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Abstract—In recent past, researchers have suggested the idea of
extending information theory to the microfluidic domain. Along
this stream, a few solutions have been proposed to support
logic and computing functions as well as simple communications
in droplet-based microfluidic systems. Of course, pursuing this
objective, requires a deep knowledge of microfluidic basics
and relies on the use of an appropriate information coding
strategy. Accordingly, in this paper we introduce a possible
scheme for information coding in microfluidic devices, evaluate its
performance by means of some preliminary experimental results
and draw a number of considerations.

Index Terms—Droplet-based microfluidics, T-junction, droplet
generation, Pulse Amplitude Modulation, experiments.

I. INTRODUCTION

Microfluidics is both a science and a technology that deals
with the control of small amounts of fluids flowing through
microchannels. These have dimensions in the order of microm-
eters and are usually fabricated in PDMS, i.e., Polydimethyl-
siloxane, which is a silicon based organic polymer. In this
paper we are specifically interested in the so called droplet-
based microfluidic which is a branch of microfluidics related to
the control of droplets in such microchannels. In this scenario,
small drops of a certain fluid are dispersed into another
immiscible fluid: in literature the first fluid is conventionally
called dispersed phase, while the second is called continuous
phase. This line of reserch has emerged strongly in the past
few years, but the field is still at an intermediate stage of
development. Nevertheless its capabilities and advantages are
already well known. The microfluidic technology, in fact,
exploits both its most obvious characteristic (small size) and
less obvious characteristics of fluids in microchannels (such
as laminar flow) to provide new capabilities in the control and
concentrations of molecules in space and time. Moreover it has
the potential to influence many subject areas, from chemical
synthesis and biological analysis to optics and information
technology [1], [2], [3].

Focusing on this last aspect, physics researchers have ad-
vanced the idea of exploiting microfluidic systems to build
tiny computing units [4], [5], and the possibility of using
them in order to realize simple boolean functions has been
experimentally proved. Even more interesting is the recent
proposal of introducing communication notions in the mi-
crofluidic domain: a preliminary step in this direction was done
in [6], [7], where the authors proposed to encode information
in the distance between consecutive drops.

Inspired by these works, we carried out some experiments
using real microfluidic devices with the intent of investigating

a proper way to transmit information in a microfluidic channel.
In particular, we exploited the T-junction droplet generator
governing laws in order to modulate the length of generated
droplets (and, consequently, their interdistance) in a sort of
binary Pulse Amplitude Modulation scheme.

In Sec. II we introduce the main physics phenomena at the
basis of microfluidics. Then, in Sec. III we will present the
setting, describe the method and show the results obtained
in our experiments. Moreover, such outcomes will be techni-
cally analyzed in order to study their implications as far as
information encoding is concerned and, thus, to formalize our
communication scheme. Finally, in Sec. IV we will draw our
concluding remarks.

II. MICROFLUIDIC BASICS

The aim of this section is to let the reader familiarize with
the principal concepts of microfluidics, which will be recalled
and exploited throughout the entire work. In particular, we
focus on the droplet generation mechanism since it is at
the basis of our communication scheme. For further details
concerning microfluidic issues, please refer to [8], [9].

First of all, according to the Hagen-Poiseuille equation, the
average volumetric rate Qc in a microfluidic channel of length
L, filled with a generic fluid with dynamic viscosity µc, is
proportional to the pressure gradient ∆P through the law

∆P = R(µc, L)Qc , (1)

where, in analogy to the Ohm’s law for electrical circuits,
the parameter R(µc, L) is called fluidic resistance. In general,
R(µc, L) can be expressed as [10]

R(µ,L) =
aµL

wh3
, (2)

where a is a dimensionless parameter that depends on the
channel geometry and, for rectangular sections, equals

a = 12

[
1− 192h

π5w
tanh

(πw
2h

)]−1
. (3)

However, when a droplet is injected into a duct, the friction
generated with the carrier fluid and the forces produced by the
inhomogeneity between the dynamic viscosity of the continu-
ous and dispersed phases determine a change of the hydraulic
resistance of the channel [11], [12], [13]. Mathematically, the
variation of resistance produced by a droplet of length `d in



a channel of length L can then be approximated as [9]

ρ(`d) = R(µc, L− `d) +R(µd, `d)−R(µc, L)

= (µd − µc)
`da

wh3
,

(4)

so that the overall fluidic resistance of the channel when
crossed by a droplet of length `d is R(µc, L)+ρ(`d). Note that,
these relations are (approximately) verified in practice only
when the droplet is large enough to entirely fill the channel
section, with an extremely thin stream of continuous phase
between the droplet and the channel surfaces. In this case, the
speed of the droplet when crossing a channel is basically the
same as that of the continuous phase in that channel, i.e.,

ud = uc =
Qc
wh

=
∆P

wh(R(µc, L) + ρ(`d))
; (5)

where Qc is the volumetric flow rate of the continuous phase
in the channel, and ∆P is the pressure gradient between the
endpoints of the channel.

A. Droplet generation

As said before, our final aim in this paper is to provide a
communication scheme for microfluidic systems based on the
modulation of the droplets length/interdistance. As such, an
essential aspect to be analyzed is the method for generating
droplets in a controlled fashion. Not only should these devices
produce a regular and stable monodisperse droplet stream, they
also need to be flexible enough to easily provide droplets
of prescribed volume at prescribed rates. To this end, three
main approaches have emerged so far [14], based on different
physical mechanisms:
• breakup in co-flowing streams;
• breakup in elongational strained flows (flow focusing

devices);
• breakup in cross-flowing streams (T-junction).
We focus only on the last one, which is the most appropriate

solution in our case since it is well suited for planar geometries
and has clear-cut scaling laws for its physical behavior.

Fig. 1 illustrates the geometry of such a T-junction droplet
generator. Very simply, it consists of two channels merged
at right angle. The main channel carries the continuous (or
carrier) fluid and the orthogonal channel supplies the fluid that
will be dispersed in droplets. The channels have rectangular
cross sections, and there are only three geometrical parameters
that define completely the size and shape of the T-junction: the
width wc of the main channel, the width wd of the channel
supplying the dispersed fluid, and the height h of the channels.
In this regard, we focus on planar geometries, with identical
rectangular cross-section for every channel, in which the width
is slightly greater than the height. Liquid flows are commonly
controlled via independent syringe pumps imposing the inlet
volumetric flow rates Qc and Qd for the continuous and
dispersed phase respectively.

The process of droplet formation begins as soon as the
dispersed phase starts penetrating into the outer channel. Here,
three main forces act on the emerging interface and influence
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Fig. 1. Example of droplet production in a T-junction (top view).

droplet breakup: the surface (or interfacial) tension force (Fσ),
which has a stabilizing effect, and the viscous shear-stress
force (Fτ ) and squeezing force (FS),1 both of which have
a destabilizing effect and, eventually, lead to the breakup of
droplets from the dispersed liquid.

As stated by several studies [15], [16], [17], the balance of
these forces causes two principal regimes of breakup:
• squeezing regime, characterized by the stable formation

of uniform and evenly spaced droplets;
• dripping regime, where the balance of the forces is much

more unstable and short droplets are generated before
they can block the main channel.

Importantly, the transition between them is governed by the
Capillary number (Ca), which is a dimensionless parameter
that describes the relative magnitude of the viscous shear stress
compared with the interfacial tension. A simple definition for
Ca in microfluidics is given in terms of the average velocity
uc of the continuous phase, the dynamic viscosity µc of the
continuous phase and the interfacial tension coefficient σ [18]:

Ca =
µcuc
σ

=
µcQc
σwh

. (6)

In particular, for low values of the Capillary number (Ca <
Ca∗), i.e., when the interfacial forces dominate the shear
stress, the dynamics of breakup of immiscible thread in T-
junction is dominated by the squeezing force across the
droplet as it forms (squeezing regime). In the opposite case
(Ca > Ca∗), the shear stress starts playing an important
role and the system starts operating in the so called dripping
regime. As reported in a recent paper [16] and confirmed in
our numerical simulations, this threshold is given by:

Ca∗ ≈ 10−2. (7)

Let us now examine in more detail the regimes mentioned
above with a particular focus on the squeezing regime, which
is the one we will adopt later on for our microfluidic com-
munication system because it shows the best flexibility and
controllability over the shape of generated droplets.

a) Squeezing regime: The typical process of droplets
formation via squeezing regime is visually depicted in the
simulation of Fig. 2, obtained with OpenFOAM software,
where the principal geometric and physical parameters are
the following: h = 50µm,wc = wd = 150µm,Qc =
3.75nL/s,Qd = 1.875nL/s. Keeping in mind the previous

1This force arises from the increased resistance to flow of the continuous
fluid around the tip of droplet that is being formed.
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Fig. 2. Typical process of droplet formation in squeezing regime.

analysis and observations, the droplet generation mechanism
can be briefly described as follows: the two immiscible fluids
form an interface at the junction of the dispersed inlet channel
with the main channel. The stream of the discontinuous
phase starts penetrating into the main channel and a droplet
begins to grow under the effect of the viscous shear-stress
force (Fig. 2(a)). The latter, however, is not sufficient to
distort the interface significantly because this operating regime
works under the condition Ca < Ca∗, so that interfacial
tension dominates shear stress. Consequently, the emerging
droplet manages to fill the junction and restricts the available
area through which continuous fluid can pass, leading to an
increased pressure directly upstream of the junction (Fig. 2(b)).
When the corresponding squeezing force overcomes the inter-
facial tension force, the neck of the emerging droplet squeezes
(Fig. 2(c)), promoting its breakup. Finally, the disconnected
liquid plug flows downstream of the main channel, while the
tip of the dispersed phase retracts to the end of the inlet and
the process repeats itself anew (Fig. 2(d)). The intrinsic high
reproducibility shown by this mechanism is fundamental for
the stable production of uniform droplets with identical length
and shape (Fig. 2(e)) over a wide range of flow rates. This is
also the reason why we chose to work under squeezing regime
in our simulations of T-shaped droplet inlet systems.

b) Droplets length: Garstecki et al.[16] obtained a sim-
ple formula for the length Ld of the droplets resulting from
breakup at the T-junction in the squeezing regime, i.e.,

Ld = w(1 + ξ
Qd
Qc

) ; (8)

where w is the width of the main channel, Qd is the flow
of the dispersed phase, Qc is the flow of the carrier fluid
and ξ is a dimensionless parameter that depends on the
geometric and physical parameters of the system. Eq. (8) can
be intuitively explained by considering that detachment begins
when the emerging discontinuous thread fills completely the
main channel, i.e., when the squeezing force is stronger. At
this moment, the length of the droplet is approximately equal
to the width of the channel w, and the thickness of the neck
in the junction starts decreasing at a rate that depends on
the speed of the continuous flow uc. The flow of the carrier

fluid (Qc = uchw), hence, determines the “squeezing time”
necessary for the neck of the droplets to break. In fact, for a
given dispersed phase flow, the greater the continuous flow the
lower the squeezing time and thus the length of the resulting
droplets. On the other hand, there is a direct proportionality
between droplet length and dispersed phase flow (Ld ∝ Qd)
because Qd determines how much dispersed fluid forms a
droplet before breakup.

c) Interdistance between droplets: Another physical pa-
rameter to be considered, is the spacing δ [m] between droplets
generated in squeezing regime. Its scaling relation can be
deduced from the application of the mass conservation law,
as reported below.

Let us consider a sufficiently long time τ and the related
distance x = u′dτ covered by the droplets along the main
channel, being u′d the speed of the dispersed fluid in the main
channel. The number of droplets generated in the time interval
τ is given by:

nd(τ) =
x

Ld + δ
=

u′dτ

Ld + δ
, (9)

where Ld is the length of each single droplet, and δ is the
interdistance between droplets.

Beacuse of the mass conservation law, the volume of dis-
persed liquid injected by the discontinuous phase inlet channel
throughout the time interval τ must correspond to the volume
of dispersed fluid along x in the main channel, i.e.,

udwhτ =
Vdu

′
dτ

Ld + δ
; (10)

where Vd is the volume of the droplets. Accordingly:

δ =
Vdu

′
dτ

udwhτ
− Ld; (11)

This general expression can be further specialized under
some simplifying assumptions. First of all, we can make the
hypothesis, confirmed by our simulations, that dispersed and
continuous phase flow at the same velocity, i.e., u′d = u′c = u,
though it is not always true[4]. Accordingly, by applying flows



conservation, we get:

Q = Qd +Qc ⇒ u = ud + uc.
2 (12)

Substituting (12) in (10), it results:

ud(Ld + δ) = Vd(ud + uc). (13)

Now, concerning the volume of the droplets, we notice that
they are not exact parallelograms but are curved at the edges.
Therefore, if we approximate the tips as hemispheres with
radius w/2 we obtain:

Vd = wh(Ld − w) +
1

6
πw3. (14)

Putting all the pieces together, we obtain the following ex-
pression of the interdistance between droplets generated in a
T-junction in the squeezing regime:

δ =
Vd

Qdwh
(Qd +Qc)− Ld

= Ld
Qc
Qd

+

(
1/6πw3 − w2h

)
Qdwh

(Qd +Qc).

(15)

Lingering on (15), it can be noted that droplets length and
interdistance are correlated since δ depends on Ld. Conse-
quently, once fixed the geometry of the system and the physical
parameters of the liquids, droplets with a specific length will
have a corresponding precise interdistance between them.

In real microfluidic systems, however, the imperfections
in the fabrication process, the non-ideal hardware, and the
external interferences introduce variability in the results, as
discussed in the next section.

III. RESULTS

As we said in the introduction, our aim is to design a
microfluidic communication system in which the information
is encoded in the droplets length/interdistance. To this end, we
considered a 4-levels modulation scheme with symbols s(i),
i ∈ {0, 1, 2, 3}, which are associated, respectively, to the bit
strings {00, 01, 10, 11}. For each symbol we set a different
level for the dispersed phase flow Q

(i)
d in order to obtain

different droplet lengths L
(i)
d and interdistances δ(i) as per

(8) and (15). The continuous phase flow Qc is fixed. We then
investigate the performance of a T-junction in generating trains
of droplets with a given size and interdistances.

To this end we designed and realized a basic microfluidic
circuit, used for the experiments. Next, we describe the
experimental setup, characterizing the microfluidic chip, the
fluids and the hardware used. Thus we show the experi-
mental results on the droplet generation process. Finally we
assess the symbol error probability for a PAM–like system
in which modulation is realized by exploiting the droplet
length/interdistance, and we discuss the challenges and the
performance tradeoffs of such a system.

2The last implication follows from the fact that we always consider channels
with identical cross section.

Qc

Qd

Camera
field of view

Ld δ

Fig. 3. Sketch of the experimental setup.

A. Experimental setup

The microfluidic device we considered for our experi-
ments is a T-junction droplet generator. The device, made
of polydimethylsiloxane (PDMS), was fabricated using the
photolithography technique. We designed the chip with chan-
nels of height 90µm and width 115µm. The continuous and
the dispersed phase are injected in the system through two
PHD 2000 Harvard Apparatus syringe pumps, while the output
channel opens on air.

The continuous phase is a solution of Hexadecane, an alkane
hydrocarbon, and Spanr 80, a nonionic surfactant that lowers
the surface tension. The dispersed phase is instead an Aqueous
Glycerol solution (Glycerol 60% weight/weight).

We used a camera connected to a microscope
to record real-time videos of the experiments (see
www.youtube.com/channel/UCSAv6jxxZq4xmmFSpNKyoSw).
The camera takes 20 frame per second, for a time duration of
50 seconds for each experiment. The camera field of view is
centered on a section of the output channel of the T-junction,
as shown in Fig. 3. Hence, the droplet length/interdistance
are obtained from the acquired frames through an image
processing script.

B. Droplet generation

We set the continuous phase flow Qc = 5µl/min, whereas
the dispersed phase phase flow Q

(i)
d takes values in the

set {0.5, 1, 1.5, 2}µl/min, for symbols s(i), i ∈ {0, 1, 2, 3}
respectively. For each value of Q(i)

d the system is left running
for a sufficiently long time. The camera connected to the
microscope acquires 1000 frames, which are post processed to
obtain the values for L(i)

d and δ(i) in the 50 s acquisition time
interval. Fig. 4 and Fig. 5 show the results, obtained through
image processing, for L

(i)
d and δ(i). It can be noted that

there are non negligible fluctuations around the average values.
Tab. I reports the mean value, as well as the standard deviation
for both the droplet lengths and the interdistances. Specifically,
we define L̄d

(i) and σ(i)
d as the average droplet length and the

standard deviation for the i-th symbol respectively. Similarly,
δ̄(i) and σ(i)

δ indicate the average interdistance and the standard
deviation of the droplets interdistance for the i-th symbol.

C. Symbol Error Probability

In order to evaluate the performance of the microfluidic
communication system we assume that, for each symbol, the
length/interdistance can be modeled as a Gaussian random
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Fig. 5. Droplet interdistances for the four experimental setup considered.

variable N (i)(µi, σ
2
i ), where µi ∈ {L̄(i)

d , δ̄(i)} and σi ∈
{σ(i)

d , σ
(i)
δ } depending on whether we consider the length of

the droplets or their inter-distance as the modulating quantity.
Although further analysis is needed, the normal approximation
for these quantities appears reasonable, as qualitatively proved
by Fig. 6 that shows the empirical cdf of the droplet length for
symbol s(0), as well as the theoretical normal cdf. As it can be

TABLE I
NUMERICAL RESULTS FOR THE DROPLET LENGTHS, INTERDISTANCES,

DECISION THRESHOLDS AND TOTAL SYMBOL ERRORS IN THE FOUR
EXPERIMENTAL SETUP CONSIDERED .

i L̄
(i)
d σ

(i)
d thr

(i,i+1)
L δ̄(i) σ

(i)
δ thr

(i,i+1)
δ

0 184.52 2.26 193.29 769.65 14.04 679.5107
1 202.05 2.56 215.26 589.37 15.30 513.0877
2 228.47 3.08 243.85 436.80 9.44 397.8275
3 259.24 2.88 � 358.85 4.09 �

eL 1.80 · 10−5 eδ 8.95 · 10−7
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Fig. 6. Empirical and theoretical cdfs of the droplet length for symbol s(0).
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seen, the theoretical curve approximates tightly the empirical
cdf. The same assumption holds also for the other symbols,
and for the distribution of the interdistances.

Given the Gaussian random models, we identify the decision
thresholds for the decoding of the symbols at the receiver of
the microfluidic communication system as:

thr
(i,i+1)
L =

L̄
(i)
d + L̄

(i+1)
d

2
, i ∈ {0, 1, 2} ; (16)

for the droplet lengths. Correspondingly we use δ̄(i) for
the evaluation of the thresholds for the interdistance case,
thr

(i,i+1)
δ . The values of the decision thresholds are reported

in Tab. I
Fig. 7 and Fig. 8 show the probability distribution functions

(pdfs) for the droplet lengths and the interdistances. It can
be noted that in both cases the pdfs of different symbols are
sufficiently spaced apart and that the overlapping between pdfs
is minimal.

Following the standard procedure for a PAM-like modula-
tion system, the error probability is derived by first computing



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

300 400 500 600 700 800 900

pd
f

Ld [µm]

s(0)

s(1)

s(2)

s(3)

Fig. 8. Estimated pdfs of the four symbols when using droplet interdistance
modulation.

the conditional probabilities of error and then applying the
total probability theorem. Assuming equally likely symbols,
we have:

e =
1

4

3∑
i=0

P (E|s(i)) , (17)

where P (E|s(i)) is the conditional probability of error when
symbol s(i) is transmitted, and it is obtained using the deci-
sion thresholds and the symbol pdf. The last row of Tab. I
summarizes the results for the error probability when using
the droplet length, eL, or the droplets interdistance, eδ , as the
modulating variable.

IV. DISCUSSION

In this paper we investigated the feasibility of extend-
ing communication concepts to the microfluidic domain. We
started by illustrating the main notions of droplet generation,
and discussed their possible use to implement basic modu-
lation techniques in microfluidic systems. On this basis, we
carried out some experiments in order to investigate sim-
ple communication solutions in microfluidic channels using
droplet length and interdistance modulation.

Results show that the noise that affects both droplet length
and inter-distance can be modeled as a zero-mean normal
random process, whose variance, however, depends on the
transmitted symbol, i.e., on the working point of the system.
More specifically, droplet-based modulation exhibits stronger
noise for symbols associated to relatively short droplets, while
interdistance-based modulation is more noisy when droplets
are more spaced apart. Overall, however, droplet interdistance
appears to be more robust a signal than droplet length for PAM
modulation, though both techniques can achieve relatively low
bit error probability in the considered scenarios. Although this
analysis moves some initial steps toward the performance char-
acterization of a microfluidic-based PAM transmission system,
the way to go is still very long and unexplored. To begin with,
the impact of the hardware used in the experiments shall be

characterized, in order to sort out the microfluidics effects from
other sources of noise. As an example, the transient exhibited
by the droplet generation circuit when changing the volumetric
flow rates at the input has not yet been analyzed, nor has it
been considered the actual bitrate that can be achieved with
such a mechanism. To this end, we are planning to carry out
further experiments that will hopefully shed light on these and
other aspects.
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