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Abstract—5G systems are expected to be able to handle channel
access from a massive number of low cost machine-type devices
(MTDs), requiring intermittent connectivity to a network. Ideally,
these devices should be able to transmit their short message either
immediately without prior connection establishment (random
access) or with a lightweight connection establishment (access
reservation). In this paper, we analyze the capacity of a system
where a large number of devices transmit simultaneously to a
single receiver, capable of performing multiple packet reception
(MPR) by means of advanced decoding techniques, such as
successive interference cancellation (SIC). We derive a simplified
mathematical model that allows us to determine the average
number of signals that can be successfully decoded by the receiver
as a function of the number of overlapping transmissions and the
MPR capabilities of the system. We observe that, according to
our analysis, a receiver capable of performing perfect SIC and
MPR can theoretically decode an arbitrarily large number of
simultaneous transmissions by proportionally reducing the per-
user data rate, in such a way that the aggregate system capacity
remains almost constant.
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I. INTRODUCTION

Machine-to-Machine (M2M) communications are expected
to play a major role in the transition from the current cellular
standard to next generation networks. Indeed, while the ad
hoc reengineering of existing systems (GSM, UMTS, LTE)
recently carried forward by 3GPP and some research groups
[1]–[3] may initially satisfy the rising demand of wireless
access from Machine-Type Devices (MTDs), the Internet of
Things revolution will likely require new solutions designed
from scratch, in order to become a reality. Today’s radio
systems, in fact, have been originally designed to support
relatively few connections with high data rates. Thus, they are
intrinsically unsuitable for M2M communications, which are
conversely characterized by sporadic transmissions of small
data packets from possibly a very large number of devices,
with heterogeneous QoS specifications.

This vision motivates the study of new cellular protocols
and network architectures natively designed to support both
M2M applications and conventional Human-to-Human ser-
vices. However, while the fundamental limits for broadband
systems are generally well understood, a similar level of
understanding for M2M systems is still lacking. Specifically,
the different nature of M2M traffic with respect to conventional
UE transmissions calls for novel solutions, whose design, in

turn, requires a deep and solid comprehension of the fundamen-
tal properties and characteristics of the M2M communication
paradigm. In this respect, studies that adopt a clean-slate and
standard-agnostic approach can provide insights on the basic
aspects of M2M communication, thus shedding light on the
fundamental performance limits of these types of systems.

As a matter of fact, the centrally coordinated access mech-
anism, adopted by most of today’s wireless cellular systems,
presents severe limitations in the M2M context. Indeed, with
machine-type applications typically generating payloads of less
than 1 kB, the signaling commonly used to set up and maintain
mobile broadband data connections may become the bottleneck
of the system, substantially limiting the performance of both
M2M and conventional services. On the other hand, uncoordi-
nated schemes have been proved to be able to asymptotically
reach the efficiency of coordinated access protocols, without the
burden of the signaling overhead associated to the latter. Some
such evidence is given in [4], where the performance of coor-
dinated and uncoordinated transmission strategies for multiple
access is analyzed. That work shows that, for the typical length
of M2M data payloads, uncoordinated access schemes support
more devices than coordinated access mechanisms, because of
the lower signaling overhead.

In the context of random access schemes, a promising
solution to increase the capacity of wireless networks based
on uncoordinated access schemes consists in providing Multi-
Packet Reception (MPR) capabilities to the receiver, which
will hence be able to decode multiple overlapping packets
by using different techniques [5], [6]. A possible method to
enable MPR without excessively increasing the complexity of
the end devices consists in using pseudo-orthogonal spreading
codes to decrease the power spectral density of the transmission
and, hence, limit the interference at the receiver. This is
particularly effective if combined with Successive Interference
Cancellation (SIC) at the receiver, which allows the receiver
to (partially) remove the contribution of all decoded signals
from the compound received signal, thus possibly enabling the
successive decoding of other overlapping transmissions. The
combination of MPR and SIC can hence enable the correct
decoding of a large number of transmissions that overlap in
time and frequency, thus dramatically increasing the probability
of successful channel access in random access wireless systems
[7]. The downside is that the spreading techniques enlarge the
bandwidth required to transmit the signal which, for a fixed



system bandwidth, decreases the effective bit rate that can
be offered to the higher layers, while on the other hand SIC
requires rather sophisticated receivers.

Nonetheless, the combined use of MPR and SIC appears
particularly appealing in the context of M2M, where the aim
is to guarantee high channel access probability to many nodes
that have low transmit rates [8]. In this paper we investigate the
limiting performance of such a scenario when the population
of transmitters grows, while the per-user bitrate decreases.
By building upon the model developed in [7], we find an
approximate model to estimate the maximum throughput of a
wireless cellular system, where the receiver is capable of per-
forming MPR and perfect SIC. The throughput here is defined
as the average number of transmissions that can be successfully
decoded per packet duration. The theoretical results provided
by the model are validated against simulation results, which
show that the model tends to slightly overestimate the actual
system throughput, but is able to capture the general trend
when changing the scenario, i.e., the statistical distribution of
the received signal powers and the MPR capabilities of the
receiver. Furthermore, the model shows that the throughput
tends to grow linearly with the MPR capabilities of the system
that, in turn, are inversely proportional to the per-user bitrate.
This tradeoff implies that the product of throughput and bitrate
asymptotically tends to a constant which depends on the
statistical distribution of the signal powers at the receiver.

The remainder of this paper is organized as follows. Sec. II
overviews the prior work related to this subject. In Sec. III the
asymptotic analysis of an MPR system with SIC capabilities
is presented. Then, theoretical and simulation results for such
a system are illustrated in Sec. IV. Finally, Sec. V draws our
conclusions.

II. RELATED WORK

As mentioned, the introduction of uncoordinated access
schemes with MPR capabilities at the receiver may significantly
impact the performance in M2M scenarios since it allows
the detection of multiple overlapping signals in the event of
a collision, thus making it possible to increase the system
throughput even when transmitters are not centrally coordi-
nated. The relevance of such a signal-capture phenomenon
in mobile radio systems has been recognized since long,
producing a quite rich literature. A first attempt at the analysis
of MPR-capable wireless systems was made in [9], where
the stability of the ALOHA system is studied under infinite-
user single-buffer assumptions. The paper, however, models the
number of transmissions successfully decoded in a slot as a
random variable that only depends on the number of overlap-
ping signals, without considering the signal power distribution.
Another simplistic capture model is considered in [10], where
the authors assume that all signals are decoded if the sum rate
of all the transmitting users does not exceed the capacity of
the channel, whereas in [11] a signal is captured whenever
the strongest interferer is sufficiently far apart from the target
receiver, according to a statistical geometry approach.

Successively, the analysis of the capture effect was extended
and made more realistic by including in the capture model basic

physical propagation phenomena and the cumulative character
of interference, considering the random distribution of the
signal powers at the receiver, and introducing a capture criterion
based on the Signal-to-Interference-plus-Noise-Ratio (SINR) of
the signals [7], [12], [13].

On the other hand, the use of interference cancellation to
improve the channel access probability has been investigated
in [14], where the authors present an enhanced version of
Slotted ALOHA, called Frameless ALOHA, that exploits SIC
to increase the number of packets that can be successfully
transmitted over a single slot. This protocol takes inspiration
from the rate-less code paradigm: users transmit replicas of
their packets in the slots of a frame, whose length is changed
at each contention round according to the outcomes of the
previous round. The transmission slots are picked at random,
according to a Bernoulli process of given probability. Every
packet includes pointers to all its replicas so that, upon de-
coding one packet, the receiver can cancel the corresponding
signal from the compound signals received in all the slots
where a replica of the packet was sent. This can lead to
the resolution of new packets, thus increasing the system
throughput. The effectiveness of this approach is confirmed by
the results provided in [14], where the protocol is shown to
achieve an asymptotic efficiency around 87%, much larger than
the classical Slotted ALOHA performance.

Recently, interference cancellation was also applied to cogni-
tive radio networking. In [15], the authors investigate a scenario
where primary (licensed) users and secondary (unlicensed)
users share the same spectrum in order to communicate with
their respective receivers. Primary users are assumed to im-
plement a retransmission-based error control technique, which
implies the retransmission of a copy of the failed packets over
subsequent time slots. This behavior gives rise to redundancy in
the interference generated by the primary user to the secondary
user, which can be exploited to design secondary transmission
policies. The basic idea is that, if a secondary receiver detects
the primary user message in a given initial transmission, then
it can use this knowledge to cancel the primary interference in
the subsequent slots in case of primary retransmissions, thus
achieving a larger secondary throughput. Indeed, this result is
confirmed by the comparison between the performance of the
above-mentioned technique and those of a couple of suboptimal
policies that do not exploit interference cancellation.

In this paper, we focus on the maximum number of transmis-
sions that can be successfully decoded in a single slot, without
considering the possibility of exploiting retransmissions in
successive slots to further increase the performance. Instead,
the analysis takes into account the MPR capabilities of the
receiver, and the effect of signal power distribution.

III. ASYMPTOTIC ANALYSIS OF MASSIVE ACCESS
CAPACITY

As mentioned, the model presented in this paper builds
upon the mathematical framework developed in [7], which
provides the expression of the probability mass distribution
of the number r of signals that can be successfully decoded



when n transmissions overlap in time and frequency at the
receiver. The reference model is reported in the following, for
the reader’s convenience.

Denoting with Pi the power of the ith signal at the receiver,
the SINR is given by

γi =
Pi∑

j 6=i Pj +N0
(1)

where N0 is the background noise power, which will be
henceforth neglected for simplicity. Signal i is assumed to be
successfully decoded if

γi > b, (2)

where b > 0 is the so-called capture threshold of the system.
Note that, without SIC, the maximum number of signals that
can be successfully decoded is limited to

⌈
1
b

⌉
. Therefore, MPR

capabilities require b < 1 or SIC, or both.
We consider a scenario where n terminals (machine type

devices) simultaneously transmit packets of equal size to a
common receiver, the Base Station (BS), which is capable of
MPR and perfect SIC. More specifically, we assume that signal
decoding at the BS is an iterative process. At each iteration,
all signals that satisfy the capture condition (2) will be suc-
cessfully decoded. Hence, the corresponding contributions can
be cancelled out of the compound received signal. The entire
decoding procedure is then repeated on the remaining signal,
until all overlapping transmissions are successfully detected, or
no signal satisfies (2).

The received signal powers at the BS are modelled as
independent and identically distributed (iid) random variables
{Pj , j = 1, . . . , n}, with common Cumulative Distribution
Function (CDF) F (x), x ≥ 0. The number of correctly decoded
signals at the first iteration can be expressed as [7]:

ρ =

n∑
j=1

χ {γj > b} (3)

where χ {A} = 1 if condition A holds true and 0 otherwise.
Taking the expectations of both sides, we hence get

r = nPr [Pj > I0] (4)

where I0 =
∑

i 6=j Pib. Eq (4) is the average number of signals
that are captured by the BS before performing SIC. Now, in
[7], a simple recursive method is proposed to estimate the
mean number of signals that can be decoded at each successive
SIC iteration. Being the basis of the analysis developed in this
paper, we here recollect the recursive method, considering only
the case with zero-residual interference after cancellation (i.e.,
assuming z = 0 according to the notation used in [7]).

A. Recursive throughput expression with SIC

First of all, (4) is simplified by replacing I0 with its first
order approximation I0 = (n− 1)bE [Pj ], which gives:

r̃ = nPr [Pj > (n− 1)bE [Pj ]] . (5)

We then denote as r̃h the estimation of the mean number of
signals that are captured at the hth iteration, where h = 0, 1, . . ..
In particular, from (5), we get:

r̃0 = nPr [Pj > I0] . (6)

These signals are then removed from the set of n overlapping
signals, so that after the first SIC operation, the remaining
signals are (approximately):

n1 = n− r̃0 = nPr [Pj ≤ I0] = nF (I0) . (7)

Note that all these signals have power less than or equal to
I0, otherwise they would have been decoded at the previous
iteration.

Repeating this reasoning, the average number of signals
decoded at this new iteration can be approximated as:

r̃1 = n1 Pr [Pj > I1|Pj ≤ I0] , (8)

where I1 = b(n1 − 1)E [Pj |Pj ≤ I0] is the approximate
expression of the aggregate interference power of n1−1 signals,
scaled by the capture threshold b, and E [x|y] denotes the
conditional expectation of x given y.

After the generic hth SIC iteration, we then have

nh = n−
h−1∑
j=0

r̃j ; Ih = b(nh − 1)E [P |P ≤ Ih−1] ;

r̃h = nh(1− Pr [P ≤ Ih|P ≤ Ih−1]) ;

(9)

Finally, the approximate normalized throughput after K SIC
iterations is given by

S̃
(s)

n (K) =

K∑
j=0

r̃j . (10)

B. Fixed point throughput expression with unlimited SIC

Starting from the recursive expression in (9), we here derive
an approximate expression for the system throughput when the
number of allowed SIC iterations is unlimited, i.e., K = ∞.1

In other words, we suppose that the decoding process stops
only when no further signal satisfies the capture condition.

We rewrite n2 as follows

n2 = n1 − r̃1
= n1 Pr [Pj ≤ I1|Pj ≤ I0]
= nPr [Pj ≤ I0] Pr [Pj ≤ I1|Pj ≤ I0]
= nPr [Pj ≤ min{I0, I1}]
= nPr [Pj ≤ I1]
= nF (I1).

(11)

where the second and third rows are obtained using (8) and (7),
respectively, while the second-to-last row follows from the fact
that Ik is always non-increasing in k. Repeating iteratively,
we get that the average number of signals that remain to

1A preliminary formulation of this expression was presented in [8].



be decoded after K SIC cycles can be estimated using the
following recursive expressions

nK = nF (IK−1), IK = (nK − 1)bE [P |P ≤ IK−1] , (12)

for K = 1, 2, . . ., where

E [P |P ≤ IK−1] =
∫ IK−1

0
xf(x)dx

F (IK−1)

is the average power of any still undecoded signal, being f(x)
the (unconditional) probability density function of the signal
received powers.

The system throughput (10) after K SIC iterations, hence,
can be expressed as the difference between the number n of
overlapping transmissions and the number of residual signals
after K SIC iterations, i.e.,

S̃
(s)

n (K) = n− nK . (13)

Letting K grow to infinity, the maximum achievable throughput
can thus be approximated as

S(n) = n− lim
K→∞

nK = n(1− F (I∞(n))) (14)

where I∞(n) is equal to the fixed-point of (12), i.e.,

I∞(n) = (nF (I∞(n))− 1) bE [P |P ≤ I∞(n)] , (15)

provided it exists, and I∞(n) = 0 otherwise.

C. Optimal number of simultaneous transmissions

Clearly, (14) linearly increases with n as long as (15) does
not admit any other solution than I∞(n) = 0. In this respect,
a simple functional analysis reveals that (15) always admits
positive solutions when n exceeds a certain threshold. For
values of n larger than such a threshold, the throughput given
by (14) starts decreasing. As a proof of concept, we plot in
solid lines in Fig. 1 the throughput estimate given by (13)
for different values of K, as reported in the legend, and the
asymptotic value given by (14) for K = ∞, when varying n.
The marks in the figure, instead, correspond to the simulation
results in the same conditions. These results have been obtained
by considering the Rayleigh Fading (RF) scenario defined
in [7], where the received signal powers are iid exponential
random variables with unit mean. Furthermore, the capture
threshold has been set to b = 0.02.

From the figure, we observe that the throughput approxima-
tion is excellent for relatively small values of K, while it tends
to overestimate the actual performance when K → ∞. More
importantly, we note that the throughput equals the number of
simultaneous transmissions n up to a critical value n∗, beyond
which the performance decreases sharply. However, according
to (14), S̃

(s)

n (K) < n only if F (I∞(n)) > 0 and, hence,
I∞(n) > 0. Therefore, the critical value n∗ corresponds to
the maximum n for which the fixed-point equation (12) does
not admit any positive solution. To find such a value, we can
express n as a function of the unknown x = I∞(n), so that
the fixed point equation (15) yields

n(x) =

(
x

bE [P |P ≤ x]
+ 1

)
1

F (x)
. (16)
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Figure 1. Approximate (solid lines) and simulated (dotted lines with markers)
throughput when varying n, when increasing the number K of SIC cycles.
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Figure 2. Values of n for which the fixed-point equation (15) admits positive
solutions I∞(n) = x > 0, and critical threshold n∗.

Now, it is easy to realize that the right-hand side of (16) is
continuous and positive, grows to infinity for x → 0 and for
x → ∞, and therefore has a minimum for some positive x∗.
As an example, in Fig. 2 we report the graph of n(x) when
varying x for the RF scenario, for which we get

n(x) =

(
x(1− e−x)

b(1− e−x(x+ 1))
+ 1

)
1

1− e−x
. (17)

To find the global minimum, we set to zero the derivative in
x of (16). After some algebra, we get

F (x) E [P |P ≤ x] = f(x)
(
x2 + bE [P |P ≤ x]2

)
(18)

whose solution(s) can be found using numerical methods.2

Replacing x∗ into (16), and rounding down the result, we
finally get the critical value n∗ of n after which the approximate
throughput starts decreasing. As a matter of fact, it is easy to
prove that S(n∗+1) < S(n∗). In fact, being n∗ the maximum

2In general, (18) may admit multiple solutions. In this case, x∗ is the solution
that minimizes n(x∗) as given by (17)



value of n for which (15) does not admit positive solutions,
we have that the approximate throughput will equal n for any
n ≤ n∗, in particular S(n∗) = n∗. Therefore, we need to prove
that

S(n∗ + 1) < n∗ . (19)

Using (14) in (19), we get

(n∗ + 1)(1− F (x(n∗ + 1)) < n∗ −→ (n∗ + 1)F (x∗) > 1 ,
(20)

where in the rightmost inequality we approximate x(n∗ + 1)
with x∗. Now, using (15), we get

((n∗ + 1)F (x∗)− 1) bE [P |P ≤ x∗)] = x∗ > 0 ,

from which we get (n∗ + 1)F (x∗) > 1, as required by (20).
Summing up, the approximate throughput (14) is maximized

when the number of simultaneous transmissions equals the
critical threshold n∗, which depends on the capture threshold
b of the receiver, and on the CDF F (x) of the received signal
powers. Hence, given the statistical distribution of the signals,
the maximum achievable throughput can be approximated as

S∗(b) = max
n

S(n∗(b)) ' n∗(b) , (21)

where n∗(b) is the critical value of n for a given b.

IV. RESULTS

In this section we exploit the results derived in the previous
section to gain some insight on the optimal performance of a
random access system with a receiver capable of performing
MPR of all signals with SNR above the threshold b, and SIC,
in an iterative manner. More specifically, we are interested
in investigating the asymptotic performance of the throughput
as the capture threshold b decreases, thus admitting more
transmitters with lower rate.

First of all, we report in the top part of Fig. 3 the optimal
throughput when varying the capture threshold b in the RF
scenario. The approximation given by (21) is shown in blue
solid line with markers, while the red line represents simulation
results. We can note that the optimal throughput is approxi-
mately equal to S∗(b) = α/b, where the coefficient α depends
on the statistical distribution of the received signal powers.
Indeed, although not shown in the figure to reduce clutter,
the results obtained for the other two scenarios defined in [7],
i.e., pure path loss and shadowing channels, are essentially
the same, except for a small difference in the coefficient α.
Furthermore, we observe that the approximation is slightly
optimistic, in particular for larger values of b. This mismatch is
likely due to the progressive worsening of the approximation
Ih of the residual interference as the number of SIC cycles
increases. Indeed, it is easy to realize that, given k residual
signals sorted in increasing order of received power, and if a
is the power of the strongest such signal, i.e., Pk = a, the
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Figure 3. Optimal throughput when varying b for the approximate theoretical
models and simulations.

iterative decoding process stops if and only if

Pr

a ≤ b∑
j 6=k

Pj

∣∣∣Pj ≤ a, ∀j


= Pr

[∑
j 6=k Pj

k − 1
>

a

b(k − 1)

∣∣∣Pj ≤ a, ∀j
]

' Q


a

b
√
k − 1

−
√
k − 1E [P |P ≤ a]

STD(P |P ≤ a)


(22)

where in the last step we resorted to the central limit theorem to
approximate the mean of k−1 iid random variables as a normal
random variable with mean E [P |P ≤ a] and standard deviation
STD(P |P ≤ a)/

√
k − 1. Now, it is apparent that, for large val-

ues of k, the probability (22) grows to 1 with a step that depends
on the conditional standard deviation STD(P |P ≤ a): the
smaller the range over which the signal powers are distributed,
the higher the probability that the decoding process stops with
k residual signals. Now, after each SIC cycle, the powers of
the remaining signals are compacted in a smaller interval, so
that STD(P |P ≤ a) progressively decreases. Furthermore, the
larger b the sooner (22) starts growing with k. This aspect
is not captured by the recursive model (9) that, hence, yields
an upper bound to the number of signals captured. Actually,
the approximation can be improved by taking into account the
model (22), though this approach is not further investigated in
this paper.

Although not very accurate when the number of SIC cycles is



large and the capture threshold b is close to 1, yet the model is
capable of capturing the linear dependence of S∗(b) upon 1/b,
which is quite interesting. The lower graph of Fig. 3 reports the
parameter α, given by the product of the optimal throughput
S∗(b) and the capture threshold b. Once again, the markers
identify the theoretical results, while the red curve refers to sim-
ulation outcomes. In practice, when MPR is achieved by means
of spread spectrum techniques, the capture threshold b can be
interpreted as a scaling factor of the bit rate of each terminal.
Therefore, the coefficient α represents the aggregate transmit
rate that can be sustained by the system. From the figure, we
observe that the gap between the theoretical and simulation
results is more visible in this graph, due to the much smaller
range of the values. Nonetheless, the model asymptotically
approaches the value returned by simulations. Furthermore, we
note that the aggregate system capacity remains almost constant
when varying b, which means that the random access scheme
with MPR and SIC can accommodate a variable number of
terminals, provided that the transmit rates are proportionally
scaled.

V. CONCLUSIONS

In this paper, we proposed an approximate analysis of the
asymptotic throughput of a wireless channel in the presence of
massive access from low-rate terminals, with disparate signal
powers. The mathematical model, though overoptimistic in its
estimate of the system performance, is capable of capturing
some fundamental properties of the system. Indeed, we showed
that, with ideal SIC, the MPR capabilities of the receiver can be
fully exploited even using a slotted random access mechanisms.
However, achieving the optimal performance requires a quite
accurate control of the total number of transmitters, since the
throughput rapidly decreases if the critical threshold n∗(b) is
exceeded.

As future work, we plan to improve the accuracy of the math-
ematical model and to relax some simplifying assumptions,
such as ideal SIC. Furthermore, we plan to include protocol
aspects into the model such as, for instance, mechanisms to
limit the number of simultaneous transmitters, and techniques
to exploit transmissions in multiple slots. Finally, energy as-
pects, which are very sensitive in M2M scenarios, will also be
considered.
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