgorithm. The position of each undecided nodeU ()
a square matri® of sizen — ¢ + 1, whose rows are is initialized by considering the coefficients ;, defined
associated to the nodes #ii(¥), and columns to the in (7), and selecting the positiop;, € cpg) for which
positions in<1>§f). P; j, is maximum.
Considering that the association between nodes andGiven the position vectoX(*), the MDS algorithm
positions is bijective, the matri®? should be doubly computes the following cost function [9]
stochastic. Unfortunately, this is not always the case, N )
since the conditional probabilitie®; ;, are computed BN 5 (k) (k)
independently for each nodeHowever, by alternatively SXW)y= > Z {wi"j (d(%’j) Iz = H) }
normalizing the rows and columns Bf, according to the ev ;2
Sinkhorn scaling procesl4] and under the condition . 9)
that the matrix isscalable we obtain a sequence ofwhered(v; ;) is given in (3) and its accuracy is weighted
matrices that converges to a unique doubly stochashy the coefficientw; ;. w; ; = ae‘”fvj/Pfh,%_j > Py,
matrix P. with o = 1 for j € A®, anda = 2 for j € U®);



instead,w; ; = 0 for v; ; < Py,. The parametef?,, is oo ; S

the power threshold below which the RSSI samples a  |=#ws’ )

not used for ranging and usually it coincides with th . }

minimum received power to correctly decode |ncom|nﬂ J

packets. ! o % A B 4
At each iteration, the MDS algorithm adjusts the pc: ) ‘} B S

sitions of undecided nodes to minimize the cost functic RN N P

(9). Note that, in this phase, node positions are n °—¢+—— ;dm 2 S f:.dsip[m, )

constrained to the set of admissible points.
At the kth iteration, the temporary position of eac
undecided node € U®) is updated as follows

h (a) Percentage of mismatchegb) Normalized misplacement error

Figure 1. Grid topology withogy = 2dB.

:vl(-kﬂ) = aiX(k)cl(-k) (10)
where a; = (Z- s ,)71 and ¢®  — if it does, the solution might not be the optimum one.
' JAE ‘ Notwithstanding these drawbacks, in several scenarios
k) R . otwithstanding ; ; _
[c;l,...,cLN} is a column vector with elements [16] this iterative approach is shown to achieve very

. good results [17], [18]. Moreover, the joint probability
(- d(vi,5) Y function might be handled to obtain a tractable graph
||x(k) k) I » J either by unwrapping it [19] or by means of a generalized
i g dly ) (11) Dbelief propagation junction tree approach [20] in order
sz . ) is (k)|| ’ j=i. to converge to a meaningful solution.

s#i —Ts Inspired by these works, we adapted the loopy belief
_ ] © _ (k+1) propagation algorithm so that all system information pro-
For decided nodeg € D', we instead haveX ; = vided by the measurements and the network’s constraints
2. is accounted for.

J
The step is completed at the first iteratibsuch that For each nodé, the algorithm defines belief function
S(XED) - §(X1) < ¢ for a certaine > 0. At this  5{(py,), ), € @, that is proportional to the probability
point, the AMDS algorithm selects the nodes U)  that X; = ¢,,. The belief functions are initialized to
that has been moved the least during the step, i.e., the a( r;rlori distribution ofX; as discussed in Sec. Ill,
0
() i.e., b, ' (¢n) = Pr[X; = ¢4]. In the subsequent steps,
1= arg hmu<1/z>{||xh —an I} the belief function of each node is updated taking into
Node i is then permanently assigned to the positioﬂccount the bell_efs of the other nodes and the RSSI-
based range estimates.

o OW .. .
o (@’)L where gy, € @y is at minimum distance To this end, for each tuple of indicds, j, h, k} , with
from ¢,”. The state varlables are updated according 1;07,é j, we define the coefficients

(8) and the algorithm proceeds with the following step,

until all nodes are decided. pu(Vij — f(llen —xll))s  vij = Peny h #

C. Constrained Belief Propagation (CBP) Oij(h. k) = Fo (P — f(llen — k) s iy < Pin, h # k;
The CBP localization algorithm, inspired by the Factor 0, h=k;

Graph theory [15] to which the reader is referred for an (12)

in-depth discussion of the subject, attempts to solve théere Fyy(-) is the cumulative distribution function of
optimization problem (4) by using a statistical approactr. The coefficients{©; ;(h, k)};»+; are proportional to
[10], [11]. the joint probability thatX; = ¢}, and X; = ¢y, given
Basically, if the joint probability function that describe the RSSI observation$y; ;}. ;. The last row in (12)
the problem can be factorized, such factorization can lagcounts for thexclusivity conditioni.e., a position can
represented with a graph. If the resulting graph is acycliot be occupied by more than one node.

the calculation of the marginals or of the maximization Then, at the/th iteration, the CBP algorithm computes

problem turns out to be exact exploiting a messader each node € U and all other nodeg = 1,..., N,
passing technique. Instead, if the graph has cycles,jit* i, the vector
is possible to look for a solution iterating the original N (6-1)

i i 0 by (ex)
procedure as long as convergence is achieved. However ,\% (,, ) Z 0,;(h, k) (13)
there is no guarantee that the method converges and, even Pt Mgfj)((pk

4
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nodes. Anchor nodes are placed in the vertices, in the
midpoints of each side and in the center of the grid.
We fixed the parameterK andn of the deterministic
path loss model, and varied the standard deviation of
the shadowing ternay from 2 to 4, and6 dB, which
corresponds to increasingly less reliable range estimates
The power threshol@®;;, was set in order to neglect RSSI
samples from nodes farther thdt);, = 30 meters, on

average. The grid stefy.., has been varied td, 5 and

a) Percentage of mismatchegb) Normalized misplacement error ;i .
@ g %) P 10 meters, corresponding to three different values of the

Figure 2. Grid topology withrg, = 4 dB. grid areal” and, in turn, of the node density= N/V'.
For each setting, we generatéd realizations of the
o S — RSSI matrix, which have been used in all the localization
e | LAk ey algorithms, for the sake of a fair comparison.
5 A ' Fig. 1 reports results obtained by the three algorithms
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for oy = 2 dB varying the grid step. The leftmost
graph shows the fraction of misplaced nodes, whereas
the rightmost plot gives the mean positioning error of
misplaced nodes, normalized to the grid step. Fig. 2 and
Fig. 3 show the same metrics foty = 4 and 6 dB,
respectively. Vertical bars represent &% confidence
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Figure 3. Grid topology witlry = 6dB. All the algorithms degrade for increasing;, as the

ranging becomes more noisy. For lan;, AMDS and

) o ) GREED exhibit a non-monotonic performance depen-
whﬁre %r)oportlonallty is used as we nor(me)allze s0 th@knce on the grid step, with a step value that minimizes
> on—1 Hii(n) =L Roughly speakingye; " ; (¢n) IS the fraction of misplaced nodes. Conversely, CBP shows
a measure of belief thak; = ¢, from the perspective 5 monotonic performance loss when the network den-
of node;j. These vectors are then used to compute thgy decreases, though it always outperforms the other
pseudo-belief function for each nodas algorithms misplacing a few nodes only in the harshest
0 (=) ) condition. Comparing the graphs on the right-hand side,

B (on) =, (%)Hu-jéi(%)’ we note that the misplaced nodes are usually within

7 three grid steps from their actual position for AMDS

which is a modification of the original iterative beliefand GREED, while CBP misplacement is limited to one

propagation update rule obtained substituting the a prigytid step.

pro_bability_ with the updated one in order m_JSh th? A final remark concerns the computational complexity
beliefs until they converge to stable vectors with a singlgs ihe three algorithms. According to our empirical
1 and all0s. Finally, in order to avoid the convergencesqts we can state that the execution of GREED is
to infeasible nodes’ configurations, the Sinkhorn scaling, o faster than AMDS that. in turn. is quicker than
process [14] is applied to the mati*) that collects the cpp Unfortunately, the iterative nature of AMDS and

psel,l_do-beheﬁ’;’i(l)(goh) fori,h =1,...,N,inorderto cp does not allow an exact characterization of the
olztaln the doubly stochastic matd) whose elements algorithms complexity in terms of number of basic op-
b\”(¢n) are the updated belief functions. The CBRrations. Nonetheless, it is possible to get an idea of the
algorithm ends at stepwhenB(") is a doubly stochastic asymptotic complexity of the algorithms by representing
matrix with only 0Os and a singld element per row that the number of iterations as a generic functidm),
univocally defines the position assigned to each nodewhere n is the size of the problem. First of all, we
observe that GREED performs steps. At the generic
(th step, GREED performs: + ¢ operations fom — ¢
Here, we will report the results obtained on syntheticodes anch — ¢ positions, i.e., order of? operations per
scenarios, where ranging measures are artificially gestep. Additionally, at the end of each step, the GREED
erated from (3). The scenarios consist of Bhx 11 algorithm executes the Sinkhorn scaling algorithm [14]
nodes grid, withm = 9 anchors andv = 112 strayed to double-normalized the matrix of — ¢ elements,

(14)

V. PERFORMANCE ANALYSIS



which requiresCgys(n — ¢) = O((n — £)3) operations
[21]. Thus the overall complexity of the GREED algo-
rithm is not greater tharD(n*) operations. Similarly,
the AMDS algorithm performs: steps. Thelth step

requires (n — £)(n + m)? operations for determining

¢ ;,» which are repeated fofanps(n — ¢) iterations
to reach converge. Overall, then, the complexity ofi6]
AMDS is O(n*Ianps(n)). Finally, the CBP algorithm
requiresn operations for computing the terms in (13),
which are in the order of3, and othern operations

for computing then? elements (14). Furthermore, each

(4

(5]

(7]

iteration is completed by the execution of the Sinkhorr{sl
scaling algorithm. Therefore, each iteration of CBP takes
a number of operations in the order of + Cgy,(n),
so that, the overall complexity of the algorithm is [9]
O(Icgp(n)(n* 4+ Cys(n))). We observe that, assuming
that Iansps(n) and Icpp(n) are of the same order,
the asymptotic complexity of the AMDS and CBP is{m]
equal. However, the number of operations performed
by CBP at each iteration remains constant, where
AMDS progressively reduces the size of the proble
at each step. Hence, in practice CBP takes more time
than AMDS.

13
In this work we addressed the problem of mappin[g

VI. CONCLUSION

[

S
11

12]

n nodes to as many predefined positions. We pro-
posed three algorithms of increasing complexity, namem]
GREED, AMDS and CBP. The simulations performed
on a grid topology, and the experimental results, here
omitted for space constraints, show that CBP IargeH75]
outperforms the other algorithms in all the considered
scenarios, in terms of both percentage of successfifl]
matching and mean displacement error. Furthermore,
dependence of CBP performance on the node density
the shadowing variance is more predictable than for the
other algorithms. We finally observe that, although in thid®l
study we focused on centralized algorithms, CBP can
actually be realized in a distributed manner, though &l
non negligible communication costs. The investigation of
this solution is one of the possible future developmengsy)
of this work.

(1]

(2]

(31

REFERENCES

Y. S. I. Akyildiz, W. Su and E. Cayirci, “Wireless sensoetn
works: a survey,Computer Networks (Elsevier) Journabl. 38,
no. 4, pp. 393-422, Mar. 2002.

K. Langendoen and N. Reijers, “Distributed localizatian
wireless sensor networks: a quantitative comparis@oinputer
Networks vol. 43, no. 4, pp. 499-518, 2003.

N. Patwari, A. Hero lll, M. Perkins, N. Correal, and R. @d
“Relative location estimation in wireless sensor netwgrksgnal
Processing, IEEE Transactions ovol. 51, no. 8, pp. 2137-2148,
2003.

it

[21

]

R. P. M. Eiman Elnahrawy, Xiaoyan Li, “The limits of loézh-
tion using signal strength: a comparative study,”Froceeding
of Sensor and Ad Hoc Communications and Networks, IEEE
SECON October 2004, pp. 406-414.

G. Zanca, F. Zorzi, A. Zanella, and M. Zorzi, “Experimaht
comparison of RSSI-based localization algorithms for ardo
wireless sensor networks,” iRroceedings of the workshop on
Real-world Wireless Sensor NetworksACM, 2008, pp. 1-5.

N. Patwari, J. Ash, S. Kyperountas, I. Hero, A.O., R. Mase
and N. Correal, “Locating the nodes: cooperative locabratn
wireless sensor networks3ignal Processing Magazine, IEEE
vol. 22, no. 4, pp. 54-69, July 2005.

A. Sawvides, M. Srivastava, L. Girod, and D. Estrin, “latization
in sensor networks,” pp. 327-349, 2004.

R. Huang and G. V. Zaruba, “Static path planning for mebil
beacons to localize sensor networkBgrvasive Computing and
Communications Workshops, 2007. PerCom Workshops 'G#. Fif
Annual |IEEE International Conference opp. 323-330, March
2007.

J. Costa, N. Patwari, and A. Hero lll, “Achieving higheacacy
distributed localization in sensor networks,”Atoustics, Speech,
and Signal Processing, 2005. Proceedings.(ICASSP'05EEIE
International Conference qrvol. 3. |EEE, pp. iii—641.

H. Wymeersch, J. Lien, and M. Win, “Cooperative locatian
in wireless networks,Proceedings of the IEEBvol. 97, no. 2,
pp. 427 —450, feb. 2009.

A. lhler, J. Fisher Ill, R. Moses, and A. Willsky, “Nonpamet-
ric belief propagation for self-localization of sensorwetks,”
Selected Areas in Communications, |IEEE Journa) eol. 23,
no. 4, pp. 809-819, 2005.

A. Goldsmith,Wireless CommunicationsNew York, NY, USA:
Cambridge University Press, 2005.

] A. Bardella, N. Bui, A. Zanella, and M. Zorzi, “An Expeniental

Study on IEEE 802.15. 4 Multichannel Transmission to Improv
RSSI|-Based Service PerformancBgal-World Wireless Sensor
Networks pp. 154-161, 2010.

R. Sinkhorn and P. Knopp, “Concerning nonnegative ioar
and doubly stochastic matrices?acific J. Math vol. 21, no. 2,
pp. 343-348, 1967.

F. Kschischang, B. Frey, and H. Loeliger, “Factor grajaimd the
sum-product algorithm,Information Theory, IEEE Transactions
on, vol. 47, no. 2, pp. 498-519, 2001.

L. Hans-Andrea, “An introduction to factor graph$ZEE Signal
Processing Magazinevol. 21, pp. 28-41, 2004.

K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief
propagation for approximate inference: An empirical sfudy
Proceedings of Uncertainty in AL999, pp. 467-475.

T. Richard, E. and S. Maneesh, “Demodulation as prdisabi
tic inference,” Audio, Speech and Language Processing, |IEEE
Transactions onvol. 20, no. 10, 2011.

W. Yair and F. William, T., “On the optimality of soluties of the
max-product belief propagation algorithm in arbitrary gra,”
2001.

S. Vladimir and S. Zazo, “Sensor localization using pam-
metric generalized belief propagation in network with Isgp
Information Fusion, 2009. FUSION '09. 12th Internationabi©
ference on.pp. 1966-1973, 2009.

B. Kalantari, I. Lari, F. Ricca, and B. Simeone, “On thene
plexity of general matrix scaling and entropy minimizativia
the RAS algorithm”, volume = 112, year = 2008athematical
Programming pp. 371-401.



