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Abstract—This letter shows that the accuracy of Radio Signal
Strength (RSS)-based ranging can be increased by averaging
RSS samples collected on different RF channels. Starting
from a multi-cluster propagation model, the analysis shows
that Multi Channel RSS Average (MCRA) can indeed reduce
the component of the RSS variability due to self-interference
produced by strong and quasi-static multipath replicas of the
received signal, while it is ineffective against fading components
caused by obstacles blockage. The theory is backed up by a set of
experimental results obtained in different scenarios that confirm
the capability of MCRA to effectively reduce RSS variability
and increase RSS-based ranging accuracy.
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I. INTRODUCTION

The suitability of Received Signal Strength (RSS) for
ranging in wireless networks has been long debated by the
scientific community. The approach is attractive because RSS
indication is made readily available by all common wireless
transceivers but, on the other hand, RSS measurements are
often unreliable and may yield large ranging errors [1]–[5].
While time variability can be attenuated by averaging out the
RSS samples over time, space-dependent variability cannot
be easily reduced when nodes are static and equipped with
single antenna.

In this letter, we propose multichannel RSS average
(MCRA) as a simple means to reduce the variability of
RSS measurements and, in turn, increase the accuracy of
RSS ranging. Despite its simplicity, the exploitation of
multichannel diversity to enhance RSS ranging has not re-
ceived much attention by the scientific community. This is
probably due to the misconception about the nature of the
space-dependent variability of RSS measurements, which is
commonly ascribed to the shadowing phenomenon, i.e., the
attenuation of the signal strength due to obstacles along
the path to the receiver. In this case, indeed, the spatial
diversity provided by a few MHz shift of the carrier frequency
would not be sufficient to counteract the spatial correlation
of the shadowing. In practical settings, however, the space–
dependent RSS variability is often due to self-interference
among strong multipath signal components that overlap at the
receiver with random phases [6]–[8]. In this letter we show
that MCRA is effective against this component of the space-
dependent RSS variability, while it is actually unavailing
when shadowing is only caused by obstacle blockage.

Channel diversity has been recently considered in [9] to
estimate the parameters of a simplified ray-tracing signal
propagation model, which allows for anchor-free node local-
ization. While less powerful and sophisticated than [9], yet

the MCRA method proposed in this letter is interesting be-
cause of its extreme simplicity and effectiveness in reducing
the variability of RSS measurements and enhancing RSS-
based ranging accuracy.

The rest of the letter is organized as follows. Sec. II
describes the prevalent RSS ranging model based on the
pathloss plus shadowing propagation model. Sec. III in-
vestigates the impact of MCRA on RSS variability by us-
ing a simple multi-cluster propagation model [7], [8]. The
theoretical argumentation is backed up in Sec. IV by a
series of experimental results obtained in different scenarios.
Sec. V finally concludes the letter by summarizing the main
achievements.

II. RSS RANGING

Let s denote the positions of a pair of transceivers, and
let d =‖s‖2 be the line-of-sight (LOS) geographical distance
between the two nodes. The RSS measured at time t by the
receiver can be expressed (in dB scale) as

ρ(t, s) = D(d) + E(t, s) (1)

where D(d) accounts for the deterministic part of the power-
decay law, and E(t, s) is a random variable that accounts for
all random factors that affect the received signal power.

A common model for D(d) is the one-slope path loss
propagation model [6], according to which

D(d) = K − 10η log(d/δ0) (2)

where δ0 is the distance after which the far-field assumption
holds and the path loss model is valid, whereas K collects all
the other constant factors that may affect the received power.

The noise term E(t, s) is normally modeled as a combi-
nation of short-term and long-term fading. The first accounts
for the time variability of the received signal due to quick
random changes of the propagation conditions [10], [11].
The long-term fading is often referred to as shadowing and
typically modeled as a lognormal random variable in linear
scale, which becomes a normal random variable in dB scale
[6], [11]. The shadowing is assumed position-dependent, but
almost time invariant.

Therefore, averaging out RSS samples collected in differ-
ent time instants, as typically done before performing RSS-
based ranging, one reduces the impact the short-term fading
components of RSS, but leaves basically unaltered the long-
term fading. Accordingly, the time-averaged RSS can be
expressed as

ρ̄(s) = K − 10η log(d/δ0) + Ψ
dB

(3)
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where Ψ
dB

= 10 log(Ψ) represents the long-term fading
(shadowing) that, in dB scale, is commonly modeled as a
zero-mean normal random variable with standard deviation
σ

ΨdB that ranges from 2 to 6 in indoor environments [6]. The
parameters δ0, K, η, and σ

ΨdB depend on the environment
and can be estimated from local measurements, for instance
using the classical Least-Square (LS) method [6].

Given the (time-averaged) RSS value r, the Maximum
Likelihood Estimate (MLE) of the transmitter-receiver dis-
tance is given by

d̂(r) = δ010
K−r
10η . (4)

Replacing r with the random variable ρ̄(s), we get

d̂ = d 10−
Ψ

dB

10η = dΨ−1/η (5)

where Ψ = 10Ψ
dB
/10 is lognormal distributed, with parame-

ters µ = 0 and σ = σ
ΨdB/A, with A = 10 log(e).

The normalized ranging error can then be defined as

εr =
d− d̂
d

= 1−Ψ−1/η (6)

whose mean and variance are equal to

mεr = 1− e
σ2

2η2 ; σ2
εr = e

2σ2

η2 − e
σ2

η2 . (7)

From (7) we see that both mean and variance of the ranging
error can be reduced by minimizing σ, i.e., σΨdB. In the fol-
lowing section we show that MCRA can significantly reduce
σ

ΨdB, depending on the characteristics of the environment
and the frequency band that can be used for multichannel
RSS harvesting.

III. THEORETICAL ANALYSIS

According to the multipath propagation model, the signal
propagates isotropically from the transmitting antenna and
gets scattered by floor, ceiling, walls, and objects, thus
reaching the receiver in a number of multipath components
that may have relatively large delay spread. Each component
may result from a single reflector or multiple reflectors
clustered together that generate multiple waves with strongly
correlated powers and similar delays [7], [8].

Suppose that the transmitted signal arrives to the receiver
in N multipath components, each consisting in a cluster of
waves. Let αn, τn, and θn denote the amplitude, delay and
phase rotation, respectively, associated to the nth component,
with n = 1, . . . , N . Although small variations of the environ-
ment in close proximity to the receiver, due to moving people
or machineries, may yield rapid variations of the amplitude
αn, the waves clustering remains almost the same, so that the
mean group delay τn and phase rotation θn can be assumed
time invariant. Instead, all parameters clearly depend on the
transceivers position, though we omit the s argument for
notation convenience.

For narrowband channels, the equivalent lowpass channel
impulse response can then be expressed as

h(t, s) =

N∑
n=1

αne
−j(2πfcτn−θn) (8)

where fc is the carrier frequency. Thus, the channel gain is

γ(t, s) = |h(t, s)|2=
N∑
n=1

α2
n +

N∑
n=1

N∑
m=1
m 6=n

αnαm cos (φn,m) ,

(9)
where, for brevity, we set

φn,m = 2πfcτn,m+θn,m , τn,m = τn−τm , θn,m = θm−θn .
(10)

The random process γ(t, s) is an alternative representation of
the RSS measured by nodes in position s, expressed in linear
scale. Therefore, the variance of the RSS is proportional to
the variance of γ(t, s). In the following we analyze the effect
of time and multichannel averages on γ(t, s) and its variance.

Time averaging yields

γ̄(s) = lim
T→∞

∫ T

0

γ(t, s)dt =

N∑
n=1

α2
n +

N∑
n,m=1

m6=n

αnαmcos (φn,m)

(11)
where αn and α2

n denote the time average of αn and α2
n,

respectively. Performing MCRA over C RF channels spaced
apart by a bandwidth Bc we get

¯̄γ(s)=
1

C

C−1∑
h=0

 N∑
n=1

α2
n +

N∑
n,m=1

m 6=n

αnαmcos (2πBcτn,mh+ φn,m)

 .

(12)
For shortness, (12) can be written as ¯̄γ(s) = G(s) + V (s)
where

G(s) =

N∑
n=1

α2
n ; V (s) =

N∑
n,m=1

m 6=n

αnαmνn,m ;

νn,m =
1

C

C−1∑
h=0

cos (2πBcτn,mh+ φn,m) .

(13)

The term G(s) models the effect of “macroscopic” prop-
agation phenomena, included path loss and signal power
absorbed by obstructing objects, which are unaffected
by channel switching. Conversely, V (s) accounts for the
self-interference among multipath components, which may
change by shifting the carrier frequency.

Assuming that φn,m takes uniform random values in the
interval [0, 2π] when varying s, independently of the other
variables, we easily realize that

m¯̄γ = mG , σ2
¯̄γ = σ2

G + σ2
V (14)

mV = 0 , σ2
V = E

 N∑
n,m=1

m6=n

ᾱ2
nᾱ

2
mν

2
n,m

 (15)

where m and σ2 denote mean and variance of the random
variable over all possible transceiver positions s at distance
‖s‖

2
= d. We hence see that MCRA can reduce σ2

V by acting
on the coefficients ν2

n,m, which can be expressed as (see [12])

ν2
n,m = cos(yn,m)2 psinc(Bcτn,m, C)2 (16)

where yn,m = φn,m+π(C−1)Bcτn,m, while psinc(x, n) =
sin(nπx)/[n sin(πx)] denotes the periodic sinc function.
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As known, the squared psinc function has period 1 and its
envelope is minimized at the center of each period: the larger
C, the flatter the envelope around its minimum and, in turn,
the lower the energy per period. Therefore, MCRA is most
effective when the bandwidth swept by MCRA is large and
the inter-cluster delays are widely distributed in the period
1/Bc. Conversely, the smaller Bcτn,m, the less effective the
MCRA. Since MCRA cannot reduce σ2

¯̄γ below σ2
G, as for

(14), the larger benefit is obtained when the environment is
rather homogeneous (i.e., variance of α2

n is low), and most of
the signal power variability is due to self-interference among
strong reflections of the signal.

As an example, consider the IEEE 802.15.4 standard that
defines C = 16 RF channels spaced apart by Bc = 5 MHz,
centered in the ISM band at 2.4 GHz. The typical delay
spread at these frequencies in indoor environments varies
from tens to hundreds of nanoseconds [13], [14]. In this
case, the MCRA can reduce the energy of the squared psinc
function to less than 30% of its initial value, thus effectively
reducing σ2

V .

IV. EXPERIMENTAL RESULTS

In this section we present the results of some experiments
carried out in different environments. All the experiments
have been performed by using TmoteSky sensor nodes [15],
which are equipped with the Chipcon wireless transceiver
CC2420 implementing the IEEE 802.15.4 standard. The
boards have been modified to use an isotropic external
antenna rather than the integrated patch antenna, which is
strongly anisotropic [16]. A simple communication protocol
has been implemented to collect RSS samples over all the 16
RF channels mandated by the IEEE 802.15.4 standard.1 Data
have been collected in four indoor scenarios (Room, Desk,
Aisle, Lab) and one Outdoor scenario. In all experiments
nodes are in direct visibility (LOS) and placed at the same
height. The description of the testbeds and all the collected
RSS measurements can be downloaded from the SIGNET
group website2 or contacting the authors.

Some results obtained from Room scenario are reported
in the composite Fig. 1. Upper, mid and lower graphs have
been obtained from raw RSS data, time-averaged RSS values,
and MCRA, respectively. Note that averages are always
performed in linear scale and the mean values are converted
back in dB scale.

The graphs on the left-hand side show the path loss curve
(line) estimated from the corresponding set of RSS values
(marks). The parameters K and η of the path loss model (2)
have been estimated from the RSS data using the LS method,
with δ0 = 0.6 m. The error term Ψ

dB

is then obtained by
subtracting the estimated path loss component D(d) from
the RSS data. The estimated channel parameters are reported
in the caption of each subfigure.

Comparing the three figures we see that time average
brings negligible effect which means that, in this scenario, the
short-term fading has limited impact on the RSS variability.
This result is probably due to the presence of a dominant

1We verified experimentally that channel switching is performed in few
milliseconds, so that multichannel RSS harvesting between a pair of nodes
can be completed in a fraction of second.

2http://telecom.dei.unipd.it/download
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(a) Raw RSS samples [K = −13, η = 2.1, σ
Ψ

dB = 4.57]

(b) Time-averaged RSS samples [K = −13, η = 2.14, σ
Ψ

dB = 4.5]

(c) Channel-averaged RSS samples K = −12, η = 2.34, σ
Ψ

dB = 2.23]

Figure 1: RSS data and channel parameters estimate in Room
scenario.

component in the received signal, compatible with a Rician
fading model with large Rice factor. Conversely, MCRA
yields a significant reduction of σ

ΨdB, which drops from
about 4.6 down to 2.2, with an improvement of ∼ 2.4. Very
similar results have been observed in the other scenarios,
both indoor and outdoor, not reported here for the sake of
conciseness.

On the right-hand side of Fig. 1 we show the quantile-
quantile plot (qqplot) of the sample quantiles of Ψ

dB

versus
theoretical quantiles of the distributions that exhibit better fit
with the experimental data, namely Extreme Value distribu-
tion in case (a) and (b), and normal distribution in case (c).
The Extreme Value model for Ψ

dB

(which corresponds to the
Weibull model in linear scale) has been empirically observed
in many different experimental campaigns, both in indoor
and outdoor environments [4], [17]–[19]. Instead, the normal
distribution that is commonly assumed for Ψ

dB

is actually
verified only when RSS are averaged over different channels.

These results are in good agreement with the multi-
cluster channel model of Sec. III. Indeed, the empirical
distribution of Ψ

dB

is rather similar to that obtained from the
multicluster model (9) when {αn} are modeled as Rician
random variables with Rice factor R = 30, and when cluster
delays τn are uniformly distributed in the interval [t0, tmax],
with tmax − t0 ' 50 ns, which is reasonable in indoor
environments [11], [13]. The good match between the dis-
tributions obtained from empirical data and the multicluster
theoretical model confirms the goodness of the model and the
effectiveness of the MCRA technique to increase the accuracy
of RSS measurements.

Fig. 2 shows the value of σ
ΨdB, σεr , and |mεr | obtained

in the different scenarios by averaging the RSS values re-
spectively in time, and over 6 and 16 RF-channels equally
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Figure 2: Impact of time and frequency average on σ
ΨdB

(upper), σεr (mid), and |mεr | (lower). Groups of three bars
refer to the different scenarios. In each group, the left, central
and right bars refer to time-averaged RSS, 6-channel MCRA,
and 16-channel MCRA, respectively. Dashed bars in the mid
and lower graphs are obtained from (7).

spaced in the 80 MHz of the ISM band. The empirical
values of σεr and |mεr | (solid bars) have been compared
with the theoretical values (dashed bars) given by (7) for the
corresponding σ = σ

ΨdB/A. We can observe that MCRA
significantly decreases σ

ΨdB, thus reducing both σεr and
|mεr | in all scenarios. Furthermore, MCRA performance is
almost the same for 6 and 16 RF channels, which confirms
that, if Bcτn,m is large enough, MCRA can be effective even
for small values of C. Finally, we see that empirical and
theoretical values of mεr and σεr are in excellent agreement
when MCRA is used, while the empirical error is sometimes
larger than the theoretical one for the single-channel RSS
case. The reason is that equations (7) assume lognormal
distribution of Ψ and εr, which is indeed observed only after
MCRA.

V. CONCLUSIONS

In this letter, we claimed that the accuracy of RSS measure-
ments and RSS-based ranging in common wireless systems
can be significantly ameliorated by averaging multiple RSS
samples harvested on different RF channels. To sustain this
claim, we proposed a theoretical analysis of the effect of
MCRA on the variance of the RSS, and a set of experimental
results obtained in different scenarios. The study confirms
that MCRA is effective in reducing the component of RSS
variance due to strong multipath interference, while it does

not affect the RSS variations due to path-loss and obstruc-
tions. In turn, MCRA can increase the accuracy of RSS-based
ranging, provided that the delay spread is large enough.

The price to pay for this gain is the higher complexity
of the communication protocol that has to synchronize the
nodes to a common channel hopping sequence. However, we
noted that most of the performance gain can be attained by
collecting RSS samples on just few channels, provided that
Bcτn,m is large enough. Since channel switching occurs in
different time instants, furthermore, MCRA also guarantees
time diversity and, hence, short-term fading compensation.
Finally, we observe that, given the number of RSS samples,
MCRA has basically the same energetic cost of single-
channel RSS ranging because channel switching is not an
energy consuming operation. In conclusion, MCRA is as a
simple but effective strategy to increase the accuracy of RSS
measurements and RSS-based ranging in wireless systems.
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