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Abstract—In this paper, we address the problem of computing that the received signals satisfy the capture conditiMPR
the probability that r out of n interfering wireless signals has been recently shown to be a promising solution for
are “captured,” i.e., received with sufficiently large Sigral to high-capacity wireless networks [2], [3]. In fact, a better

Interference plus Noise Ratio (SINR) to correctly decode th . - .
signals by a receiver with multi-packet reception (MPR) and understanding of the ability of the receiver to correctlgaite

Successive Interference Cancellation (SIC) capabilitiesVe start  One or more signals, as a function of the statistical distitin
by considering the simpler case of a pure MPR system without of the received signal powers, may enable a more effective

SIC, for which we provide an expression for the distribution of design of the transceiver architecture and the optiminatid
the number of captured packets, whose computational compiéty the transmission protocols.

scales withn and r. This analysis makes it possible to investigate .
the system throughput as a function of the MPR capabilites b A Related literature

the receiver. We then generalize the analysis to SIC systemin The relevance of the signal capture phenomenon in mobile

addition to .the exact expressions for the capture probabity gnd radio systems has been recognized since long, as testified by
the normalized system throughput, we also derive approximiz . . . ’
the rather rich literature on the topic.

expressions that are much easier to compute and provide acate X .
results in some practical scenarios. Finally, we present kted In [4] the authors assume that a signal is captured whenever

results for some case studies with the purpose of illustratig the the strongest interferer is sufficiently far apart from thesd
potential of_the proposed mathematical framework and valicating ignated receiver, according to a statistical geometry mqj‘[
the approximate methods. In [5], capture is assumed to occur if the arrival instants of
Index Terms—Capture, wireless, collision, successive interfer- the first and second signals are sufficiently apart. A capture
ence cancellation, multi-packet reception model based on the number of simultaneous transmissions is
considered in [6], whereas in [7] it is assumed that a packet
is captured only if during its overall transmission perioal n
other signal is received with higher power. The stability of
|. INTRODUCTION the slotted Aloha system with MPR capabilities is studied in

NE of the main problems in wireless systems is th@]’ where the number of captured signals is modeled as a

mutual interference produced by overlapping radio Si(é;::mdom variable whose probability mass distribution degen

nals emitted by different transmitters, that might previbret _nIy onthe (_:oII_ision size, i.e., the overall number of overlap_-_
correct decoding of some or all of the signals involved, aHn9 tran_s_mlssmns. The authors_show that the MPR capabilit
event that is often referred to amllision. This situation 2" stabilize Aloha and the maximum stable throughput when

may be observed, for instance, in random access syste goes to infinity is equa_ll _to the mean valuemfrhg paper,
where transmissions from different sources take placeowith owever,.doles pot expllc[tly. focus on the derivation of the
coordination, or in dense wireless sensor networks, whéfpture d|str|t_>ut|on_,wh|ch is instead obtained for sonmeysa .
multiple sensor nodes may require to transmit their dataeo {CaSes by using simple capture models, as those described

sink node in the same time slot, or yet in ad hoc networks,

particular in the presence of hidden nodes. When the VariousSuccesswe_ly, the analy_S|s of the capture phenomenon was
signals are received with significantly different powehg so- extended to include basic physical propagation aspects. In

calledcapture effectnay take place, i.e., the strongest signag‘1IS ciase,twe _fmd éV_VO dn‘{erent apprgachgs for mOdTI'ng
may survive the collision and be correctly decoded despie lgnal capture in radio systems, one base onpiintoco
model and the other on thehysical model The protocol

interference due to the other signals [1]. del ai tric int tati f signal i
The capture phenomenon may significantly impact the synsq-O €' gIves a geometric Interpretation of signal propaget

i . S . according to which the capture of a signal only depends on
tem performance, in particular for systems with “Multi-Rat . ; .
o T . the distance between the different transmitters and theremm
Reception” (MPR) capabilities, i.e., capable of decoding-m

tiple overlapping packets out of a collision event, prcmiderecelver. In[2], [3], in particular, it is assumed that tleeeiver

1in this paper, we use the term “capture” to indicate the dimvdiunder

The authors are with the Department of Information EngiimgeiUniversity ~ which a signal can be decoded by an MPR system. However, ifitineber
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can capture multiple signals transmitted within its remapt capacity of a wireless ad hoc network applying a statistical
range, provided that all other (interfering) transmittare at geometry approach. In [17], it is shown that SIC can increase
a distance from the receiver larger than a given interfexenibhe stable throughput of Aloha systems up 193 packets per
range. This approach makes it possible to carry out elegaltt by measuring the aggregate signal power at the receiver
performance analysis and to derive closed form bounds famd using fine-grained power control at the transmittersv-Ho
the system capacity in different scenarios, but relies on awer, the effect of non-ideal channel state informationawer
idealized and rather unrealistic model. control on the capture probability with a SIC receiver is not
On the other hand, the physical model, which we adoptidressed.
in this paper, explicitly includes the physical propagatioB. Novel contributions

phenomena and the cumulative character of interference ing this work, we advance the state of the art in the analysis

the capture model, considering the random distributiorhef t ;¢ 1,4 capture phenomena by proposing a novel mathematical
signal powers at the receiver and introducing the Signal-t9,mework that, compared to the existing mathematical ap-
Interference-plus-Noise-Ratio (SINR) criterion to detére proaches, provides more general results and scales bétiter w
the capture probability [9], [10]. IP; denotes the power of the e jze of the problem, i.e., the number of overlappingaiign

jth signal at the receiver, the SINR for that signal is definefhis framework makes it possible to readily evaluate the

as P performance of random access systems with MPR capabilities
V= m (1) in various scenarios, and provides a useful tool for system
h# design and dimensioning. More specifically, in this paper we
where Ny represents the background noise power. A sig’nalprovide the following original contributions.
is said to be captured and, hence, it is potentially decedabl \ne first consider the simpler and more classical case of
despite the interference produced by the other overlappiggre MPR systems without SIC. For these types of systems,
signals, ify; > b, with b > 0 representing the so-calledwe derive an analytical expression of tkemplete capture
capture thresholdf the system. probability distribution i.e., we give the expression of the
The capture thresholblis a system parameter, whose Valuﬁrobability C,(r) that exactlyr signals out ofn are above
depends on the structure of the receiver and, more genergis capture threshold for any < r < n. The numerical
on the properties of the communication system. For instanggajuation of this expression is scalable with the values of
conventional narrowband systems with a single antennasnegsoth 1 and r, unlike the expression in [11] that involves
sarily have capture threshold> 1 and, as a consequence, af, npested integrations, and whose complexity is therefore
most one signal at a time can be captured by the receiver [@ponential inn. From the capture probability, we obtain
[11]. Conversely, in Code Division Multiple Access (CDMA)ihe exact expression of theormalized system throughput
systems, the capture threshold can be significantly lessitha g R), defined as the mean number of successfully decoded
depending on the length of the spreading codes that are usggkets out of a collision of size, when there is a limit?
to distinguish the signal of each user. These systems, I faga|led MPR capability) to the number of signals that can be
trade the spectral efficiency of each user with a SINR 9adimultaneously decoded.
propor_tional to the length of the spreading code, which may second, we extend the analysis to SIC systems, where
result in a capture threshold < 1. Hence, CDMA systems tne decoding process involves successive decoding iiesati
are capable of decoding up {a/b| overlapping signals, thus At each iteration, the signals with power above the cap-
exhibiting multi-packet reception capabilities ture threshold are decoded and, then, subtracted from the
In general, however, the signals at the receiver are aﬂec@ompound received signal, leaving a fractionof residual
by random attenuation factors, so that the number of sign@lserference power. This process is repeated sequentay
that can be actually captured is also random. An analysiseof t,5 further signal is captured or the maximum numbérof
capture probability fob < 1 has been proposed in [11], [12].interference cancellation iterations is reached. We pie@tie
In particular, in [11] the authors derive an expression fa t expression of the probabilitﬁ,(f)(r;K) that r signals out

probability that therg i$_1t_ leastone sigr_la_l above the capturess ,, are decoded by a receiver capable of performing up
threshold, which is significantly more difficult to compuk&t 4 s interference cancellation iterations. Once again, from

in the case) > 1. the capture probability we can derive the normalized system

A different approach to enhance the system capacity in tﬁ’r’?oughput as a function of the maximum permitted number
presence of interference is based on Successive Intet®rep- ¢ 'sic iterations.

Cancellation (SIC), which was first proposed in [13]. Brgadl  1pjrg e derive simple approximate expressions, based on

speaking, SIC is an iterative reception scheme where sig central limit theorem, for a lightweight computationtioé

nals are generally decoded one at a time, starting from {g.,re probabilities. In particular, we propose a novedyse

strongest, i.e., the one with the largest SINR [14]. Aftes thapproximation of the capture probability that can be coragut

signal is decoded, it is canceled from the aggregate redeigii ot resorting to numerical integration. Furthermone
signal and, then, the next strongest user is decoded in the

subsequent decoding iteration. Therefore, SIC systems ar&s a side result, we generalized the capture probabilityresgion to a

inherently capable of muIti-packet reception [15]_ A relcereterogeneous scenario, where users may have differetdrearesholds
rresponding, for instance, to different modulation sobe or spreading

. . . co
gnaly5|s of the network capaqty of SIC systems Is pre;enyg ors. For space constraints, however, this generalizahas not been
in [16], where the authors provide bounds on the transmissiported here, and can be found in [19].



propose a simple recursive method to obtain an accuraberienced at the successive decoding iterations. To Imode
approximation of the normalized throughput for SIC systentkis idiosyncrasy of the interference cancellation preces
with extremely low computational complexity. assume that the cancellation of a signal received with power
Finally, to assess the potential of the proposed method aRdleaves a residual interference power 0P, with z < 1.
illustrate the type of analysis it enables, we provide actiele This proportional model for the residual interference powe

of results obtained in some reference scenarios. though simple, is rather common in the literature [16], [21]
and has been justified for some specific modulation schemes
Il. SYSTEM MODEL [22], [23]. In any case, the derivation presented in thisgoap

The most natural application scenario for this study is tH&" be adapted to more general models as well, at the cost of

uplink of a wireless access network, such as a slotted Alofidn°re cumbersome notation. _
system or an IEEE 802.11 cell. In this scenario,radio The iterative SIC reception process stops when all signals

terminals simultaneously transmit their signals to a comm@re decoded, or no signals satisfy the capture condition in a
receiver. For the sake of simplicity, we only consider theecadecoding cycle. Furthermore, we assume that the SIC process
of synchronized transmissions of equal duration, which isG@" Pe performed up & times, with K = 0 corresponding
classical assumption in the related literature [16]-[1&h © the case of a pure MPR system with no SIC.

analysis of the capture phenomenon in case of asynchronous

transmissions of different length for IEEE 802.11 cellsiis-p [Il. ANALYSIS OF PURE MULT-RECEIVER SYSTEMS

sented in [20], where however the capture model is based onn this section, we consider pure MPR systems, lacking any
the number of simultaneous transmissions, without consige S|C capability. The aim is to determine the expression of the

the SINR aspect. probability
The received power®;, with j = 1,2,...,n, are assumed _
to be independent and identically distributed (iid) random Cn(r) = Prr signals out ofn are captured.  (4)

variables, with Probability Density Function (PDH)(x)

and Cumulative Distribution Function (CDHp(x) that de-
pend on the transmit powers, the statistical distributidn
the distance between the transmitter and the receiver,
the stochastic phenomena (fading, shadowing) that affect
signal propagation. The compound signal at the receivéres
superposition of the: overlapping radio signals transmitte

by the users, with power equal to

Computing (4) in MPR systems is difficult because the
SINR of the different users are coupled. One possible way
% handle this interdependency is to apply the law of total

bability, conditioning on each random variab]®;}, as
one in [12]. However, this method generates a number of
j;ested integrals that grows linearly with the number of siser

nd, therefore, the resulting expression is not practioal f
more than a few users. With our approach, instead, we obtain

n for any n an expression with at most three nested integrals,
A= Z Pj + No, (2)  which can be easily computed with numerical methods.
g=1 To begin with, we define the capture condition in terms of

where Ny accounts for the noise power. For the sake dhe overall aggregate received poweby rewriting (3) in the
simplicity, in the sequel we omit the noise term that is expéc following form
to be negligible with respect to the other terfns.

- : s e - P; > AV (5)
A signal with powerP; is captured if its SINRy;, given J
by (1), is larger than the capture threshéld wheret’ = b/(1 + b) is termedmodified capture threshold
P In this way, we express the capture condition in terms of
VT A P; >b. () minimum received signal powend’, which is the same for

all the users.
For pure (no SIC) MPR systems, we assume that the

receiver successfully decodes all the captured signalgp upy,
the MPR capabilityR: if the numberr of captured signals

exceedsR, the remaining signals are actually not decoded. (r) in terms of the ordered joint probability, (r) of

qu SI.C systems, we suppose that at each lteration ¢ pturing thefirst - signals and missing the remaining— 7.
receiver is capable of decoding all the signals that expeee Second, we condition o = z in such a way that the

the capture condition. The decoded signals are then Smaccapture threshold\b’ on the right-hand side of (5) becomes

from the a_ggre_zgate_ received _Slgnal before_performlng trEj%terministically equal tad’ so that, due to the independency
next decoding iteration. The signal cancellation requifes of the received signal power from different nodes, we can
receiver to reconstruct the waveform of the decoded useg '

%sily compute the probability thatnodes are received with

an operation that involves the accurate estimation of t Bwer aboverd’ and the others fall below the threshold. Third
channel impulse response and errorless message deco '

_ ; . apply Bayes’ rule to get the conditional PDF of the total
When these operations are imperfect, the signal canmﬂlatke bply =ay ! g n

. . _ ﬁeived power\ beingz, given thatr received signals have
leaves some residual power that increases the noise Ieﬂgwer in the intervalz', o), and the othen —r have power

! . ; o . :
3The analysis can be extended to include the noise term, thatthe cost I the mterva![(), zb']. The Condltlonql re(.:elved13|gnal powers
of a more complex notation with no additional insight. constrained in these intervals maintain their indepenglenc

Now, the derivation of the expression @f,(r) develops
ong four basic steps. First, we apply basic combinatorial
analysis to express the unordered joint probability fuorcti



and are represented as auxiliary random variablgg:, v), where
wherew and v denote the extremes of the interval. We can
then express the conditional PDF of the aggregate pawer )
evaluated inz, given thatr signals have power in the intervaIfA(Iw):;lffb

h
/ H H / _
(ab', 00) _and n —r in the interval [O.’fvb ], as then fo_Id is theconditional PDF of the aggregate received signal power
convolution of the PDFs of the auxiliary random varlablei given€, iie., given that the first signals have power above
ap(u,v). This convolution can be efficiently performed in th%h’e thresh'ol.d/gb’ — 2/, and the remaining — r have power
frequency domain, which represents the last step. We can NO%ow such a threshoid

Sta_;ﬁ the fm?! I;esult and, Fthen, dEtZ'l the dTr|v§ﬁ<on. - Fourth step: We now introduce the parameterized random
eorem 1:For any positiven, and any value$ < r < n, variableA(y) defined as

the probability of capturing: out of n packets can be com-

Pr [Zg;lpj €(z—h,a)| Py > 2b/, Py < b/

puted as _ r n
0o A(y) = Z ah(yv OO) =+ Z ah(ovy) ) (12)
n r o — —
e =(") [~ 0= Fe)) By @) = W
000 _ where, for any0 < u < v, ay,(u,v) are iid random variables
[ / [V aatr,00) ()] [Pa(o,e0) (6)]" €™ d¢| dz with common PDF
- fr(a)
a(uv) (@) = , for ae (u,v]; 13
where ) fa(uv)(a) Fo(o) - Fo() (w05 (13)
Vo (&) = / %e‘i%f“da (7) and zero otherwise. In practice, (13) is the conditional PDF
w Fr(v) = Fp(u) of P given thatP € (u,v].5
for v < v and zero otherwise, and= /—1. Due to the statistical independence of the terms in (12), the
Proof: The proof of the theorem develops along the fou?DF f3(,(a) of A(y) is equal to the multi-fold convolution
basic steps described above. of fa(y,00)(@) @nd foo,4)(a). In the frequency domain, the

First step: Let Uy be the set of captured signals atig the Fourier Transform (FT)l5 () of f5(,)(a) becomes
set of missed (non-captured) signals. Due to the symmetry of . .
the problem, the captured signals can be arbitrarily chosen. Ua)(6) = [Yary,00 ()] [Paco.)(E)] (14)

Hence, without loss of generality, we can write Where W, ., (€) is the FT Of fuu..(a), which is given by

ny. (r) ®) (7). The functionfz,(x) can be obtained from (14) through
" inverse FT, that is

wherec, (r) is the probability that signal&, = {1,2,...,r}, f;\( )(x) _ /°° [\If " )(mr[qj o y)(é_)]n—reigﬂ-mf de
Yy a(y,00 (0, .

are captured and signal§ = {r + 1,...,n} are missed. In
formula: (15)
We now notice that, for any, the function f5,(z) with
cn(r) = Pr[Po > AV, Py < AV] (9) 4 =ab is equal tofs (z|€). Hence, (11) can be expressed as

where, for brevity, we adopted the compact notafiyn> v o0 o P
in place of{P; > v,Vj € Uy} and similarly for the opposite en(r) = /0 fi@(x) (1 = Fp(ab'))” Fp(ab))""dz.
inequalities. (a6)
Second stepApplying the total law of probability on\, we Replacing (15) into (16) and the result into (8) we finally get
get (6).m
oo Note that this result is completely general and holds for
cn(r) = /Pr [Py > 2t , Py < ab/|A = 2] fa(z)dx any spatial distribution of the transmitters and any prapiag
V. model, provided that the received powers are iid. The actual
- /pr [E|A = z] fa(z)da (10) evaluation of (6) might require numerical methods for the
0 computation of the two nested integrals and of the FT (7),

where fx (z) is the PDF of the aggregate received powser When it cannot be expressed in closed fétmany case, the

and we se€ = {P, > zb/, Py < zb'}, for compactness. computational complexity of (6) is limited for all the casefs
Third step:Applying the rule of Bayes, we obtain interest and, most importantly, it is essentially indeparidf
- r andn, so that our method is very scalable. On the other
en(r) = / fa(z|E) Pr[€] du hand, the expression provided in [11, Eq. (19)] only gives th
0 probability of capturingat leastone signal (which is equal to

_ /°° (€)1 = Fp(ab)) Fp(ab)""dz (11) 1 C,(0)), and requires the explicit computation ofnested
0

SIf Pr[P =0] > 0, the PDF f,(0,,)(a) must be defined for € [0, ]
4Even though the statement and the proof of Theorem 1 are dieem rather thana € (0, v].
with reference to continuous distributions of the receiymvers, the same  ®An efficient way to compute the FTs and their inverse is dbsdrin [18],
result can be shown to hold true for any probability distiifis as well. [19]



integrals, whose complexity grows exponentially withand interference, the overall signal power at decoding iterati
therefore cannot be used except for very small collisioassiz can be expressed as

We now turn our attention to theormalized system through- - ft
put, defined as the expected r_1umb_er of packets that can be Ay, = ZZFJ' + ZFZ Ny,
successfully decoded in a slot in whiehusers transmit. This s sy
performance figure has been deeply analyzed in the litera- i ) o
ture, mainly for: (i) systems with single reception capipil Where the first sum is zero when= 0. Once again, in the
(R = 1), i.e., able to decode only one packet even Whé‘gllovylng the noise term will pe o.mltteq. A signal with power
multiple signals experienc6INR > b, or (i) systems with £ Will be captured at decoding iteratidnif
infinite reception capabilitylf = ~0), i.e., capable of correctly P>, = Ay (19)
receiving all the packets that satisfy the capture conuljtld].

In this work, we generalize the analysis to systems thethereY;, is calledabsolute capture thresholidr iterationh.
can actually decode at most > 1 simultaneous signals We wish to determine the expression of the probability
(e.g., due to hardware limitations), even when the number of ()

signals above the capture threshold is larger tRaDenoting ~ C (r; K) = Pr[r signals out ofn are captured

n

by S,.(R) the normalized throughput of a system with MPR within at mostK SIC iterations. (20)
capability & < n, we have The derivation unfolds along the four phases described in
ol " Rl Sec. Il that, however, becomes slightly more involved.
Sn(R) = Z rCa(r)+R Z Cn(r) = ) rCulr)+RQn(R) First step:To begin with, we observe that.” (r;0) = C,,(r)
r=1 r=~R r=1 (17) and, for anykK, C,(f) (0; K) = C,(0), which can be computed

whereQ,,(R) = 3>"_, C(r) is calledfull-capacity reception using (6). In the foIIowing_,_we hence assunk > 1 and
probability, since it denotes the probability tha or more 7 > 0. The capture probability can thus be expressed as

signals are above the capture threshold and, consequingly, min(r—1,K)
multi-reception capability of the receiver is fully expied. Cf:)(r;K) = Z Cx(r;k), (21)
Using (6) into (17), we can compute the normalized sys- k=0

tem throughput for any value of the reception capability
In particular, the normalized throughput of single recepti
systems is equal t&,,(1) = Q,(1) = 1 — C,(0), whereas
the normalized throughput of infinite-reception systems
Sp(00) = E[r|n], wherekE [r|n] denotes the expected value o
the number of captured signals (outgfand can be computed
as in [10].

whereC (r; k) is the probability of capturing signals with

the last capture occurring at iteratién It shall be noted that,

according to the definition of, it must ber > k + 1, since
leastone signal has to be decoded at each iteration for the

eception process to continue. Hencejetlenote the number

of signals decoded at thigh iteration, withh = 0,1, ...k,

and letr,; = n—r denote the number of undecoded signals

at the end of the reception process. Due to the symmetry of

IV. ANALYSIS OF .
the problem, we can write

SUCCESSIVEINTERFERENCECANCELLATION SYSTEMS

The derivation of the capture probability to systems with rk r—ro—k+l roro— T2l
SIC basically follows the same rationale as in Sec. Ill, but Chlrsk) = Z Z Z Ac(r)  (22)
TU:]. 7‘1:1 Tk71:1

is slightly more complex and requires a more cumbersome
notation due to the iterative nature of the decoding processhere, for compactness, we usedto denote the vector
Let k& be the iteration at which the reception process endS;y, r1,...,rx+1}, and we sefd = ﬁ . The function
i.e., in which the last capture occurs. Furthermoreligtbe ((r) is the ordered capture probability for the vectar, i.e.,
the set of signals that are decoded at #iie iteration, with the probability that signalg to o are captured at iteration
h =0,1,...,k. The signals that remain to be decoded at theero, signals-, + 1 to ro + r, are captured at iteration one,
end of the reception process, if any, are collected in the sgtd so on, and that signals frOEﬁ:o r, + 1 to n remain
Uk+1. The aggregate power of the signals in &gt will be undecoded at the end of the reception process.
denoted by We now need to distinguish the cage< K, when the
reception ends because no signal is captured at iteration
T = Z By, h=01,...k+1. (18) fromrihe casé& = K, when thegreceptionpprocess is terminated
) IEUn ) because the maximum allowed number of SIC iterations has
Since the decoded signals are cancelled from the oveigllen reached. In the following, we derive the expression of
received signal, leaving a fractionof their power as residual c(r) for k < K, and then we explain how to adjust the result

"The approach proposed in this section can be easily extetoled for the Case% = K.
heterogeneous scenario, where both the capture threshdidha PDF of Recalling (19), we can express the ordered capture proba-
the received signal powers may differ among users. The sxtenwhich bility for k¥ < K as
unfolds exactly as in the homogeneous case but requires @ coatbersome

notation, can be found in [19]. c(r)=Pr [P,;>Yo>P;>Y>->P.>71,.. P <T
8If the setU}, . is empty, the aggregate powEy, , ; is conventionally set ( ) [ 0 ="t l=rrr= Tk o Bkl = k&g)
to 0.



where we adopted the same compact notation introducedVie now notice that, for any, the functionT},(u,v)(z) is

Sec. 1112

equal tofr, (z|&,) whenwu andv correspond to the limits of

Second stepApplying the total probability theorem with the interval in&,. Hence, fork < K we have

respect to the random variabl€g, we obtain

C(I‘) = / fr(g) Pr |:P0 > )\0 >Py >\ >

2P > A, Prgr < A

where we used and g in place of {T'y,---

{90, -, grs1}, respectively, and we &t

k+1

297+Zgg b, h=0,...

(24)

r= g]dgomdgkﬂ

Tryr}, and

The function fr(g) in (24) denotes the joint PDF of

evaluated ing.

Third step:Now, applying the rule of Bayes we get

o(6) = [[ setelé) Prildg - g

where £ =
h=0,...,

ing, i.e.,

fr(gl€) = lim

(25)

K& with!t &, = {P), € (A, An_1]} for
k, and5k+1 = {P+1 € [0, \g41]}. The function
fr(gl€) is theconditionaljoint PDF of " given £, evaluated

Pril c(g—hgll€]

h—0 hohl s

We observe that the events éhare mutually independent, so

that we can write

k
Pr€]
h=0

Furthermore, the conditional PDF &f given £ can also be

factorized as

k+1

11 fr..(anlén) -

h=0

fr(gl€) =

hy41

= FpQer)™ [T IFp (A1) = Fp ()™

. (26)

(27)

k
HFP/\hl

FP(M))””]

o(r // Fr(Apsr) ™+
i1/

U (v a<o,xk+1)(€)}”“6””’““5dé} dgo -+ dgit1 -

aOnn1)(©)] "ePmont d&] (30)

For k = K, the ordered capture probability becomes

c(r)=Pr [Po>Yo>P; >Y> - >Pg > Tk, Pyt < Tg]
(31)

which is very similar to (23), except for the fact that the app
bound of Pk is now T rather thanY x,,. Hence, (30)
can be directly extended to the calse- K by defining

K+1

Zgg-FZgz b

AK+1 = A =

Putting all the pieces together, we can finally express (21)
as?

m1n{r 1K} r—k r—ro—k+1 F—Tg—...—Tp_2—1
RN IEDS > A
ro=1 ri=1 rr—1=1
[e'S) k
/ /0 Fp (A1) H(Fp(xh_l)—FP(Ah)yh]
h=0

(32)

k o0
lH / [Watanan_)(€)] e dg]

heg/ =0
[/ [\I/a(o,)\k+1)(§):|Tk+1ei27'rgk+1§ d{] dgo- - dgrsr -

It shall be noted that the number of nested integrals grows
proportionally to (and hence the computational complexity

Fourth step:We now introduce the family of parameterizedyrows exponentially with)i(, which is however expected to

auxiliary random variables

Th

v) = Zah,g(um), h=0,...
=1

JK+1;

(28)

be limited in practical systems for complexity, latency and
efficiency reasons. Conversely, the computational conitglex
of (32) grows much more slowly as a functionofindn, so

that our method is very scalable with respect to the number
of users in the system, which can take also large values.

whereay, ¢(u, v) are iid random variables with PDF as in (13). For SIC systems it makes sense to consider the mean nor-
The PDF [z, (,.,) () of [y (u, v) is hence given by the,-
fold convolution of f,(,..)(z) and can be obtained as

ffll(u,v) (l’) = /_ [\I}a(u,v) (5)] Thei27rm£ dg .

(29)

9f Uk+1 is empty, the inequalityP 1 < Y41 is trivially verified.

10When h = 0, the first sum is zero.

1For preserving the expression symmetry, we introduced tenay

parameter\_; = oo.

malized throughput as a function of the maximum permitted
number of SIC iteration& . Hence, in this case the normalized
system throughput becomes

- (s)
= E rC
r=1

(33)

2Note that, fork” = 0, (32) returnsCh, (r), though with a slightly different
expression with respect to (6).



V. LOW-COMPLEXITY APPROXIMATIONS OF CAPTURE sufficiently large values of;, the CLT approximation for the

PROBABILITY AND THROUGHPUT expression (29) yields
Although in most cases the numerical evaluation of the (=71 Mg ()
capture probability distributions (6) and (32), and of the R T T ()
normalized throughput functions (17) and (33) is afforéabl ffh(u-,v) (x) = o o2 (37)
sometimes it might be preferable to resort to approximate "o (u,)

methods that provide fairly good results at a much lower The expression (36) can be further simplified, at the cost of
computational cost. In the following we propose some pdssitsome additional loss of accuracy. For sufficiently smaluesl
approximations that trade off results accuracy for nunaéricof the coefficient of variations,.(y)/m..(y), the Gaussian
complexity. We first propose approximations for the captugstribution function is very narrow around the meém.. (),
probability distributions and, thereafter, we turn oueatton which depends om as shown by (35) According|y’ the terms

to the normalized throughput expressions. b (yfb’mr(y)) in (36) are generally very small whenlies far
. . . b/UT(y) ‘
A. Capture probability approximations away from the mea'm,.(y), whereas fory ~ b'm,.(y) the

The main issue in computing (6) and (32) consists in tHeaussian term can be approximated by an impulse with area
numerical evaluation of the PDF df(x') and T, (u,v), re- b'o+(y). Using this approximation in (36), we obtain this new
spectively. However, the computation of these functiomstme a@pproximate expression of the capture probability distign:

greatly simplified by resorting to the Central-Limit-Thear . n o o
(CLT). In fact, for sufficiently larger),, the distribution of Ch(r) ~ (T) > [L=Fpy)]"Fpy)"™,  (38)
terms like}"," , oy ¢(u,v) that appear in the expressions of yreEY®
C,(r) and C.” (r; K) can be approximated by a GaussiawhereY™* is the set of points such that
RN . i 5
distribution, with meanry,mq,,,) and variancer, oy, ), = b (y*). (39)

wherem,,,,., and o2 ,) are the mean and variance of the

a(u,v)

random variable:(u, v), provided that they exist and are finite The approximate expression (38) does not involve any nu-
For instance, the PDF of the parameterized random variaplerical integration, though computing* may still require

A(y), defined in (12), can be approximated as numerical methods in some cases. Even though this approxi-
mation is rather coarse in general, it gives an idea of thpesha
. N 1 (a — mr(y))2 of the probability distribution and provides a good estienat
Taw(@) = 2m02(y) P <_ 202(y) ) some useful metrics. In particular, the zero-capture fibiba
1 o — mo(y) C,(0) and the full capture probability’, (n) are quite well
= 10) < s ) (34) approximated by (38), that thus enables the asymptotic anal
or(y) or(y) ysis of these two important performance measures, as will be
whereg(-) is the standard normal PDF and discussed later on.

B. Throughput approximations
m;(y) B Tm;“(y’w) + (=) T“(O’y) ’ We here propose a first-order approximation of the capture
o, (y) = TOo(y,00) T (n— T)C’a(o,y) : (35) probabilities that yields a simple, recursive method tinestie
With a change of variabley(= z) and a simple rearrange-the normalized throughput of both pure and SIC-capable MPR

ment of the terms, the capture probability () for pure MPR systems. ) ,
systems can thus be approximated as 1) Pure multi-receiver caseHere we focus on the normal-

ized throughputS,, (o) of pure MPR systems with infinite

5 (N [ (y=Vm(y)\ 1= Fpy)] Fp(y)" " reception capability. The number of decoded signal can be
Cn(r)= - dy o . Lo .
r)Jo bo(y) bo(y) expressed as = > 7, x; wherey; = 1 if the jth signal is
(36) captured and zero otherwise. Hence, we can Write
The numerical solution of (36) requires a single integratio Sp(00) = Efr|n] = nE[x;] = nPr[P > Lo] (40)

which is generally much faster than the numerical solution

of (6), and can therefore be used as a simple approximatiéﬂ‘merez0 - (Nf_’ + 252 Fj)b. .The_ right-most term of (40) )
In particular, the approximation is excellent fer— 0, and is the probability that a certain signal, say the first one, is

C,,(0) turns out to be very close to the correct valtig(0) captured. This probability can be computed in different svay

already forn > 4. This result is of particular interest becausé first poss@hty Is to determme_ the PDF & as the(@—l)-

it provides a very simple way to have an accurate estimgfdd convolution offp(-) (neglecting, as usual, the noise term).

of the probability thatat leastone signal is captured, which Othervlvlﬁe,_ ash in the prec\jnous section, we r::an (r;esort.to the

corresponds to the normalized throughput for single récept centra |m|t.t eorem an approximatl with a aussian

systemsS, (1) = Q,(1) = 1—C,(0), and is the performance random ;/anabIQe, with meafw _h 1)ma(0-,foo)b aP?I variance

metric considered in most of the previous literature on tf{él_ 1)C"a(O,oo)b : Ho_wever, We here preter to oflow y_et an-

subject [9][12] other strategy that yields an even simpler solution. In tcac
Thelsame approach _Can_be used .tO avoid the ClompUtati(mNote that here we consider the capture threshalther than the modified

of the innermost numerical integrals in (32). In particufar capture threshold’.



we approximateZ, with its meanly = (n — 1)mqy0,00)b- (PL), Rayleigh Fading (RF), and Lognormal (LN), which are
Hence, from (40), we get the following normalized throughpuwletailed in the following?
approximation A. Path Loss model

Sn(00) = n[1 = Fp((n = D)ma(,0b)] (41)  For the sake of comparison with the previous literature, the
which can be directly computed from the CDF Bfin an first scenario included in our analysis is the so-called Pats
extremely simple manner. As we will see in Sec. VII, despitd’L) model and refers to the case proposed in Section I1.E of
its simplicity, (41) provides an accurate approximation dfi1] and in other recent works [24]. The scenario consists of
S, (00) in many cases, in particular when the number of nod&sUsers uniformly dlst_rlbuted in a circle of raqm[x centered
is large and the capture thresholis small. More importantly, &t the common receiver (e.g., a Base Station of a cellular
this trivial normalized throughput approximation for pa@R ~ N€twork, or an Access Point in a WLAN), so that the PDF
systems paves the way for the derivation of the throughpRftthe distance; from the jth user to the common receiver
approximation in SIC systems, which is presented next. 1S given by

2) Successive Interference Cancellation caJéie basic 2,

idea consists in computing an estimate of the mean numper fri(a) = D2 for 0<a<D,

of signals decoded at each iteratibntaking into account the ) ) .
effect of interference cancellation. For the generic tiera and zero otherwise. The radio propagation is governed by

h, we define the following parameters;, is the number @ simplg deterministic path-loss law, with neither fadirgy n
of signals that are not yet decoded at the beginning of t§adowing. As in [11], we assume that the received power at a
iteration, I, is the approximated value of the absolute captuffistancer from the transmitter is equal t5(r) = (1 +7)~",

thresholdZ;, for these signals ang, is the additional residual Wherer is the path loss coefficient whereas the constant unit
interference that will result from the cancellation of the termis added to avoid a physically absurd behavior-fes 0.

signals at the end of decoding iteratibnFor i = 0, we have Note that, for the sake of notation simplicity, we omit any

no = n and multiplicative cor_istant in ti_ie path-loss (_aquation thatany
case, would be irrelevant in our analysis. Hence, the power
7o = no Pr[P; > Iy] = no[l — Fp(lo)], (42) P received from a generic node can be modeled as a random

. . . iable that tak I in the int 1)=" 1], with
as given by (41). The residual interference left by the canc%?;? aﬁd é\DFag(iejexab%es in the interyeD + 1) i

lation of the7, signals, in turn, will be approximated as

_1\?
po = zToE [P|P > Iy| = 2FoMma(1,,00) - ) 1—x n)
[| | o) fp() = =3 (xi%il_xi%il)’ FP(x)Zl_( 2
Notice that, when computing the residual interference, the D D (45)

mean power of a captured signal is constrained to be Iarggr (D+1)~" <z < 1. From (45), it is then easy to derive
than the (approximated) absolute capture thresfigldnalo- the PDF of the au;iliary random variabte(u, v) that turns
gously, the power of the signals considered in the subsequgut to be equal to ’

iteration will be constrained to be lower thafly, and the
same applies to the following iterations. Hence, for theegien 2 7%71)

2(a " " —a
iteration > 0, we define fotuw(a) = ,
. " D2n(Fp(v) — Fp(u))

h—1

nn=n—Y 7 In=|>_pj+nn—1maor,_,|b; formax((D+1)""u) <a < min(v,1), and zero otherwise.
j=0 The FT of the PDF ofa(u,v) depends om. For space

Fao.1r_y(In) =Pr[P < I|P < 1] ; (43) constraints, we report here only the result for= 2 that, for

’ (D+1)"2 <u < wv <1, turns out to be given as in (47)

(see next page) whefe(z)]" = g(v) — g(u), andEi(m, z) =

(46)

=0

Th = nh(l - Fa(oalh—l)(lh)) 5 Ph = thma(lhalh—l) :

Finally, the approximate normalized throughput f&F SIC  f{° 22-2% da is the exponential integral function.
iterations is given by The statistical mean and power afu,v), still for n = 2,
K are given respectively by

8 (K) =7 (44) log(v) — 2/5 — log(u) + 21/ 48
jZO m(y(u,’u) - DQ(FP(U) _ FP(U)) Y ( )
For b > 1 the approximation can be further improved as 3(v —u) —2(vv — V)
described in [19]. a(u,v) = 3D2(Fp(v) — Fp(u)

14In [18] we considered an additional scenario, where we comthe
V1. DEFINITION AND CHARACTERIZATION OF REFERENCE classical path loss model with the Rayleigh fading model.
SCENARIOS 15We observe that, fo > 10, the PDF obtained with this model is

T lif ibl licati f the d | d Ibasically equivalent to that returned by the classical pais modelr—"
0 exemplity possible applications ot the developed ana ¥hen user locations are constrained to be at least one meder faoom the

sis, we consider three reference scenarios, namely Path Lessmitter, i.e.; € [1,D].
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a(uw) = D2(Fp(v) — Fp(u))
B. Rayleigh Fading model asyu = pgp/A ando = o4p/A where A = 10/1n(10),

In the Rayleigh Fading (RF) scenario, we assume that tHes iS the mean received power, in dB, whereas is the
path loss attenuation is the same for all users, as if alstniga  Standard deviation of the shadowing fading terms that range
ters were at the same distance from the receiver or they useffPn 4 dB to 13 dB in outdoor environments [25, Ch. 2, p.
power control mechanism that is capable of compensating @l The LN model can also be applied to CDMA systems
long term path loss attenuation. Therefore, the receivgubés  that adopt power-control schemes to harmonize the power of
have equal mean power, that we normalize to one. Howevkle different received signals. Considering for simpjidite
signals are affected by multi-path fading, so that the rexki homogeneous-rate case, an ideal power control scheme shall
power for thejth user will be an exponentially distributedMake all the signals be received with equal target pofver

random variable, with PDF and CDF given by so that the capture condition (3) is satisfied by all signals.
In practice, however, the actual power received from node

frla)=e, Fpla)=1-e"", a=0. (49) ;=12 ... n,indB,wil be equal toP;[dB] = P[dB]+¢;,
In this case, the FT of the PDF of(u, v) is given by wheree; are iid zero-mean gaussian random variables, with
standard deviatior.. Perfect power control corresponds to
¥ (€) = o. = 0 dB, whereas imperfect power control usually yietds
o(wv) (1+i2r&)(e v —ev) ’ from 1 dB to 4 dB [26]. Thus,P; has lognormal distribution
whereas the statistical mean and power are with p = P[dB]/A = In(P), 0 = 0. /A.
Unfortunately, the FT of the PDF odf(u,v) cannot be
(ut1)e™ —(v+1)e™ ’ (50) expressed in closed form in this case and, hence, needs to

efu(i 2w E4+1) _ efv(i 27 €41)

Ma(u,w) = —u 0 i . R
() € 2—6 ) be computed numerically, e.g., using the recursive method
M _ @CH2ut e — 2420+ 0%)e proposed by Leipnik in [27] and based on the double Taylor
(u.0) et —e expansion ofe~("*=m)"/(20%)  Conversely, the mean and

We observe that, due to the memoryless property of tltatistical power of the auxiliary random variable can be
exponential distribution, the PDF of the auxiliary randorg@xpressed in closed form &g, ) = 1(u,v;1); My =

variablel';, (u, co), defined in (28), admits the following closed! (u, v; 22) . where I(u,v;h) = E[a(u,v)"] =
7 chnth2a?/2 +he?—Inv +ho?—Ilnu
form expression: (Fr (o) Fo () [erfc (“ N ) — erfe (7“ el )} -

(a — urh)rh'71 —(a—ury) .

Tontuoo) (@) = = e ,

a > ury .

VIlI. PERFORMANCE ANALYSIS
It is thus possible to avoid the numerical computation of the
inverse FT of [U,(x,.00)(€)]" in (32). In particular, it is  Here we present only a selection of the results obtained in

possible to get a closed form expression of the full-captute three scenarios above, with the purpose of illustratmg
probability, which isC,,(n) = (1 — nb')"~! for nb’ < 1 and the method proposed in this paper can be used. We first discuss
zero otherwise. the case of pure MPR systems and, later, we address the SIC
C. Lognormal power distribution model case. Unless otherwise specified, all the figures presented i
this section have been obtained by settilg= 10, n = 2,
o=3/A, n=0,andb = 0.02 orb = 0.1. Changing the values
these parameters will clearly yield different resultsitth
owever, preserve the fundamental behavior and properties

Another interesting statistical distribution of the rews
signal powerP is the lognormal model (LN), according to
which the received signals have iid powers with PDF and C

1 {—un;m;u]?} illustrated in the following.
fr(z) = P 7 : (51)  In Figs. 1, 2 and 3 we report the capture probabifity(r)
1 In(z) — In(z) — for the PL, RF, and LN scenarios, respectively, as a function
Fp(x) = —erfc {—7”] = <I>( M>, of r. We plot a set of curves obtained by varying with
2 o2 g b = 0.02. We observe that in the PL scenario, when=

whereIn(-) is the natural logarithmerfc(-) is the comple- 15, which is well below the upper bound /b] = 50 on the
mentary error function, ané(-) is the standard normal CDF. maximum number of signals that can be potentially captured,
The parameterg ando are the mean and standard deviatiorithe capture probability presents a spikeria= n because the
respectively, of the associated normal distribution. most likely event is that all the: signals are captured (full
The LN model may be considered, for instance, when tlapture). The full capture probability in the RF and LN cases
terminals are at the same distance from the receiver, but theinstead, lower. The reason is that the full capture regtall
received signals are affected by independent shadowingdadthe signals to be received with similar powers, an event that
terms. In this case, the parameters of the PDF can be exgresgith the parameters considered in this analysis, is unlikel
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Fig. 1. Capture probability distribution€’,(r) vs. r in the PL scenario Fig. 3. Capture probability distribution§’, (r) vs. r in the LN scenario
when varying the collision size (b = 0.02,7n = 2). when varying the collision size (b = 0.02,0/A = 3).
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Fig. 2. Capture probability distribution§’, (r) vs. r in the RF scenario

when varying the collision size (b = 0.02). Fig. 4. ThroughputS,, (R) for different capture capabilitie® vs.n (b =

0.1) in the PL (solid) and RF (dashed) scenarios. Note that thenalized
throughput curve forR = oo (infinite-reception system) is superimposed to

. . . that obtained withk = 6.
to occur in the RF and LN scenarios, since the range of the

received signal power is larger than in the PL cHse.

Whenn increases, the full capture probability decreases aay, (0) of systems with single reception capabilily/= 1 (the
the distribution roughly assumes a bell-shaped form irhadlé metric considered in most of the previous literature) fdfed
scenarios, with mean and variance that progressively dsere ent values of the capture threshaldSolid curves refer to the
Finally, for very large values of, C,(0) tends to increase, PL case, whereas dashed curves are used for the RF scenario
and the system can capture fewer and fewer signals. (once again, the LN case is omitted here). The exact results

Fig. 4 reports the normalized throughput for the PL angines) are compared with the approximate values (markers)
RF scenarios, when varying the number of simultaneogbtained using”,, (0) given by (36) in place ot (0) in (17).
transmissions: and with b = 0.1. (To reduce clutter, we As can be noted, the accuracy of the approximation is very
do not report the results for the LN scenario that, with thgood in all cases considered. Although not shown in the figure
parameters considered in this analysis, fall in-betweerPth we have also verified that using the approximate vam(ao)
and RF results.) It is interesting to note that increasirg tlyiven by (38) still yields excellent results for< 0.1, whereas
reception capability beyond a certain point yields dintimg for larger values ob the approximation becomes less accurate.
returns. For example, in the case showh,= 6 already  For SIC systems we only show the results obtained in the
provides a normalized throughput very close to the maximuRF scenario, due to space constraints. In Fig. 6 we report
possible, though the number of signals that can be potBntighe capture probabilit;Cﬁ?(r;K) as a function ofr, for
decoded with capture threshabo= 0.1 is |1/b] = 10. This , = 20, which is twice the maximum number of signals
result suggests that it is possible to design radio systeitis W1 /5| that could be captured by a pure MPR system. The
partial reception capability that practically attain theme different curves have been obtained by varyiigas indicated
performance as systems with infinite-reception capability in the legend of the figure, and setting= 0.1. The solid

Fig. 5 compares the normalized throughpiyf(1) = 1 — lines with white markers refer to the exact solution given by

Lo ) o (32), whereas the black markers correspond to the appréogima

This conclusion depends on the relationship between therage range - . . .
D in the PL scenario and the varianeein LN, and different choices can be capture prObab"'ty values obtained as described in Se&. V-
expected to yield different results. First of all, we can appreciate that the Gaussian approxima-
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(solid lines) and RF (dashed lines) cases, for differenteslof the capture (a) Perfect SICz =0
thresholdb. Markers correspond to the approximate values obtainedsingu )
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tion (37) already yields very good results when the number

of captured signals is just a few. In fact, faf > 2 the 537 1
approximate results are basically overlapping with thecexa 2
ones. F ol ]

Second, we can clearly see that, in this case, SIC is very
effective, since the maximum number of signals that can be
captured with non negligible probability increases with
However, the gain becomes progressively less significant as
K grows, because of the imperfect interference cancellation

Although we do not report here the results for space
constraints, we observed that SIC is less effective in ighl (c) Imperfect SIC:z = 0.5
conges_t_ed scenarios, I'_e" when>>- l/b'_ln this Case_' the Fig. 7. Normalized throughpuf,, (K) vs.n, when varyingK, with b = 0.1:
probability of early ending of the decoding process is MuGiact (solid) vs approximate (dashed) results.
larger, so that it is likely that only a few SIC iterations daa
performed before the reception process ends.

Fig. 7 shows the normalized throughput results in thie accuracy of the proposed approximation method, at least
RF scenario. Solid lines with markers have been obtainéat reasonable values ok. Comparing the different plots,
using the exact equation (17), whereas dashed lines réportfurthermore, we note that, for a certald > 0, decreasing
approximate normalized throughput given by (44). The platyields two benefits: first, the normalized throughpui( k)
above in the figure refers to the case of perfect SIC,4.e:,0, increases for any; second, the system becomes more robust
whereas the plots below report the normalized throughput fim multi-signal collision events, as indicated by the gfiowt
z = 0.1 and z = 0.5, respectively. First of all, the ratherthe value ofn beyond which the normalized throughput starts
close match between exact and approximate results confirdesreasing. Nonetheless, we observe that, irrespectivieeof

Number of overlapping signals (n)
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. ‘ ‘ First of all, we observe that the largér the higher the
probability C,, (0) of capturing no signals at the first decoding
cycle and, in turn, the probability that SIC is not performed
at all. If (at least) one signal is decoded at the first iterati
then SIC might be effective to capture some other signags aft
interference cancellation. However, if the captured didvws
power P, then according to (3), the aggregate power of the
othersignals must be lower thaR/b. The large, the smaller
the range of power values that the remaining received sgnal
can take and, in turn, the less effective the SIC mechanism,
which instead requires very disparate signal strengthp [15
In Fig. 9 we analyze the impact of the capture threshold
Capture threshold (b b and the residual interference factoerin SIC systems by
reportingn(K) vs K when varyingb and for three values of
z, as indicated in the figure. The curves have been actually
obtained using the approximate expression (44), whiclwallo
forentede for a much faster, though still accurate, computation of the
results. We see that, for a certainthe curves obtained with
I different values ofb are bundled. This means that the peak
normalized throughput achievable with and without SIC egall
almost linearly with| 1/b|. Moreover;(K) grows with K but
il N ] the gain becomes negligible beyond a certain number of SIC
o 4 iterations, which depends on
To exemplify a possible utilization of the proposed analysi
we consider the problem of dimensioning an MPR-enabled
2 N access point in a hot-spot scenario. We assume that users
— are uniformly distributed around the access point, within a
o w0 cell of radiusD, and that they all use the same modulation
scheme, which yields a capture threshéldThe number of
Fig. 9. SIC efficiency;(K) vs. K, when varyingb and z. users that simultaneously transmit in a certain slot is remte
as a spatial Poisson process, with dengjtyo that the number
_ ) n of overlapping signals is a Poisson random variable with
value of z, the n_ormqhzed throughput gain tends to redu%erageup — 57D2. Note that the population of users served
after a few SIC iterations. In the case of ideal SICX 0), py that access point and, in turn, the mean collision sizevgro
for example, increasing the SIC capability froll = 4 10 4 adratically with the cell radiu®. The aim is to dimension
K_: 5 yields less than 0% of peak normalized throughputi,e coverage rang®, MPR capabilityR, and SIC capability
gain. . . o K of the access point in order to provide good performance,
As known from the literature, SIC is effective in widebanghije avoiding costly and useless over-provisioning of the

systems, i.e., whe < 1 [16]. To better appreciate the gcejver capabilities. To begin with, we define the meanbpli
impact of the capture threshold on the SIC performance,throughput as

we introduce theSIC efficiencymetric, defined as -
< () Iz
maxn{Sff)(K)} Sp(K) = Z S, (K)—Y!) exp(—up) .
= n=1

n
® ‘

max, {5, (0)} We then use (40) (or (41)) to determine the mean throughput
In practice,n(K) is the ratio between the peak throughpuior a pure (no SIC) MPR system with infinite reception
of a SIC system capable of performing upfdinterference- capability 2 = oo, when varying the cell radiuB. The result
cancellation iterations, over the peak throughput of theesais represented by the curve with white markers in Fig. 10,
system without SIC, and thus provides the maximum relative three cases, namely i) all nodes transmit with equal and
throughput gain that can be obtained by performing Sld@ixed power and the received radio signals are affected Hy pat
Fig. 8 shows the SIC efficiency(K) as a function of the loss attenuation only (PL), ii) nodes apply long-term power
capture threshold, for different values off{. White markers control to compensate path loss attenuation, but signas ar
connected by solid lines refer to exact results, whereaskblastill affected by Rayleigh fading (RF), iii) nodes apply sto
markers have been obtained with the approximate methgdm power control that perfectly compensates path loss and
described in Sec. V-B. The figure clearly shows that the bendfiding, except for a residual zero-mean Gaussian erxith
of SIC decreases rapidly s grows beyond0.1 and, for standard deviation. = 1.5 dB (LN). Curves refer to density
narrowband systems, i.e., whén> 1, the SIC benefit is of § = 1/200 transmissions per square meter per slot.
almost negligible. From the figure, we can see that there exists an optimal

An intuitive explanation of this behavior is the following.value of the cell radius, which depends on the power control

SIC efficiency (n(K))
N
»
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Fig. 8. SIC efficiencyn(K) vs. b, when varyingK and with z = 0.1.
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capabilities of the users. For smaller values of the cowerag
range, the MPR capability of the receiver is not fully expdi
because the number of parallel transmissions is low. Con-
versely, when the coverage range is greater than the optimal
value, the mutual interference will decrease the throughpu

We also observe that power control yields higher peak
throughput, but less robustness to variations of the tréssm
sion density. For example, the optimal performance in the LN
scenario withd = 1/200 is obtained with a cell radius of
approximately50 meters. However, doubling the cell radius
that, in the LN case, is equivalent to fourfold increase on
the user density, the throughput drops almost to zero. When 2 w0 w0 8 w0 w0t 1
users do not apply power control and signals are affected by celiredus ©
path loss attenuation only, the peak throughout is sigmifiga Fig. 10. Mean throughpusip (K) vs. cell radiusD in PL (), RF (), and
lower, but less sensitive to the variations of the transimiss LN (A) scenarios, for an access point with pure (no SIC) MPR ctifiesi
density. Therefore, this configuration is suitable when tHempty markers) and single SIC (filled markers). The othemmaters are:

spatial density of transmitting nodes = 1/200 users per square meter,

focus is on the minimization of the infrastructure comptegxi capture threshold — 0.02, residual interference factor is= 0.1.
(and cost) rather than on throughput maximization.

In the following, we consider the latter scenario and fix
the coverage range t® = 50 m. Therefore, the expectedwe also derived approximate expressions for the capture
number of simultaneous transmissions per slopjs = 40 probability and the system normalized throughput that rov
with § = 1/200. From (17), we can then determine thd0 be in very good agreement with the exact results, while
minimum MPR capabilityR,, of the receiver beyond which being much easier to compute.
the performance gain becomes negligible. For instance, welhe results provided in this paper can be used to better
can setR,, = argming{S,(R)/S,(c0) > 1 — p} wherep assess the performance of a large variety of MAC and ARQ
is the maximum acceptable performance loss. In our exampRghnigues under more realistic channel models, and tstirve
setting R,,, = 15 yields less thari0% of throughput loss for gate the effect of a number of parameters, such as the capture
transmission density larger than= 1/200. Note that the use thresholdb, the multi-packet reception capability and the
of SIC largely compensates the throughput loss incurred BYC capabilityK’, thus offering a valuable tool for the design,
limiting R, since signals exceeding the MPR capability of théimensioning and optimization of multi-receiver systeifsr
receiver at a certain decoding cycle will be decoded at ti§¥ample, in our case-study analysis, we observed thatputith
successive SIC iteration. The mean throughfutKX) when SIC, the achievable normalized throughput is generallyl wel
varying the numberk of admissible SIC iterations can bebelow the maximum theoretical valugl/b| allowed by a
estimated using (33), or the approximation (44). The linigh w capture threshold, so that increasing beyond a certain level
filled markers in Fig. 17 report the throughasip (1) after a yields marginal benefits. Furthermore, the SIC mechanism
single SIC iteration, whereas the results for larger vahfels  brings significant performance gains, in particular for evid
are omitted to reduce clutter. As already noted, the first Si@nd systems (with < 1), though the normalized throughput
iteration brings along a significant performance gain, e increment rapidly diminishes at each SIC iterations.

about50% of the peak throughput that is attained with> 5 Furthermore, the proposed approach makes it possible to
iterations. analyze the asymptotic behavior of the zero-capture piitityab

C,(0) and, in turn, of the single-receiver throughpit(1) =
1—C,(0), for large values of.. In fact, using (38), the zero-
capture probabilityC,,(0) can be approximated aén(o) ~

In this paper, we proposed a novel approach for the compE—y,eY* Fp(y*)™ > Fp(y*)™ wherey* is the largest value
tation of the probability that out of n overlapping signals are in Y*. From (39) and (35), it is now easy to realize that,
received with SINR above the capture threshold and, henéey, large n, we havey™ ~ nb'mq 0,0, SO that we can write
can be correctly decoded. Different from previous appreachC',(0) ~ Fp(nb'mq0,))" - Applying the one-side variant of
presented in the literature, our method deals with the digter the Chebishev inequality, we get

IS
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VIII. DISCUSSION AND FINAL REMARKS

pendency among the SINR values experienced by the different 52 n
transmitters in a simple and scalable manner. Furthernitore, Cn(0) > |1— — 6‘2(0700) ) 5 (52)
is rather flexible and can be used, with marginal adjustments Ta(0,00) T Mo (0,00) (nb' —1)
in a variety of scenarios. ”Ui(o 00) w2
We first applied the proposed mathematical framework to a >21-—= ~1l-—7,
. . . . 02 0.00) T M (0,00) (M — 1)? nb/
multi-receiver system in a homogeneous scenario, where all (0,00 (0,00)

users have the same capture threshold and received sigmaére the second inequality follows frofh — x)™ > 1 — na,
power distribution, whereas an extension to heterogeneousereas in the last step we introducéd = M which
systems is presented in [19]. We then generalized the modelthe coefficient of variation of the recelved S|gnal power
to systems with SIC capabilities. Besides the exact armlydilistribution, and simplified the negligible terms under the
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assumptiomd’ > 1. Therefore, in congested scenarios (i.e[19] —, “A mathematical framework for the analysis of theptare
whennd' is large), we have that the normalized throughput

for single-receiver systems is upper bounded $(1)

1-C,(0) which is larger in the case of high-variance

W2
< nb’2

signal power distributions. This observation is in linewihe

results reported in Fig. 10 for the hot-spot scenario, atiogr
to which the throughput for large values of the cell radins
is better in the PL case than in the RF or LN cases. In faftl]
increasingD, the mean collision size. grows as quickly as
D2, whereas the coefficient of variatioi of the received
signal power increases as quickly & log(D) in the PL

case, or remains constant in the RF and LN cases. Therefore,

[20]

[22]

the probability of capturing at least one signal decreases [28]
log(D)~2 in the PL case, and @~ in the other cases.
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