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Abstract—In this paper, we address the problem of computing
the probability that r out of n interfering wireless signals
are “captured,” i.e., received with sufficiently large Signal to
Interference plus Noise Ratio (SINR) to correctly decode the
signals by a receiver with multi-packet reception (MPR) and
Successive Interference Cancellation (SIC) capabilities. We start
by considering the simpler case of a pure MPR system without
SIC, for which we provide an expression for the distribution of
the number of captured packets, whose computational complexity
scales withn and r. This analysis makes it possible to investigate
the system throughput as a function of the MPR capabilities of
the receiver. We then generalize the analysis to SIC systems. In
addition to the exact expressions for the capture probability and
the normalized system throughput, we also derive approximate
expressions that are much easier to compute and provide accurate
results in some practical scenarios. Finally, we present selected
results for some case studies with the purpose of illustrating the
potential of the proposed mathematical framework and validating
the approximate methods.

Index Terms—Capture, wireless, collision, successive interfer-
ence cancellation, multi-packet reception
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I. I NTRODUCTION

ONE of the main problems in wireless systems is the
mutual interference produced by overlapping radio sig-

nals emitted by different transmitters, that might preventthe
correct decoding of some or all of the signals involved, an
event that is often referred to ascollision. This situation
may be observed, for instance, in random access systems,
where transmissions from different sources take place without
coordination, or in dense wireless sensor networks, where
multiple sensor nodes may require to transmit their data to the
sink node in the same time slot, or yet in ad hoc networks, in
particular in the presence of hidden nodes. When the various
signals are received with significantly different powers, the so-
calledcapture effectmay take place, i.e., the strongest signals
may survive the collision and be correctly decoded despite the
interference due to the other signals [1].

The capture phenomenon may significantly impact the sys-
tem performance, in particular for systems with “Multi-Packet
Reception” (MPR) capabilities, i.e., capable of decoding mul-
tiple overlapping packets out of a collision event, provided
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that the received signals satisfy the capture condition.1 MPR
has been recently shown to be a promising solution for
high-capacity wireless networks [2], [3]. In fact, a better
understanding of the ability of the receiver to correctly decode
one or more signals, as a function of the statistical distribution
of the received signal powers, may enable a more effective
design of the transceiver architecture and the optimization of
the transmission protocols.
A. Related literature

The relevance of the signal capture phenomenon in mobile
radio systems has been recognized since long, as testified by
the rather rich literature on the topic.

In [4] the authors assume that a signal is captured whenever
the strongest interferer is sufficiently far apart from the des-
ignated receiver, according to a statistical geometry approach.
In [5], capture is assumed to occur if the arrival instants of
the first and second signals are sufficiently apart. A capture
model based on the number of simultaneous transmissions is
considered in [6], whereas in [7] it is assumed that a packet
is captured only if during its overall transmission period no
other signal is received with higher power. The stability of
the slotted Aloha system with MPR capabilities is studied in
[8], where the numberr of captured signals is modeled as a
random variable whose probability mass distribution depends
only on the collision sizen, i.e., the overall number of overlap-
ping transmissions. The authors show that the MPR capability
can stabilize Aloha and the maximum stable throughput when
n goes to infinity is equal to the mean value ofr. The paper,
however, does not explicitly focus on the derivation of the
capture distribution, which is instead obtained for some sample
cases by using simple capture models, as those described
above.

Successively, the analysis of the capture phenomenon was
extended to include basic physical propagation aspects. In
this case, we find two different approaches for modeling
signal capture in radio systems, one based on theprotocol
model and the other on thephysical model. The protocol
model gives a geometric interpretation of signal propagation,
according to which the capture of a signal only depends on
the distance between the different transmitters and the common
receiver. In [2], [3], in particular, it is assumed that the receiver

1In this paper, we use the term “capture” to indicate the condition under
which a signal can be decoded by an MPR system. However, if thenumber
of captured signals exceeds the MPR capability of the receiver, the signals
in excess are actually not decoded, even though they experience the capture
condition.
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can capture multiple signals transmitted within its reception
range, provided that all other (interfering) transmittersare at
a distance from the receiver larger than a given interference
range. This approach makes it possible to carry out elegant
performance analysis and to derive closed form bounds for
the system capacity in different scenarios, but relies on an
idealized and rather unrealistic model.

On the other hand, the physical model, which we adopt
in this paper, explicitly includes the physical propagation
phenomena and the cumulative character of interference in
the capture model, considering the random distribution of the
signal powers at the receiver and introducing the Signal-to-
Interference-plus-Noise-Ratio (SINR) criterion to determine
the capture probability [9], [10]. IfPj denotes the power of the
jth signal at the receiver, the SINR for that signal is defined
as

γj =
Pj

∑

h 6=j Ph + N0
(1)

whereN0 represents the background noise power. A signalj
is said to be captured and, hence, it is potentially decodable
despite the interference produced by the other overlapping
signals, if γj > b, with b > 0 representing the so-called
capture thresholdof the system.

The capture thresholdb is a system parameter, whose value
depends on the structure of the receiver and, more generally,
on the properties of the communication system. For instance,
conventional narrowband systems with a single antenna neces-
sarily have capture thresholdb ≥ 1 and, as a consequence, at
most one signal at a time can be captured by the receiver [10],
[11]. Conversely, in Code Division Multiple Access (CDMA)
systems, the capture threshold can be significantly less than 1,
depending on the length of the spreading codes that are used
to distinguish the signal of each user. These systems, in fact,
trade the spectral efficiency of each user with a SINR gain
proportional to the length of the spreading code, which may
result in a capture thresholdb < 1. Hence, CDMA systems
are capable of decoding up to⌊1/b⌋ overlapping signals, thus
exhibiting multi-packet reception capabilities.

In general, however, the signals at the receiver are affected
by random attenuation factors, so that the number of signals
that can be actually captured is also random. An analysis of the
capture probability forb < 1 has been proposed in [11], [12].
In particular, in [11] the authors derive an expression for the
probability that there isat leastone signal above the capture
threshold, which is significantly more difficult to compute than
in the caseb ≥ 1.

A different approach to enhance the system capacity in the
presence of interference is based on Successive Interference
Cancellation (SIC), which was first proposed in [13]. Broadly
speaking, SIC is an iterative reception scheme where sig-
nals are generally decoded one at a time, starting from the
strongest, i.e., the one with the largest SINR [14]. After the
signal is decoded, it is canceled from the aggregate received
signal and, then, the next strongest user is decoded in the
subsequent decoding iteration. Therefore, SIC systems are
inherently capable of multi-packet reception [15]. A recent
analysis of the network capacity of SIC systems is presented
in [16], where the authors provide bounds on the transmission

capacity of a wireless ad hoc network applying a statistical
geometry approach. In [17], it is shown that SIC can increase
the stable throughput of Aloha systems up to0.793 packets per
slot by measuring the aggregate signal power at the receiver
and using fine-grained power control at the transmitters. How-
ever, the effect of non-ideal channel state information or power
control on the capture probability with a SIC receiver is not
addressed.
B. Novel contributions

In this work, we advance the state of the art in the analysis
of the capture phenomena by proposing a novel mathematical
framework that, compared to the existing mathematical ap-
proaches, provides more general results and scales better with
the size of the problem, i.e., the number of overlapping signals.
This framework makes it possible to readily evaluate the
performance of random access systems with MPR capabilities
in various scenarios, and provides a useful tool for system
design and dimensioning. More specifically, in this paper we
provide the following original contributions.

We first consider the simpler and more classical case of
pure MPR systems without SIC. For these types of systems,
we derive an analytical expression of thecomplete capture
probability distribution, i.e., we give the expression of the
probability Cn(r) that exactlyr signals out ofn are above
the capture threshold for any0 ≤ r ≤ n. The numerical
evaluation of this expression is scalable with the values of
both n and r, unlike the expression in [11] that involves
n nested integrations, and whose complexity is therefore
exponential inn. From the capture probability, we obtain
the exact expression of thenormalized system throughput
Sn(R), defined as the mean number of successfully decoded
packets out of a collision of sizen, when there is a limitR
(called MPR capability) to the number of signals that can be
simultaneously decoded.2

Second, we extend the analysis to SIC systems, where
the decoding process involves successive decoding iterations.
At each iteration, the signals with power above the cap-
ture threshold are decoded and, then, subtracted from the
compound received signal, leaving a fractionz of residual
interference power. This process is repeated sequentially, until
no further signal is captured or the maximum numberK of
interference cancellation iterations is reached. We provide the
expression of the probabilityC

(s)

n (r; K) that r signals out
of n are decoded by a receiver capable of performing up
to K interference cancellation iterations. Once again, from
the capture probability we can derive the normalized system
throughput as a function of the maximum permitted number
K of SIC iterations.

Third, we derive simple approximate expressions, based on
the central limit theorem, for a lightweight computation ofthe
capture probabilities. In particular, we propose a novel, coarse
approximation of the capture probability that can be computed
without resorting to numerical integration. Furthermore,we

2As a side result, we generalized the capture probability expression to a
heterogeneous scenario, where users may have different capture thresholds
corresponding, for instance, to different modulation schemes or spreading
factors. For space constraints, however, this generalization has not been
reported here, and can be found in [19].
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propose a simple recursive method to obtain an accurate
approximation of the normalized throughput for SIC systems
with extremely low computational complexity.

Finally, to assess the potential of the proposed method and
illustrate the type of analysis it enables, we provide a selection
of results obtained in some reference scenarios.

II. SYSTEM MODEL

The most natural application scenario for this study is the
uplink of a wireless access network, such as a slotted Aloha
system or an IEEE 802.11 cell. In this scenario,n radio
terminals simultaneously transmit their signals to a common
receiver. For the sake of simplicity, we only consider the case
of synchronized transmissions of equal duration, which is a
classical assumption in the related literature [16]–[18].An
analysis of the capture phenomenon in case of asynchronous
transmissions of different length for IEEE 802.11 cells is pre-
sented in [20], where however the capture model is based on
the number of simultaneous transmissions, without considering
the SINR aspect.

The received powersPj , with j = 1, 2, . . . , n, are assumed
to be independent and identically distributed (iid) random
variables, with Probability Density Function (PDF)fP (x)
and Cumulative Distribution Function (CDF)FP (x) that de-
pend on the transmit powers, the statistical distribution of
the distance between the transmitter and the receiver, and
the stochastic phenomena (fading, shadowing) that affect the
signal propagation. The compound signal at the receiver is the
superposition of then overlapping radio signals transmitted
by the users, with power equal to

Λ =

n
∑

j=1

Pj + N0 , (2)

where N0 accounts for the noise power. For the sake of
simplicity, in the sequel we omit the noise term that is expected
to be negligible with respect to the other terms.3

A signal with powerPj is captured if its SINRγj , given
by (1), is larger than the capture thresholdb,

γj =
Pj

Λ − Pj
> b . (3)

For pure (no SIC) MPR systems, we assume that the
receiver successfully decodes all the captured signals, upto
the MPR capabilityR: if the numberr of captured signals
exceedsR, the remaining signals are actually not decoded.

For SIC systems, we suppose that at each iteration the
receiver is capable of decoding all the signals that experience
the capture condition. The decoded signals are then subtracted
from the aggregate received signal before performing the
next decoding iteration. The signal cancellation requiresthe
receiver to reconstruct the waveform of the decoded users,
an operation that involves the accurate estimation of the
channel impulse response and errorless message decoding.
When these operations are imperfect, the signal cancellation
leaves some residual power that increases the noise level

3The analysis can be extended to include the noise term, though at the cost
of a more complex notation with no additional insight.

experienced at the successive decoding iterations. To model
this idiosyncrasy of the interference cancellation process we
assume that the cancellation of a signal received with power
P leaves a residual interference power ofzP , with z ≤ 1.
This proportional model for the residual interference power,
though simple, is rather common in the literature [16], [21],
and has been justified for some specific modulation schemes
[22], [23]. In any case, the derivation presented in this paper
can be adapted to more general models as well, at the cost of
a more cumbersome notation.

The iterative SIC reception process stops when all signals
are decoded, or no signals satisfy the capture condition in a
decoding cycle. Furthermore, we assume that the SIC process
can be performed up toK times, withK = 0 corresponding
to the case of a pure MPR system with no SIC.

III. A NALYSIS OF PURE MULTI-RECEIVER SYSTEMS

In this section, we consider pure MPR systems, lacking any
SIC capability. The aim is to determine the expression of the
probability

Cn(r) = Pr [r signals out ofn are captured] . (4)

Computing (4) in MPR systems is difficult because the
SINR of the different users are coupled. One possible way
to handle this interdependency is to apply the law of total
probability, conditioning on each random variable{Pj}, as
done in [12]. However, this method generates a number of
nested integrals that grows linearly with the number of users
and, therefore, the resulting expression is not practical for
more than a few users. With our approach, instead, we obtain
for any n an expression with at most three nested integrals,
which can be easily computed with numerical methods.

To begin with, we define the capture condition in terms of
the overall aggregate received powerΛ by rewriting (3) in the
following form

Pj > Λb′ (5)

where b′ = b/(1 + b) is termedmodified capture threshold.
In this way, we express the capture condition in terms of
minimum received signal power,Λb′, which is the same for
all the users.

Now, the derivation of the expression ofCn(r) develops
along four basic steps. First, we apply basic combinatorial
analysis to express the unordered joint probability function
Cn(r) in terms of the ordered joint probabilitycn(r) of
capturing thefirst r signals and missing the remainingn− r.
Second, we condition onΛ = x in such a way that the
capture thresholdΛb′ on the right-hand side of (5) becomes
deterministically equal toxb′ so that, due to the independency
of the received signal power from different nodes, we can
easily compute the probability thatr nodes are received with
power abovexb′ and the others fall below the threshold. Third,
we apply Bayes’ rule to get the conditional PDF of the total
received powerΛ beingx, given thatr received signals have
power in the interval(xb′,∞), and the othern−r have power
in the interval[0, xb′]. The conditional received signal powers
constrained in these intervals maintain their independency
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and are represented as auxiliary random variablesαh(u, v),
whereu and v denote the extremes of the interval. We can
then express the conditional PDF of the aggregate powerΛ
evaluated inx, given thatr signals have power in the interval
(xb′,∞) and n − r in the interval [0, xb′], as then-fold
convolution of the PDFs of the auxiliary random variables
αh(u, v). This convolution can be efficiently performed in the
frequency domain, which represents the last step. We can now
state the final result and, then, detail the derivation.4

Theorem 1:For any positiven, and any values0 ≤ r ≤ n,
the probability of capturingr out of n packets can be com-
puted as

Cn(r) =

(

n

r

)
∫ ∞

0

(1 − FP (xb′))
r

FP (xb′)n−r× (6)
[∫ ∞

−∞

[

Ψα(xb′,∞)(ξ)
]r[

Ψα(0,xb′)(ξ)
]n−r

ei2πxξ dξ

]

dx

where

Ψα(u,v)(ξ) =

∫ v

u

fP (a)

FP (v) − FP (u)
e−i2πξada (7)

for u ≤ v and zero otherwise, andi =
√
−1.

Proof: The proof of the theorem develops along the four
basic steps described above.
First step: Let U0 be the set of captured signals andU1 the
set of missed (non-captured) signals. Due to the symmetry of
the problem, ther captured signals can be arbitrarily chosen.
Hence, without loss of generality, we can write

Cn(r) =

(

n

r

)

cn(r) (8)

wherecn(r) is the probability that signalsU0 = {1, 2, . . . , r},
are captured and signalsU1 = {r + 1, . . . , n} are missed. In
formula:

cn(r) = Pr [P0 > Λb′,P1 ≤ Λb′] (9)

where, for brevity, we adopted the compact notationP0 > v
in place of{Pj > v, ∀j ∈ U0} and similarly for the opposite
inequalities.
Second step:Applying the total law of probability onΛ, we
get

cn(r) =

∫ ∞

0

Pr [P0 > xb′,P1 ≤ xb′|Λ = x] fΛ(x)dx

=

∫ ∞

0

Pr [E|Λ = x] fΛ(x)dx (10)

wherefΛ(x) is the PDF of the aggregate received powerΛ,
and we setE = {P0 > xb′,P1 ≤ xb′}, for compactness.
Third step:Applying the rule of Bayes, we obtain

cn(r) =

∫ ∞

0

fΛ(x|E) Pr [E] dx

=

∫ ∞

0

fΛ(x|E)(1 − FP (xb′))
r
FP (xb′)

n−r
dx (11)

4Even though the statement and the proof of Theorem 1 are givenhere
with reference to continuous distributions of the receivedpowers, the same
result can be shown to hold true for any probability distributions as well.

where

fΛ(x|E)= lim
h→0

Pr
[

∑n
j=1Pj ∈(x−h, x]

∣

∣

∣P0 > xb′,P1 ≤ xb′
]

h

is theconditionalPDF of the aggregate received signal power
Λ, givenE , i.e., given that the firstr signals have power above
the thresholdΛb′ = xb′, and the remainingn− r have power
below such a threshold.
Fourth step: We now introduce the parameterized random
variableΛ̄(y) defined as

Λ̄(y) =

r
∑

h=1

αh(y,∞) +

n
∑

h=r+1

αh(0, y) , (12)

where, for any0 ≤ u ≤ v, αh(u, v) are iid random variables
with common PDF

fα(u,v)(a) =
fP (a)

FP (v) − FP (u)
, for a ∈ (u, v] ; (13)

and zero otherwise. In practice, (13) is the conditional PDF
of P given thatP ∈ (u, v].5

Due to the statistical independence of the terms in (12), the
PDF fΛ̄(y)(a) of Λ̄(y) is equal to the multi-fold convolution
of fα(y,∞)(a) and fα(0,y)(a). In the frequency domain, the
Fourier Transform (FT)ΨΛ̄(y)(ξ) of fΛ̄(y)(a) becomes

ΨΛ̄(y)(ξ) =
[

Ψα(y,∞)(ξ)
]r[

Ψα(0,y)(ξ)
]n−r

(14)

whereΨα(u,v)(ξ) is the FT offα(u,v)(a), which is given by
(7). The functionfΛ̄(y)(x) can be obtained from (14) through
inverse FT, that is

fΛ̄(y)(x) =

∫ ∞

−∞

[

Ψα(y,∞)(ξ)
]r[

Ψα(0,y)(ξ)
]n−r

ei2πxξ dξ .

(15)
We now notice that, for anyx, the functionfΛ̄(y)(x) with
y = xb′ is equal tofΛ(x|E). Hence, (11) can be expressed as

cn(r) =

∫ ∞

0

fΛ̄(xb′)(x) (1 − FP (xb′))
r

FP (xb′)n−rdx .

(16)
Replacing (15) into (16) and the result into (8) we finally get
(6).

Note that this result is completely general and holds for
any spatial distribution of the transmitters and any propagation
model, provided that the received powers are iid. The actual
evaluation of (6) might require numerical methods for the
computation of the two nested integrals and of the FT (7),
when it cannot be expressed in closed form.6In any case, the
computational complexity of (6) is limited for all the casesof
interest and, most importantly, it is essentially independent of
r and n, so that our method is very scalable. On the other
hand, the expression provided in [11, Eq. (19)] only gives the
probability of capturingat leastone signal (which is equal to
1−Cn(0)), and requires the explicit computation ofn nested

5If Pr [P = 0] > 0, the PDFfα(0,v)(a) must be defined fora ∈ [0, v]
rather thana ∈ (0, v].

6An efficient way to compute the FTs and their inverse is described in [18],
[19]
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integrals, whose complexity grows exponentially withn, and
therefore cannot be used except for very small collision sizes.7

We now turn our attention to thenormalized system through-
put, defined as the expected number of packets that can be
successfully decoded in a slot in whichn users transmit. This
performance figure has been deeply analyzed in the litera-
ture, mainly for: (i) systems with single reception capability
(R = 1), i.e., able to decode only one packet even when
multiple signals experienceSINR > b, or (ii) systems with
infinite reception capability (R = ∞), i.e., capable of correctly
receiving all the packets that satisfy the capture condition [11].

In this work, we generalize the analysis to systems that
can actually decode at mostR ≥ 1 simultaneous signals
(e.g., due to hardware limitations), even when the number of
signals above the capture threshold is larger thanR. Denoting
by Sn(R) the normalized throughput of a system with MPR
capabilityR ≤ n, we have

Sn(R) =

R−1
∑

r=1

r Cn(r)+R

n
∑

r=R

Cn(r) =

R−1
∑

r=1

r Cn(r)+RQn(R)

(17)
whereQn(R) =

∑n
r=R Cn(r) is calledfull-capacity reception

probability, since it denotes the probability thatR or more
signals are above the capture threshold and, consequently,the
multi-reception capability of the receiver is fully exploited.
Using (6) into (17), we can compute the normalized sys-
tem throughput for any value of the reception capabilityR.
In particular, the normalized throughput of single reception
systems is equal toSn(1) = Qn(1) = 1 − Cn(0), whereas
the normalized throughput of infinite-reception systems is
Sn(∞) = E [r|n], whereE [r|n] denotes the expected value of
the number of captured signals (out ofn) and can be computed
as in [10].

IV. A NALYSIS OF

SUCCESSIVE-INTERFERENCE-CANCELLATION SYSTEMS

The derivation of the capture probability to systems with
SIC basically follows the same rationale as in Sec. III, but
is slightly more complex and requires a more cumbersome
notation due to the iterative nature of the decoding process.

Let k be the iteration at which the reception process ends,
i.e., in which the last capture occurs. Furthermore, letUh be
the set of signals that are decoded at thehth iteration, with
h = 0, 1, . . . , k. The signals that remain to be decoded at the
end of the reception process, if any, are collected in the set
Uk+1. The aggregate power of the signals in setUh will be
denoted by8

Γh =
∑

j∈Uh

Pj , h = 0, 1, . . . , k + 1 . (18)

Since the decoded signals are cancelled from the overall
received signal, leaving a fractionz of their power as residual

7The approach proposed in this section can be easily extendedto a
heterogeneous scenario, where both the capture threshold and the PDF of
the received signal powers may differ among users. The extension, which
unfolds exactly as in the homogeneous case but requires a more cumbersome
notation, can be found in [19].

8If the setUk+1 is empty, the aggregate powerΓk+1 is conventionally set
to 0.

interference, the overall signal power at decoding iteration h
can be expressed as

Λh = z

h−1
∑

j=0

Γj +

k+1
∑

ℓ=h

Γℓ + N0 ,

where the first sum is zero whenh = 0. Once again, in the
following the noise term will be omitted. A signal with power
Pj will be captured at decoding iterationh if

Pj > Υh = Λhb′ (19)

whereΥh is calledabsolute capture thresholdfor iterationh.
We wish to determine the expression of the probability

C
(s)

n (r; K) = Pr[r signals out ofn are captured

within at mostK SIC iterations] . (20)

The derivation unfolds along the four phases described in
Sec. III that, however, becomes slightly more involved.
First step:To begin with, we observe thatC

(s)

n (r; 0) = Cn(r)

and, for anyK, C
(s)

n (0; K) = Cn(0), which can be computed
using (6). In the following, we hence assumeK ≥ 1 and
r > 0. The capture probability can thus be expressed as

C
(s)

n (r; K) =

min(r−1,K)
∑

k=0

C⋆
n(r; k) , (21)

whereC⋆
n(r; k) is the probability of capturingr signals with

the last capture occurring at iterationk. It shall be noted that,
according to the definition ofk, it must ber ≥ k + 1, since
at leastone signal has to be decoded at each iteration for the
reception process to continue. Hence, letrh denote the number
of signals decoded at thehth iteration, withh = 0, 1, . . . , k,
and letrk+1 = n− r denote the number of undecoded signals
at the end of the reception process. Due to the symmetry of
the problem, we can write

C⋆
n(r; k) =

r−k
∑

r0=1

r−r0−k+1
∑

r1=1

· · ·
r−r0−...−rk−2−1

∑

rk−1=1

Ac(r) (22)

where, for compactness, we usedr to denote the vector
{r0, r1, . . . , rk+1}, and we setA = n!

r0!r1!...rk+1!
. The function

c(r) is the ordered capture probability for the vectorr, i.e.,
the probability that signals1 to r0 are captured at iteration
zero, signalsr0 + 1 to r0 + r1 are captured at iteration one,
and so on, and that signals from

∑k
h=0 rh + 1 to n remain

undecoded at the end of the reception process.
We now need to distinguish the casek < K, when the

reception ends because no signal is captured at iterationk+1,
from the casek = K, when the reception process is terminated
because the maximum allowed number of SIC iterations has
been reached. In the following, we derive the expression of
c(r) for k < K, and then we explain how to adjust the result
for the casek = K.

Recalling (19), we can express the ordered capture proba-
bility for k < K as

c(r)=Pr [P0>Υ0≥P1 >Υ1≥· · ·≥ Pk > Υk,Pk+1 ≤ Υk+1]
(23)
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where we adopted the same compact notation introduced in
Sec. III.9

Second step:Applying the total probability theorem with
respect to the random variablesΓh, we obtain

c(r) =

∫∫

fΓ(g) Pr

[

P0 > λ0 ≥ P1 > λ1 ≥ · · · (24)

· · · ≥ Pk > λk,Pk+1 ≤ λk+1

∣

∣

∣

∣

Γ = g

]

dg0 · · · dgk+1

where we usedΓ and g in place of {Γ0, · · · , Γk+1}, and
{g0, · · · , gk+1}, respectively, and we set10

λh =



z

h−1
∑

j=0

gj +

k+1
∑

ℓ=h

gℓ



b′ , h = 0, . . . , k + 1 .

The function fΓ(g) in (24) denotes the joint PDF ofΓ
evaluated ing.
Third step:Now, applying the rule of Bayes we get

c(r) =

∫∫

fΓ(g|E) Pr [E] dg0 · · · dgk+1 (25)

where E =
⋂k+1

h=0 Eh with11 Eh = {Ph ∈ (λh, λh−1]} for
h = 0, . . . , k, andEk+1 = {Pk+1 ∈ [0, λk+1]}. The function
fΓ(g|E) is theconditionaljoint PDF ofΓ givenE , evaluated
in g, i.e.,

fΓ(g|E) = lim
h→0

Pr [Γ ∈ (g − h,g]|E ]

h0h1 · · ·hk+1
.

We observe that the events inE are mutually independent, so
that we can write

Pr [E ] = FP (λk+1)
rk+1

k
∏

h=0

[FP (λh−1) − FP (λh)]
rh . (26)

Furthermore, the conditional PDF ofΓ given E can also be
factorized as

fΓ(g|E) =

k+1
∏

h=0

fΓh
(gh|Eh) . (27)

Fourth step:We now introduce the family of parameterized
auxiliary random variables

Γ̄h(u, v) =

rh
∑

ℓ=1

αh,ℓ(u, v) , h = 0, . . . , K + 1 ; (28)

whereαh,ℓ(u, v) are iid random variables with PDF as in (13).
The PDFfΓ̄h(u,v)(x) of Γ̄h(u, v) is hence given by therh-

fold convolution offα(u,v)(x) and can be obtained as

fΓ̄h(u,v)(x) =

∫ ∞

−∞

[

Ψα(u,v)(ξ)
]rhei2πxξ dξ . (29)

9If Uk+1 is empty, the inequalityPk+1 ≤ Υk+1 is trivially verified.
10Whenh = 0, the first sum is zero.
11For preserving the expression symmetry, we introduced the dummy

parameterλ−1 = ∞.

We now notice that, for anyx, the functionΓ̄h(u, v)(x) is
equal tofΓh

(x|Eh) whenu andv correspond to the limits of
the interval inEh. Hence, fork < K we have

c(r) =

∫∫ ∞

0

FP (λk+1)
rk+1

[

k
∏

h=0

(FP (λh−1) − FP (λh))
rh

]

[

k
∏

h=0

∫ ∞

−∞

[

Ψα(λh,λh−1)(ξ)
]rhei2πghξ dξ

]

(30)

[∫ ∞

−∞

[

Ψα(0,λk+1)(ξ)
]rk+1ei2πgk+1ξ dξ

]

dg0 · · · dgk+1 .

For k = K, the ordered capture probability becomes

c(r)=Pr [P0>Υ0≥P1 >Υ1≥· · ·≥ PK > ΥK ,PK+1 ≤ ΥK ]
(31)

which is very similar to (23), except for the fact that the upper
bound ofPK+1 is now ΥK rather thanΥK+1. Hence, (30)
can be directly extended to the casek = K by defining

λK+1 = λK =



z

K−1
∑

j=0

gj +

K+1
∑

ℓ=K

gℓ



 b′ .

Putting all the pieces together, we can finally express (21)
as12

C
(s)

n (r; K) =

min{r−1,K}
∑

k=0

r−k
∑

r0=1

r−r0−k+1
∑

r1=1

· · ·
r−r0−...−rk−2−1

∑

rk−1=1

A

∫∫ ∞

0

FP (λk+1)
rk+1

[

k
∏

h=0

(FP (λh−1) − FP (λh))
rh

]

[

k
∏

h=0

∫ ∞

−∞

[

Ψα(λh,λh−1)(ξ)
]rhei2πghξ dξ

]

(32)

[∫ ∞

−∞

[

Ψα(0,λk+1)(ξ)
]rk+1ei2πgk+1ξ dξ

]

dg0 · · · dgk+1 .

It shall be noted that the number of nested integrals grows
proportionally to (and hence the computational complexity
grows exponentially with)K, which is however expected to
be limited in practical systems for complexity, latency and
efficiency reasons. Conversely, the computational complexity
of (32) grows much more slowly as a function ofr andn, so
that our method is very scalable with respect to the number
of users in the system, which can take also large values.

For SIC systems it makes sense to consider the mean nor-
malized throughput as a function of the maximum permitted
number of SIC iterationsK. Hence, in this case the normalized
system throughput becomes

S
(s)

n (K) =

n
∑

r=1

rC
(s)

n (r; K) . (33)

12Note that, forK = 0, (32) returnsCn(r), though with a slightly different
expression with respect to (6).
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V. L OW-COMPLEXITY APPROXIMATIONS OF CAPTURE

PROBABILITY AND THROUGHPUT

Although in most cases the numerical evaluation of the
capture probability distributions (6) and (32), and of the
normalized throughput functions (17) and (33) is affordable,
sometimes it might be preferable to resort to approximate
methods that provide fairly good results at a much lower
computational cost. In the following we propose some possible
approximations that trade off results accuracy for numerical
complexity. We first propose approximations for the capture
probability distributions and, thereafter, we turn our attention
to the normalized throughput expressions.

A. Capture probability approximations

The main issue in computing (6) and (32) consists in the
numerical evaluation of the PDF of̄Λ(xb′) and Γ̄h(u, v), re-
spectively. However, the computation of these functions can be
greatly simplified by resorting to the Central-Limit-Theorem
(CLT). In fact, for sufficiently largerh, the distribution of
terms like

∑rh

ℓ=1 αh,ℓ(u, v) that appear in the expressions of
Cn(r) and C

(s)

n (r; K) can be approximated by a Gaussian
distribution, with meanrhmα(u,v) and variancerhσ2

α(u,v),
wheremα(u,v) andσ2

α(u,v) are the mean and variance of the
random variableα(u, v), provided that they exist and are finite.

For instance, the PDF of the parameterized random variable
Λ̄(y), defined in (12), can be approximated as

fΛ̄(y)(a) ≃ 1
√

2πσ2
r (y)

exp

(

− (a − mr(y))
2

2σ2
r(y)

)

=
1

σr(y)
φ

(

a − mr(y)

σr(y)

)

(34)

whereφ(·) is the standard normal PDF and

mr(y) = rmα(y,∞) + (n − r)mα(0,y) ;

σ2
r (y) = rσ2

α(y,∞) + (n − r)σ2
α(0,y) . (35)

With a change of variable (y = xb′) and a simple rearrange-
ment of the terms, the capture probabilityCn(r) for pure MPR
systems can thus be approximated as

C̃n(r)=

(

n

r

)∫ ∞

0

φ

(

y − b′mr(y)

b′σr(y)

)

[1 − FP (y)]
r
FP (y)n−r

b′σr(y)
dy

(36)

The numerical solution of (36) requires a single integration,
which is generally much faster than the numerical solution
of (6), and can therefore be used as a simple approximation.
In particular, the approximation is excellent forr = 0, and
C̃n(0) turns out to be very close to the correct valueCn(0)
already forn > 4. This result is of particular interest because
it provides a very simple way to have an accurate estimate
of the probability thatat leastone signal is captured, which
corresponds to the normalized throughput for single reception
systems,Sn(1) = Qn(1) = 1−Cn(0), and is the performance
metric considered in most of the previous literature on the
subject [9]–[12].

The same approach can be used to avoid the computation
of the innermost numerical integrals in (32). In particular, for

sufficiently large values ofrh, the CLT approximation for the
expression (29) yields

fΓ̃h(u,v)(x) ≃
exp

(

− (x−rh mα(u,v))
2

2 rh σ2
α(u,v)

)

√

2π rhσ2
α(u,v)

. (37)

The expression (36) can be further simplified, at the cost of
some additional loss of accuracy. For sufficiently small values
of the coefficient of variationσr(y)/mr(y), the Gaussian
distribution function is very narrow around the meanb′mr(y),
which depends ony as shown by (35). Accordingly, the terms
φ
(

y−b′mr(y)
b′σr(y)

)

in (36) are generally very small wheny lies far

away from the meanb′mr(y), whereas fory ≃ b′mr(y) the
Gaussian term can be approximated by an impulse with area
b′σr(y). Using this approximation in (36), we obtain this new
approximate expression of the capture probability distribution:

Ĉn(r) ≃
(

n

r

)

∑

y⋆∈Y ⋆

[1 − FP (y⋆)]
r
FP (y⋆)n−r , (38)

whereY ⋆ is the set of points such that

y⋆ = b′mr(y
⋆) . (39)

The approximate expression (38) does not involve any nu-
merical integration, though computingY ⋆ may still require
numerical methods in some cases. Even though this approxi-
mation is rather coarse in general, it gives an idea of the shape
of the probability distribution and provides a good estimate of
some useful metrics. In particular, the zero-capture probability
Cn(0) and the full capture probabilityCn(n) are quite well
approximated by (38), that thus enables the asymptotic anal-
ysis of these two important performance measures, as will be
discussed later on.
B. Throughput approximations

We here propose a first-order approximation of the capture
probabilities that yields a simple, recursive method to estimate
the normalized throughput of both pure and SIC-capable MPR
systems.

1) Pure multi-receiver case:Here we focus on the normal-
ized throughputSn(∞) of pure MPR systems with infinite
reception capability. The number of decoded signal can be
expressed asr =

∑n
j=1 χj whereχj = 1 if the jth signal is

captured and zero otherwise. Hence, we can write13

Sn(∞) = E [r|n] = nE [χj ] = n Pr [P1 > I0] (40)

whereI0 = (N0 +
∑n

j=2 Pj)b . The right-most term of (40)
is the probability that a certain signal, say the first one, is
captured. This probability can be computed in different ways.
A first possibility is to determine the PDF ofI0 as the(n−1)-
fold convolution offP (·) (neglecting, as usual, the noise term).
Otherwise, as in the previous section, we can resort to the
central limit theorem and approximateI0 with a Gaussian
random variable, with mean(n − 1)mα(0,∞)b and variance
(n − 1)σ2

α(0,∞)b
2. However, we here prefer to follow yet an-

other strategy that yields an even simpler solution. In practice,

13Note that here we consider the capture thresholdb rather than the modified
capture thresholdb′.
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we approximateI0 with its meanI0 = (n − 1)mα(0,∞)b .
Hence, from (40), we get the following normalized throughput
approximation

Ŝn(∞) = n
[

1 − FP

(

(n − 1)mα(0,∞)b
)]

, (41)

which can be directly computed from the CDF ofP in an
extremely simple manner. As we will see in Sec. VII, despite
its simplicity, (41) provides an accurate approximation of
Sn(∞) in many cases, in particular when the number of nodes
is large and the capture thresholdb is small. More importantly,
this trivial normalized throughput approximation for pureMPR
systems paves the way for the derivation of the throughput
approximation in SIC systems, which is presented next.

2) Successive Interference Cancellation case:The basic
idea consists in computing an estimate of the mean numberr̃h

of signals decoded at each iterationh, taking into account the
effect of interference cancellation. For the generic iteration
h, we define the following parameters:nh is the number
of signals that are not yet decoded at the beginning of the
iteration,Ih is the approximated value of the absolute capture
thresholdIh for these signals andρh is the additional residual
interference that will result from the cancellation of ther̃h

signals at the end of decoding iterationh. For h = 0, we have
n0 = n and

r̃0 = n0 Pr [Pj > I0] = n0[1 − FP (I0)] , (42)

as given by (41). The residual interference left by the cancel-
lation of the r̃0 signals, in turn, will be approximated as

ρ0 = zr̃0E [P |P > I0] = zr̃0mα(I0,∞) .

Notice that, when computing the residual interference, the
mean power of a captured signal is constrained to be larger
than the (approximated) absolute capture thresholdI0. Analo-
gously, the power of the signals considered in the subsequent
iteration will be constrained to be lower thanI0, and the
same applies to the following iterations. Hence, for the generic
iterationh > 0, we define

nh = n −
h−1
∑

j=0

r̃j ; Ih =





h−1
∑

j=0

ρj + (nh − 1)mα(0,Ih−1)



b ;

Fα(0,Ih−1)(Ih) = Pr [P ≤ Ih|P ≤ Ih−1] ; (43)

r̃h = nh

(

1 − Fα(0,Ih−1)(Ih)
)

; ρh = zr̃hmα(Ih,Ih−1) .

Finally, the approximate normalized throughput forK SIC
iterations is given by

S̃
(s)

n (K) =
K
∑

j=0

r̃j . (44)

For b ≥ 1 the approximation can be further improved as
described in [19].

VI. D EFINITION AND CHARACTERIZATION OF REFERENCE

SCENARIOS

To exemplify possible applications of the developed analy-
sis, we consider three reference scenarios, namely Path Loss

(PL), Rayleigh Fading (RF), and Lognormal (LN), which are
detailed in the following.14

A. Path Loss model

For the sake of comparison with the previous literature, the
first scenario included in our analysis is the so-called PathLoss
(PL) model and refers to the case proposed in Section II.E of
[11] and in other recent works [24]. The scenario consists of
n users uniformly distributed in a circle of radiusD centered
at the common receiver (e.g., a Base Station of a cellular
network, or an Access Point in a WLAN), so that the PDF
of the distancerj from the jth user to the common receiver
is given by

frj (a) =
2a

D2
, for 0 ≤ a ≤ D ,

and zero otherwise. The radio propagation is governed by
a simple deterministic path-loss law, with neither fading nor
shadowing. As in [11], we assume that the received power at a
distancer from the transmitter is equal toP (r) = (1 + r)−η,
whereη is the path loss coefficient whereas the constant unit
term is added to avoid a physically absurd behavior forr → 0.
Note that, for the sake of notation simplicity, we omit any
multiplicative constant in the path-loss equation that, inany
case, would be irrelevant in our analysis. Hence, the power
P received from a generic node can be modeled as a random
variable that takes values in the interval[(D + 1)−η, 1], with
PDF and CDF given by15

fP (x) =
2

D2η

(

x− 2
η −1 − x− 1

η −1
)

, FP (x) = 1−

(

1 − x− 1
η

)2

D2

(45)
for (D + 1)−η ≤ x ≤ 1. From (45), it is then easy to derive
the PDF of the auxiliary random variableα(u, v) that turns
out to be equal to

fα(u,v)(a) =
2
(

a− 2
η −1 − a− 1

η −1
)

D2η(FP (v) − FP (u))
, (46)

for max((D + 1)−η, u) < a ≤ min(v, 1), and zero otherwise.
The FT of the PDF ofα(u, v) depends onη. For space

constraints, we report here only the result forη = 2 that, for
(D + 1)−2 ≤ u ≤ v ≤ 1, turns out to be given as in (47)
(see next page) where[g(x)]vu = g(v)− g(u), andEi(m, z) =
∫∞
1

exp(−za)
am da is the exponential integral function.

The statistical mean and power ofα(u, v), still for η = 2,
are given respectively by

mα(u,v) =
log(v) − 2

√
v − log(u) + 2

√
u

D2(FP (v) − FP (u))
, (48)

Mα(u,v) =
3(v − u) − 2(

√
v −√

u)

3D2(FP (v) − FP (u))
.

14In [18] we considered an additional scenario, where we combine the
classical path loss model with the Rayleigh fading model.

15We observe that, forD ≥ 10, the PDF obtained with this model is
basically equivalent to that returned by the classical pathloss modelr−η

when user locations are constrained to be at least one meter apart from the
transmitter, i.e.,r ∈ [1,D].
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Ψα(u,v) =

[

2 e−i 2πxf
√

x
+

i2π3/2f
√

2 erf
(√

i2πfx
)

√
iπf

− e−i 2πxf

x + i 2πfEi (1, i 2xπf)

]v

u

D2(FP (v) − FP (u))
(47)

B. Rayleigh Fading model

In the Rayleigh Fading (RF) scenario, we assume that the
path loss attenuation is the same for all users, as if all transmit-
ters were at the same distance from the receiver or they used a
power control mechanism that is capable of compensating the
long term path loss attenuation. Therefore, the received signals
have equal mean power, that we normalize to one. However,
signals are affected by multi-path fading, so that the received
power for thejth user will be an exponentially distributed
random variable, with PDF and CDF given by

fP (a) = e−a , FP (a) = 1 − e−a , a ≥ 0. (49)

In this case, the FT of the PDF ofα(u, v) is given by

Ψα(u,v)(ξ) =
e−u(i 2π ξ+1) − e−v(i 2π ξ+1)

(1 + i 2π ξ)(e−u − e−v)
,

whereas the statistical mean and power are

mα(u,v) =
(u + 1)e−u − (v + 1)e−v

e−u − e−v
, (50)

Mα(u,v) =
(2 + 2u + u2)e−u − (2 + 2v + v2)e−v

e−u − e−v
.

We observe that, due to the memoryless property of the
exponential distribution, the PDF of the auxiliary random
variableΓ̄h(u,∞), defined in (28), admits the following closed
form expression:

fΓ̃h(u,∞)(a) =
(a − urh)rh−1

(rh − 1)!
e−(a−urh) ; a ≥ urh .

It is thus possible to avoid the numerical computation of the
inverse FT of

[

Ψα(λ0,∞)(ξ)
]rh in (32). In particular, it is

possible to get a closed form expression of the full-capture
probability, which isCn(n) = (1 − nb′)n−1 for nb′ < 1 and
zero otherwise.
C. Lognormal power distribution model

Another interesting statistical distribution of the received
signal powerP is the lognormal model (LN), according to
which the received signals have iid powers with PDF and CDF

fP (x) =
1

x
√

2πσ
e

{

−[ln(x)−µ]2

2σ2

}

, (51)

FP (x) =
1

2
erfc

[

− ln(x) − µ

σ
√

2

]

= Φ

(

ln(x) − µ

σ

)

,

where ln(·) is the natural logarithm,erfc(·) is the comple-
mentary error function, andΦ(·) is the standard normal CDF.
The parametersµ andσ are the mean and standard deviation,
respectively, of the associated normal distribution.

The LN model may be considered, for instance, when the
terminals are at the same distance from the receiver, but the
received signals are affected by independent shadowing fading
terms. In this case, the parameters of the PDF can be expressed

as µ = µdB/A and σ = σdB/A where A = 10/ ln(10),
µdB is the mean received power, in dB, whereasσdB is the
standard deviation of the shadowing fading terms that ranges
from 4 dB to 13 dB in outdoor environments [25, Ch. 2, p.
50]. The LN model can also be applied to CDMA systems
that adopt power-control schemes to harmonize the power of
the different received signals. Considering for simplicity the
homogeneous-rate case, an ideal power control scheme shall
make all the signals be received with equal target powerP̄ ,
so that the capture condition (3) is satisfied by all signals.
In practice, however, the actual power received from node
j = 1, 2, . . . , n, in dB, will be equal toPj [dB] = P̄ [dB]+εj ,
whereεj are iid zero-mean gaussian random variables, with
standard deviationσε. Perfect power control corresponds to
σε = 0 dB, whereas imperfect power control usually yieldsσε

from 1 dB to 4 dB [26]. Thus,Pj has lognormal distribution
with µ = P̄ [dB]/A = ln(P̄ ), σ = σε/A.

Unfortunately, the FT of the PDF ofα(u, v) cannot be
expressed in closed form in this case and, hence, needs to
be computed numerically, e.g., using the recursive method
proposed by Leipnik in [27] and based on the double Taylor
expansion ofe−(ln x−µ)2/(2σ2). Conversely, the mean and
statistical power of the auxiliary random variable can be
expressed in closed form asmα(u,v) = I(u, v; 1) ; Mα(u,v) =
I(u, v; 2) , where I(u, v; h) = E

[

α(u, v)h
]

=
ehµ+h2σ2/2

2(FP (v)−FP (u))

[

erfc
(

µ+hσ2−ln v√
2σ2

)

− erfc
(

µ+hσ2−ln u√
2σ2

)]

.

VII. PERFORMANCE ANALYSIS

Here we present only a selection of the results obtained in
the three scenarios above, with the purpose of illustratinghow
the method proposed in this paper can be used. We first discuss
the case of pure MPR systems and, later, we address the SIC
case. Unless otherwise specified, all the figures presented in
this section have been obtained by settingD = 10, η = 2,
σ = 3/A, µ = 0, andb = 0.02 or b = 0.1. Changing the values
of these parameters will clearly yield different results that,
however, preserve the fundamental behavior and properties
illustrated in the following.

In Figs. 1, 2 and 3 we report the capture probabilityCn(r)
for the PL, RF, and LN scenarios, respectively, as a function
of r. We plot a set of curves obtained by varyingn, with
b = 0.02. We observe that in the PL scenario, whenn =
15, which is well below the upper bound⌊1/b⌋ = 50 on the
maximum number of signals that can be potentially captured,
the capture probability presents a spike inr = n because the
most likely event is that all then signals are captured (full
capture). The full capture probability in the RF and LN cases
is, instead, lower. The reason is that the full capture requires all
the signals to be received with similar powers, an event that,
with the parameters considered in this analysis, is unlikely
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Fig. 1. Capture probability distributionsCn(r) vs. r in the PL scenario
when varying the collision sizen (b = 0.02, η = 2).
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Fig. 2. Capture probability distributionsCn(r) vs. r in the RF scenario
when varying the collision sizen (b = 0.02).

to occur in the RF and LN scenarios, since the range of the
received signal power is larger than in the PL case.16

Whenn increases, the full capture probability decreases and
the distribution roughly assumes a bell-shaped form in all three
scenarios, with mean and variance that progressively decrease.
Finally, for very large values ofn, Cn(0) tends to increase,
and the system can capture fewer and fewer signals.

Fig. 4 reports the normalized throughput for the PL and
RF scenarios, when varying the number of simultaneous
transmissionsn and with b = 0.1. (To reduce clutter, we
do not report the results for the LN scenario that, with the
parameters considered in this analysis, fall in-between the PL
and RF results.) It is interesting to note that increasing the
reception capability beyond a certain point yields diminishing
returns. For example, in the case shown,R = 6 already
provides a normalized throughput very close to the maximum
possible, though the number of signals that can be potentially
decoded with capture thresholdb = 0.1 is ⌊1/b⌋ = 10. This
result suggests that it is possible to design radio systems with
partial reception capability that practically attain the same
performance as systems with infinite-reception capability.

Fig. 5 compares the normalized throughputSn(1) = 1 −
16This conclusion depends on the relationship between the coverage range

D in the PL scenario and the varianceσ in LN, and different choices can be
expected to yield different results.
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Fig. 3. Capture probability distributionsCn(r) vs. r in the LN scenario
when varying the collision sizen (b = 0.02, σ/A = 3).

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of overlapping signals (n)

T
hr

ou
gh

pu
t: 

S
n(R

)

 

 

R=1
R=2
R=3
R=4
R=5
R=6

Fig. 4. ThroughputSn(R) for different capture capabilitiesR vs. n (b =
0.1) in the PL (solid) and RF (dashed) scenarios. Note that the normalized
throughput curve forR = ∞ (infinite-reception system) is superimposed to
that obtained withR = 6.

Cn(0) of systems with single reception capabilityR = 1 (the
metric considered in most of the previous literature) for differ-
ent values of the capture thresholdb. Solid curves refer to the
PL case, whereas dashed curves are used for the RF scenario
(once again, the LN case is omitted here). The exact results
(lines) are compared with the approximate values (markers)
obtained using̃Cn(0) given by (36) in place ofCn(0) in (17).
As can be noted, the accuracy of the approximation is very
good in all cases considered. Although not shown in the figure,
we have also verified that using the approximate valueĈn(0)
given by (38) still yields excellent results forb ≤ 0.1, whereas
for larger values ofb the approximation becomes less accurate.

For SIC systems we only show the results obtained in the
RF scenario, due to space constraints. In Fig. 6 we report
the capture probabilityC

(s)

n (r; K) as a function ofr, for
n = 20, which is twice the maximum number of signals
⌊1/b⌋ that could be captured by a pure MPR system. The
different curves have been obtained by varyingK, as indicated
in the legend of the figure, and settingz = 0.1. The solid
lines with white markers refer to the exact solution given by
(32), whereas the black markers correspond to the approximate
capture probability values obtained as described in Sec. V-A.

First of all, we can appreciate that the Gaussian approxima-
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Fig. 6. Capture probability distributionsC
(s)

n (r; K) vs. r for n = 20 in
the RF scenario, when varyingK (b = 0.1). Solid line with white markers:
exact values. Black markers: approximate values.

tion (37) already yields very good results when the number
of captured signals is just a few. In fact, forK ≥ 2 the
approximate results are basically overlapping with the exact
ones.

Second, we can clearly see that, in this case, SIC is very
effective, since the maximum number of signals that can be
captured with non negligible probability increases withK.
However, the gain becomes progressively less significant as
K grows, because of the imperfect interference cancellation.

Although we do not report here the results for space
constraints, we observed that SIC is less effective in highly
congested scenarios, i.e., whenn ≫ 1/b. In this case, the
probability of early ending of the decoding process is much
larger, so that it is likely that only a few SIC iterations canbe
performed before the reception process ends.

Fig. 7 shows the normalized throughput results in the
RF scenario. Solid lines with markers have been obtained
using the exact equation (17), whereas dashed lines report the
approximate normalized throughput given by (44). The plot
above in the figure refers to the case of perfect SIC, i.e.,z = 0,
whereas the plots below report the normalized throughput for
z = 0.1 and z = 0.5, respectively. First of all, the rather
close match between exact and approximate results confirms
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(b) Imperfect SIC:z = 0.1
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(c) Imperfect SIC:z = 0.5

Fig. 7. Normalized throughputSn(K) vs.n, when varyingK, with b = 0.1:
exact (solid) vs approximate (dashed) results.

the accuracy of the proposed approximation method, at least
for reasonable values ofK. Comparing the different plots,
furthermore, we note that, for a certainK > 0, decreasing
z yields two benefits: first, the normalized throughputSn(K)
increases for anyn; second, the system becomes more robust
to multi-signal collision events, as indicated by the growth of
the value ofn beyond which the normalized throughput starts
decreasing. Nonetheless, we observe that, irrespective ofthe
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value of z, the normalized throughput gain tends to reduce
after a few SIC iterations. In the case of ideal SIC (z = 0),
for example, increasing the SIC capability fromK = 4 to
K = 5 yields less than10% of peak normalized throughput
gain.

As known from the literature, SIC is effective in wideband
systems, i.e., whenb ≪ 1 [16]. To better appreciate the
impact of the capture thresholdb on the SIC performance,
we introduce theSIC efficiencymetric, defined as

η(K) =
maxn{S(s)

n (K)}
maxn{S(s)

n (0)}
.

In practice,η(K) is the ratio between the peak throughput
of a SIC system capable of performing up toK interference-
cancellation iterations, over the peak throughput of the same
system without SIC, and thus provides the maximum relative
throughput gain that can be obtained by performing SIC.
Fig. 8 shows the SIC efficiencyη(K) as a function of the
capture thresholdb, for different values ofK. White markers
connected by solid lines refer to exact results, whereas black
markers have been obtained with the approximate method
described in Sec. V-B. The figure clearly shows that the benefit
of SIC decreases rapidly asb grows beyond0.1 and, for
narrowband systems, i.e., whenb > 1, the SIC benefit is
almost negligible.

An intuitive explanation of this behavior is the following.

First of all, we observe that the largerb, the higher the
probabilityCn(0) of capturing no signals at the first decoding
cycle and, in turn, the probability that SIC is not performed
at all. If (at least) one signal is decoded at the first iteration,
then SIC might be effective to capture some other signals after
interference cancellation. However, if the captured signal has
power P , then according to (3), the aggregate power of the
othersignals must be lower thanP/b. The largerb, the smaller
the range of power values that the remaining received signals
can take and, in turn, the less effective the SIC mechanism,
which instead requires very disparate signal strengths [15].

In Fig. 9 we analyze the impact of the capture threshold
b and the residual interference factorz in SIC systems by
reportingη(K) vs K when varyingb and for three values of
z, as indicated in the figure. The curves have been actually
obtained using the approximate expression (44), which allows
for a much faster, though still accurate, computation of the
results. We see that, for a certainz, the curves obtained with
different values ofb are bundled. This means that the peak
normalized throughput achievable with and without SIC scales
almost linearly with⌊1/b⌋. Moreover,η(K) grows withK but
the gain becomes negligible beyond a certain number of SIC
iterations, which depends onz.

To exemplify a possible utilization of the proposed analysis,
we consider the problem of dimensioning an MPR-enabled
access point in a hot-spot scenario. We assume that users
are uniformly distributed around the access point, within a
cell of radiusD, and that they all use the same modulation
scheme, which yields a capture thresholdb. The number of
users that simultaneously transmit in a certain slot is modeled
as a spatial Poisson process, with densityδ, so that the number
n of overlapping signals is a Poisson random variable with
averageµD = δπD2. Note that the population of users served
by that access point and, in turn, the mean collision size grow
quadratically with the cell radiusD. The aim is to dimension
the coverage rangeD, MPR capabilityR, and SIC capability
K of the access point in order to provide good performance,
while avoiding costly and useless over-provisioning of the
receiver capabilities. To begin with, we define the mean uplink
throughput as

S̄D(K) =

∞
∑

n=1

S
(s)

n (K)
µn
D

n!
exp(−µD) .

We then use (40) (or (41)) to determine the mean throughput
for a pure (no SIC) MPR system with infinite reception
capabilityR = ∞, when varying the cell radiusD. The result
is represented by the curve with white markers in Fig. 10,
in three cases, namely i) all nodes transmit with equal and
fixed power and the received radio signals are affected by path
loss attenuation only (PL), ii) nodes apply long-term power
control to compensate path loss attenuation, but signals are
still affected by Rayleigh fading (RF), iii) nodes apply short-
term power control that perfectly compensates path loss and
fading, except for a residual zero-mean Gaussian errorε with
standard deviationσε = 1.5 dB (LN). Curves refer to density
of δ = 1/200 transmissions per square meter per slot.

From the figure, we can see that there exists an optimal
value of the cell radius, which depends on the power control
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capabilities of the users. For smaller values of the coverage
range, the MPR capability of the receiver is not fully exploited
because the number of parallel transmissions is low. Con-
versely, when the coverage range is greater than the optimal
value, the mutual interference will decrease the throughput.

We also observe that power control yields higher peak
throughput, but less robustness to variations of the transmis-
sion density. For example, the optimal performance in the LN
scenario withδ = 1/200 is obtained with a cell radius of
approximately50 meters. However, doubling the cell radius
that, in the LN case, is equivalent to fourfold increase on
the user density, the throughput drops almost to zero. When
users do not apply power control and signals are affected by
path loss attenuation only, the peak throughout is significantly
lower, but less sensitive to the variations of the transmission
density. Therefore, this configuration is suitable when the
focus is on the minimization of the infrastructure complexity
(and cost) rather than on throughput maximization.

In the following, we consider the latter scenario and fix
the coverage range toD = 50 m. Therefore, the expected
number of simultaneous transmissions per slot isµD = 40
with δ = 1/200. From (17), we can then determine the
minimum MPR capabilityRm of the receiver beyond which
the performance gain becomes negligible. For instance, we
can setRm = argminR{Sn(R)/Sn(∞) ≥ 1 − ρ} whereρ
is the maximum acceptable performance loss. In our example,
settingRm = 15 yields less than10% of throughput loss for
transmission density larger thanδ = 1/200. Note that the use
of SIC largely compensates the throughput loss incurred by
limiting R, since signals exceeding the MPR capability of the
receiver at a certain decoding cycle will be decoded at the
successive SIC iteration. The mean throughputS̄D(K) when
varying the numberK of admissible SIC iterations can be
estimated using (33), or the approximation (44). The lines with
filled markers in Fig. 17 report the throughoutS̄D(1) after a
single SIC iteration, whereas the results for larger valuesof K
are omitted to reduce clutter. As already noted, the first SIC
iteration brings along a significant performance gain, reaching
about50% of the peak throughput that is attained withK ≥ 5
iterations.

VIII. D ISCUSSION AND FINAL REMARKS

In this paper, we proposed a novel approach for the compu-
tation of the probability thatr out of n overlapping signals are
received with SINR above the capture threshold and, hence,
can be correctly decoded. Different from previous approaches
presented in the literature, our method deals with the interde-
pendency among the SINR values experienced by the different
transmitters in a simple and scalable manner. Furthermore,it
is rather flexible and can be used, with marginal adjustments,
in a variety of scenarios.

We first applied the proposed mathematical framework to a
multi-receiver system in a homogeneous scenario, where all
users have the same capture threshold and received signal
power distribution, whereas an extension to heterogeneous
systems is presented in [19]. We then generalized the model
to systems with SIC capabilities. Besides the exact analysis,
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Fig. 10. Mean throughput̄SD(K) vs. cell radiusD in PL (⋄), RF (◦), and
LN (△) scenarios, for an access point with pure (no SIC) MPR capabilities
(empty markers) and single SIC (filled markers). The other parameters are:
spatial density of transmitting nodesδ = 1/200 users per square meter,
capture thresholdb = 0.02, residual interference factor isz = 0.1.

we also derived approximate expressions for the capture
probability and the system normalized throughput that prove
to be in very good agreement with the exact results, while
being much easier to compute.

The results provided in this paper can be used to better
assess the performance of a large variety of MAC and ARQ
techniques under more realistic channel models, and to investi-
gate the effect of a number of parameters, such as the capture
thresholdb, the multi-packet reception capabilityR and the
SIC capabilityK, thus offering a valuable tool for the design,
dimensioning and optimization of multi-receiver systems.For
example, in our case-study analysis, we observed that, without
SIC, the achievable normalized throughput is generally well
below the maximum theoretical value⌊1/b⌋ allowed by a
capture thresholdb, so that increasingR beyond a certain level
yields marginal benefits. Furthermore, the SIC mechanism
brings significant performance gains, in particular for wide
band systems (withb ≪ 1), though the normalized throughput
increment rapidly diminishes at each SIC iterations.

Furthermore, the proposed approach makes it possible to
analyze the asymptotic behavior of the zero-capture probability
Cn(0) and, in turn, of the single-receiver throughputSn(1) =
1−Cn(0), for large values ofn. In fact, using (38), the zero-
capture probabilityCn(0) can be approximated aŝCn(0) ≃
∑

y⋆∈Y ⋆ FP (y⋆)n ≥ FP (y∗)n wherey∗ is the largest value
in Y ⋆. From (39) and (35), it is now easy to realize that,
for largen, we havey∗ ≃ nb′mα(0,∞), so that we can write
Cn(0) ≃ FP (nb′mα(0,∞))

n . Applying the one-side variant of
the Chebishev inequality, we get

Cn(0) ≥
[

1 −
σ2

α(0,∞)

σ2
α(0,∞) + m2

α(0,∞)(nb′ − 1)2

]n

(52)

≥ 1 −
nσ2

α(0,∞)

σ2
α(0,∞) + m2

α(0,∞)(nb′ − 1)2
≃ 1 − W 2

nb′2
,

where the second inequality follows from(1− x)n ≥ 1−nx,
whereas in the last step we introducedW =

σα(0,∞)

mα(0,∞)
, which

is the coefficient of variation of the received signal power
distribution, and simplified the negligible terms under the
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assumptionnb′ ≫ 1. Therefore, in congested scenarios (i.e.,
when nb′ is large), we have that the normalized throughput
for single-receiver systems is upper bounded bySn(1) =

1−Cn(0) ≤ W 2

nb′2
which is larger in the case of high-variance

signal power distributions. This observation is in line with the
results reported in Fig. 10 for the hot-spot scenario, according
to which the throughput for large values of the cell radiusD
is better in the PL case than in the RF or LN cases. In fact,
increasingD, the mean collision sizen grows as quickly as
D2, whereas the coefficient of variationW of the received
signal power increases as quickly asD/ log(D) in the PL
case, or remains constant in the RF and LN cases. Therefore,
the probability of capturing at least one signal decreases as
log(D)−2 in the PL case, and asD−2 in the other cases.
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