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Abstract—The spreading of video streaming services in the last
few years is presenting new challenges in wireless networking;
Video Rate Adaptation (VRA) is a technique that optimizes
the bandwidth usage by adapting video quality as network
conditions change. We propose two Quality of Experience (QoE)
aware algorithms that perform VRA while guaranteeing user
satisfaction.

I. INTRODUCTION
In the last few years, video streaming has become the most

important source of traffic in the Internet; it represented 60%
of total consumer traffic in 2013 [1], and the predicted share
for 2018 is higher than 75%.

The extremely fast growth of video streaming, as well as
the increase in bitrate caused by the advent of HD videos,
can cause resource allocation problems in wireless networks.
While the data rates of wired connections have been increasing
steadily, wireless and mobile networks face a hard limit given
by the available bandwidth, and even advanced schemes such
as 802.11n [2] might not be enough to satisfy the demands of
users.

Another problem of video streaming optimization is that
the relation between the lower layer network parameters such
as error rate and delay and the user’s final experience is not
easily predictable; if a rate increase results in negligible QoE
improvement, the transmitted data are ultimately useless. QoE-
aware algorithms take this factor into account by considering
the effect of resource allocation decisions on objective QoE
measures. Structural Similarity Index (SSIM) [3] is one of the
most popular objective metrics in the literature, as it has been
found to correlate closely to perceived quality.

Two of the most common Quality of Service (QoS)
schemes are Call Admission (CA), which has already been
used with success for Voice over Internet Protocol (VoIP)
traffic [4], and Video Rate Adaptation (VRA); CA algorithms
make a decision when a user requests a video and block the
request if the network is too congested to support the additional
load, while VRA algorithms adjust the bitrate of the video
using various compression algorithms, which have an impact
on the perceived QoE. VRA and CA are often combined,
allowing for greater efficiency by adapting the video quality to
changing network conditions after the streaming has started,
or blocking it completely in case of excessive congestion.

In this paper, we propose two QoE-aware algorithms that
work by dividing the video into short segments, which are
stored in a server and whose quality (with respect to the
highest-quality version) is known; they then use different
schemes to choose the quality of the next chunk for each

video, or even block new requests entirely. We also devise
a QoE-unaware benchmark algorithm that acts as a baseline to
compare the performance of the other algorithms.

We tested the performance of the new algorithms by
simulation in an IEEE 802.11g [5] wireless network. The rest
of the paper is organized as follows: Section II is a review of
the current state of the art in CA and VRA, while the system
model and the proposed algorithms are explained in Section III.
The implementation details and the results of the simulations
are described in Section IV, while the Section V gives our
conclusions and discusses some ideas for future extensions of
this work.

II. STATE OF THE ART
Several CA and VRA algorithms for video applications

have been proposed in the literature in the last few years.
In [6], Xiao and Li propose an admission control al-

gorithm for enhanced distributed channel access using the
IEEE 802.11e standard [7], which is mainly used for delay-
sensitive applications; Mohammad [8] and Joseph et al. [9]
also proposed algorithms based only on Quality of Service
(QoS) parameters, validating them by theoretical computations
or simulations. In all three cases, the presented algorithms are
evaluated only in terms of QoS.

A QoE-aware call admission algorithm has been proposed
in [10] by Piamrat et al., who used a neural network to
approximate a subjective QoE judgment in real time and
developed a CA algorithm to maintain a minimum level of
quality for all admitted videos. Although the results of the
authors’ simulations show some improvements over simpler
algorithms based on error probability, the simulation scenario
they used is extremely restrictive and does not represent a
realistic network. Their algorithm is also extremely simple, as
it is based on a three-state machine that does not take into
account the expected rate of new clients, nor the different
characteristics of the requested videos.

Several dynamic VRA algorithms have been proposed in
the last few years, but most are not QoE-aware and use only
QoS parameters. The algorithm proposed by Van Beek and
Demircin in [11] gives significant QoE improvements when
simulated in an 802.11 network, but only considers a single
user, thus neglecting the issues related to resource sharing by
multiple users. Ozcelebi et al. focus on fairness in multi-user
systems [12], maximizing QoS in pedestrian environments.

Joseph and de Veciana [13] derived and simulated a model
for fair cross-layer VRA that takes QoE explicitly into account
in the utility function to be optimized. Their work also con-
siders the effect of temporal variations on perceived QoE, but
has not yet been tested in a realistic wireless environment.



Luna et al. use VRA in wireless systems for a different
purpose: their algorithms [14] are focused on the MAC and
physical layers, and aim at increasing the energy efficiency
of the transmission as much as possible while satisfying the
quality constraints. Although this approach is not relevant in
heavy traffic conditions, it may be useful for battery powered
devices with stringent energy constraints such as those used in
large sensor networks.

A different but equally important application of dynamic
VRA is error-free video streaming over HTTP: algorithms to
adapt the bitrate and reduce buffering have been implemented
in most commercial streaming players, and Akshabi et al.
evaluate the approaches taken by some of the most successful
ones in [15].

Finally, machine learning and QoE-aware algorithms have
been tested by some of the authors of this paper in [16],
[17] and [18]; some of the results of these works are used
as a foundation for our model and simulation. The approach
of [16] is similar to the one used in this paper, as in both
studies VRA is performed exploiting the SSIM values of
the requested videos or Groups of Pictures (GOPs), as in
both studies. Basically, the VRA algorithms aim at optimizing
utility functions guaranteeing that the SSIM perceived by the
users does not go below a certain threshold. The authors
propose a way to approximate the SSIM metric with a fourth-
degree polynomial and use this estimate as a description of the
relation between the QoE perceived by the user and a measure
of the rate called Rate Scaling Factor (RFS). A clustered
version is proposed to reduce the computational complexity of
the algorithms: videos with similar characteristics are tagged
with the same polynomial coefficients. In [17], rather than
estimating the SSIM values of each required video, a machine
learning approach is proposed and the SSIM of a GOP is
estimated from the size of its coded frames. The procedure
is carried out in two steps: first an abstract representation of
the raw data is provided in order to capture the descriptive
features of the video, then the representation is mapped into
the corresponding SSIM coefficients. This approach makes it
possible to outperform offline video analysis techniques with
reasonable computational costs. Finally, [18] generalizes the
approach to a scenario with three classes of users, having
different QoE requirements. In this paper, we enrich the
scenario with a more detailed wireless access technology,
whose characteristics are then considered in the definition of
the scheduling algorithms and of users class.

III. SYSTEM MODEL AND PROPOSED ALGORITHMS
A. System model

The scenario considered in this paper involves a client-
server architecture in a wireless network. The server is con-
nected by means of a high-capacity Ethernet link to an Access
Point (AP) that acts as base station for a Wireless Local Area
Network (WLAN), in which a number of wireless hosts are
placed randomly with uniform distribution within a circular
area. A possible configuration of the network is shown in
Figure 1. At this stage of the work we assume each client’s
position to be fixed, although the algorithms can be adapted
to work with mobile clients as well.

The simulation uses a pool of 38 CIF video clips taken from
standard reference sets1 with different durations and scene dy-

1http://www2.tkn.tu-berlin.de/research/evalvid/cif.html

Fig. 1. Network topology

namic characteristics. Each client sends a request for a random
video at random exponentially distributed intervals. All videos
are available at 18 different compression levels and higher
compression levels have lower bitrate and quality as a result
of a coarser quantization after the discrete cosine transform
in the H264 video encoding [19]. The video encoding and
compressing process is explained in detail in [16].

The videos are divided in GOPs of 16 frames each. The
client sequentially requests the GOPs, and the VRA block in
the Access Point (AP) defines the compression level the server
will use to stream the video. Once a video has been admitted,
all subsequent GOPs have to be transmitted at the minimum
guaranteed quality; the server receives the request, along with
the assigned compression level, from the AP and starts the
video transmission.

In order to perform VRA, the AP needs to know the
duration, bitrate and average quality of each GOP of every
video, and the Signal to Noise Ratio (SNR) of the wireless
connection of the requesting client.

The choice of SSIM as the metric to evaluate the QoE is
due to the fact that it provides a more reliable representation
of the perceived quality in comparison to Mean Square Error
(MSE) or Peak Signal to Noise Ratio (PSNR). It is calcu-
lated over a square window that slides pixel-by-pixel along
the whole image. The SSIM between the two corresponding
windows X and Y of the original and received frames is
computed as follows:

SSIM(X,Y ) =
(2µXµY + c1) (2σXY + c2)

(µ2
X + µ2

Y + c1) (σ2
X + σ2

Y + c2)
(1)

where µ and σ are the mean and variance of the luminance
components of the considered windows, while c1 and c2 are
corrective coefficients needed in case of a weak denominator.

B. Algorithms
We defined two families of algorithms: classless (S) and

class-based (C). The classless algorithms have the same quality
threshold for all clients, while the class-based versions use
three different quality thresholds (gold, silver and bronze),
which are based on the SNR, and hence on the distance from
the AP; as clients with a low SNR use more transmission
resources, their minimum quality level is lower.



The QoE-aware algorithms we propose are centralized,
eliminating most of the performance problems of distributed
algorithms: as the AP has a complete knowledge of the
network conditions and adjusts the compression levels of all
clients accordingly, the algorithms completely avoid conges-
tion and exploit the bandwidth in the most efficient way. A
potential drawback is that the AP needs to have the computa-
tional power to perform a possibly very complex cross-layer
optimization; as no additional signaling is required, the central-
ized algorithms do not contribute to network congestion, but
further work may explore content-aware distributed versions of
the following algorithms. Our algorithms estimate the fraction
of the AP transmitting time needed for streaming the video;
once the physical modulation is derived from the SNR, the
algorithm calculates the application layer capacity Ci for each
client i. If there are n active clients in the network, and each
client has a video bitrate Ri, the network stability constraint
is given by

n∑
i=1

Ri

Ci
≤ 1− s (2)

where s is a safety margin against rate fluctuations. Al-
though the algorithms are designed to maintain a minimum
SSIM level, the perceived quality of a single video might
temporarily dip slightly below the threshold, as the SSIM
associated with a given compression level can fluctuate during
a video. After finding the optimal compression level configu-
ration for all clients according to the algorithm used, the AP
performs CA and admits or blocks the new request based on
this configuration.

BM-S: The first algorithm we implemented is the
Benchmark-Single (BM-S) algorithm, whose behavior mimics
that of state-of-the-art VRA algorithms, which are entirely
client-side, with all the issues of distributed algorithms. Clients
that implement BM-S autonomously choose the required com-
pression level according to the network conditions. The con-
gestion level is estimated by each client based on the time
between the reception of the first and the M -th frame of a GOP.
If such time is above a given threshold, the client increases the
compression level as it deems the current rate to be too high,
leading to a decrease in the video QoE. On the other hand, if
the arrival time of the M -th frame stays below the threshold
for 3 consecutive GOPs, the client judges the connection to be
good and hence tries to increase its video quality by lowering
the compression level. The inter-arrival time is a simple client-
side measure of the occupation of the AP transmission queue;
if the network is congested, the packets will arrive later due
to queueing delay, and the client can sense this without any
additional overhead.

The BM-S algorithm is not content-aware: it only has a
maximum compression level, which is the same for all videos
and represents the minimum acceptable video quality. If a
client’s quality drops below the minimum, the video stream
is dropped, as the network is too congested to continue. The
maximum compression level is also the starting level for all
clients when they request a new video.

QB-S: The QualityBased-Single (QB-S) algorithm aims
at providing the highest video quality to as many users as
possible, increasing the video compression level as much as
possible without violating the minimum SSIM constraint. It

basically tries to find the best configuration that admits the
new client while respecting all the others’ quality demands
(otherwise the new user is simply not admitted). Whenever
a new stream is requested, QB-S initially tries to stream all
admitted videos at compression level 1, i.e. at the highest
quality. If this configuration’s total rate exceeds the available
bandwidth, violating the stability condition (2), the algorithm
finds the video with the biggest SSIM margin from the
threshold and raises its compression level by 1. This operation
is repeated until an acceptable configuration is found; if the
SSIM of any of the already admitted videos drops below the
threshold, QB restores the previous compression levels and
blocks the new request, otherwise it admits the request and
starts using the new configuration.

TB-S: The TimeBased-Single (TB-S) algorithm also
tries to stream all videos at the highest quality, but unlike
QB-S it tries to divide the transmission time between the
clients as fairly as possible: if n users are streaming and a
new client requests a video, the algorithm checks whether all
video streams can meet their own quality threshold using 1

n+1

of the available time (instead of 1
n ). Moreover, if a client

uses less than its share to transmit the video at the highest
possible quality, its remaining time is shared among the other
clients to exploit the bandwidth more efficiently, mimicking the
Generalized Processor Sharing (GPS) service policy. The new
request is admitted only if the algorithm finds a configuration
that respects the quality constraints without any of the clients
exceeding its transmission time share.

We also propose class-based versions of QB-S and TB-S,
namely QualityBased-Classes (QB-C) and TimeBased-Classes
(TB-C). As explained above, the class-based algorithms have
the same structure as the classless ones, but consider three
different quality thresholds (gold, silver and bronze).

Finally, we define the Benchmark-Classes (BM-C) algo-
rithm in which the clients choose their maximum compression
level based on their SNR. This algorithm provides a meaning-
ful baseline for QB-C and TB-C, as it operates with the same
quality thresholds.

C. Performance metrics
We will evaluate three metrics in the simulations: firstly,

the video blocking probability for each quality class, secondly,
the average quality of the admitted videos, and finally the
probability that a client’s SSIM will go below the minimum
threshold for its class. We expect TB-S and TB-C to have
slightly higher blocking probabilities, especially for clients that
are more distant from the AP, while QB-S will tend to flatten
all videos to the threshold quality level to admit more users,
also being more fair in terms of QoE among the admitted users.

IV. SIMULATION AND RESULTS
A. Simulation scenario

The simulation scenario was implemented in the network
simulator Omnet++ [20]; the Inet package was used for most
of the elements of the network.

The link between the server and the AP is a 100 Gbps
Ethernet, while the wireless network is based on the IEEE
802.11g standard, which uses an OFDM modulation scheme
and operates in a 20 MHz band centered at 2.4 GHz. It
provides a maximum physical layer bitrate of 54 Mbps, but
the available application layer rate is limited by the overhead,
with a maximum nominal value of 31.4 Mbps. The actual



application layer bitrate might be even lower, as the Auto
Rate Fallback (ARF) algorithm uses less efficient modulation
schemes for lower SNR values. The maximum transmit power
for the network is set to 20 dBm and the thermal noise level
of the channel is -100 dBm.

In the simulations, we uniformly distributed 15 clients in a
circle of radius 150 m. The thresholds for the quality classes
are 20 dB and 12.35 dB: clients with an SNR above 20 dB have
a minimum SSIM of 0.99, while clients with an SNR between
12.35 dB and 20 dB have a minimum SSIM of 0.98. All clients
with an SNR lower than 12.35 dB belong to the bronze class,
but are admitted only if they can meet a minimum required
SSIM of 0.96; hence, all admitted clients are guaranteed to
have a good video quality. In the classless algorithms, all
clients are placed in the gold class. The SNR thresholds for
gold and silver class are set to guarantee an application layer
rate of about 20 Mbps and 10 Mbps, respectively; the bronze
class has no minimum SNR requirements, so its rate may
go as low as 1 Mbps, but is actually constrained by the
maximum distance of a client from the AP. The maximum
compression levels for the BM-C algorithms are 9, 11 and
14 for the three classes (BM-S uses 9 for all clients); these
values were calculated by averaging the highest compression
level above the quality threshold for the three classes over
all videos and GOPs, and as such are only approximations of
the quality threshold. We expect BM-S and BM-C to have a
higher quality fluctuation than the other algorithms because of
this approximation.

The BM-S and BM-C algorithms measure the elapsed time
after M = 10 frames; as the inter-frame time is T = 33 ms,
the threshold time after which the client tries to compensate
for congestion is M · T + g = 0.36 s (where g is a safety
margin set to 0.1 ·M · T ). The safety margin s that ensures
network stability when using the other algorithms is equal to
0.05.

The video streams are represented by Variable Bit Rate
UDP flows, and the server uses the actual video traces to
determine the size of the packets to send to the clients. The
parameter of the exponential distribution of the time between
requests is set in order to have an average offered application
layer traffic of 80 Mbps and 160 Mbps (with all active clients
receiving video at the best quality), so that the wireless link
is saturated and some blocking needs to take place.

The scenario ran for 5000 s and was repeated with 10
different random placements of the clients; the same spatial
and time configurations were used for all the algorithms and
for both levels of traffic to ensure a fair comparison.

B. Results and analysis
The first metric we consider is the video blocking probabil-

ity of the algorithms, which is actually a dropping probability
for BM-S and BM-C, that perform no initial CA.

Figures 2 and 3 clearly show that the QB-S and TB-S
algorithms collapse in high traffic conditions; QB-S’s blocking
probabilities rise as high as 80% for the bronze class, and
TB-S also suffers when compared to QB-C and TB-C. The
efficiency of QB-C and TB-C is clear in the figures: the
blocking probabilities are almost uniform among the three
classes, whereas QB-S and TB-S clearly privilege clients with
high SNR.

Moreover, the overall blocking probability is lower for
class-based algorithms, and particularly for QB-C, because

Fig. 2. Blocking probability for the three classes of clients with 160 Mbps
offered traffic

Fig. 3. Blocking probability for the three classes of clients with 80 Mbps
offered traffic (please note the different scale)

admitting a client with low SNR when the traffic is low may
block subsequent requests. In the class-based algorithms, the
AP can raise the distant client’s compression level to mitigate
this effect. Nonetheless, the quality threshold we set in the
classless version of the algorithms is very high (SSIM of
0.99) and this choice increases the blocking probability. It is
interesting to note that QB-C outperforms TB-C, while QB-S
outperforms TB-S. QB-S and The nature of QB-C benefits
from the class structure as they consider channel quality
only marginally when determining the best compression level
configuration, while TB-S and TB-C work by dividing the
transmission time fairly, already taking SNR into account.

BM-S and BM-C exhibit extremely low blocking probabil-
ities, with values below 1% even in the high traffic scenario.
In fact, as the other metrics show, BM-S and BM-C work very
close or even below the imposed quality thresholds and can
admit almost all requests but with poorer QoE.

TB-S shows an advantage in the average SSIM for the
admitted videos over QB-S and BM-S, as Figure 4 shows.
BM-S yields the worst quality levels among the classless
algorithms, confirming the previous analysis: it only drops a
few clients to the detriment of the QoE of all users.



Fig. 4. Average SSIM for each algorithm

Fig. 5. Probability of SSIM threshold violation for each algorithm

Traffic seems to have almost no effect on average quality,
as the scenarios with 10 MBps and 20 MBps offered traffic
present essentially the same SSIM values for QB-S, QB-C, TB-
S and TB-C; as the channel is already saturated with the lower
traffic, this was to be expected. QB-C and TB-C obviously pay
the lower blocking probabilities with a lower average quality
caused by decreasing the silver and bronze class thresholds,
but the difference between the algorithms is the same; BM-C
achieves a very low video quality, even below 0.97.

Figure 5 shows that the clear advantage of QoE-aware
algorithms is in the last metric: the probability of going below
the quality threshold. As BM-S and BM-C only consider
average SSIM values and do not take into account the specific
dynamics of each video, it is inevitable to have some SSIM
fluctuation, which results in the QoE dipping below the min-
imum threshold. BM-S and BM-C yield quality levels below
the threshold more often as traffic increases, because of their
lax dropping policy.

Even the QoE-aware algorithms may go below threshold,
but with lower probability; this is inevitable, as the algorithms
recompute the compression levels at each new video request
instead of every GOP, which would put a heavy computational
strain on the Access Point.

In general, TB-S and TB-C perform better than QB-S and
QB-C, as they work with a larger SSIM margin from the
quality threshold, and this is particularly evident for QB-C
and TB-C. The C algorithms have a higher probability of
going below threshold because of video quality fluctuation:
they operate at higher compression levels for the bronze and
silver classes, and the quality variation between successive
GOPs increases with the compression level. A mathematical
explanation can be derived from the polynomial expressions
in [17]: as almost all polynomials have a negative second
derivative when the SSIM is between 0.95 and 1, a small
fluctuation in the video characteristics can result in a higher
quality change when the first derivative is higher, i.e., with
lower qualities.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we developed four different algorithms for

dynamic rate adaptation in 802.11 networks. The algorithms
are centralized and content-aware, using the actual QoE of
the users as an optimization metric. Our simulations proved
that they perform well in terms of blocking probability and
average user QoE, while keeping all users’ qualities above a
given threshold.

The centralized QoE-aware algorithms clearly outperform
the QoE-unaware distributed BM-S and BM-C, admitting
fewer clients but with very high perceived SSIM values. On the
contrary, BM-S and BM-C can even yield average SSIM values
below the imposed threshold (see Figure 4). Centralized VRA
algorithms running at the AP can better exploit the available
bandwidth, preventing congestion rather than reacting to it.
TB-S outperforms QB-S in terms of both quality and blocking
probability, since it considers the transmission time that a new
admitted client would occupy, while QB-S only works with
SSIM, without considering the cost of changing the SSIM for
any given client.

We may handle the VRA problem as an instance of the
knapsack problem [21], in which each video GOP has a
weight (the transmission time it needs) and a profit (the
resulting SSIM). Note that, the knapsack problem is NP-
complete [22], so that a polynomial time solution is un-
known, though dynamic programming can provide a pseudo-
polynomial resolution time. Concerning our algorithms, the
TB-S algorithm is closer to the optimum solution of the NP-
complete problem, maximizing the overall SSIM, while QB-S
is more fair; QB-C and TB-C are more fair to distant users,
but the SSIM constraints on the clients are laxer, allowing for
a larger solution space.

It would be interesting to evaluate the performance of the
algorithms with different quality thresholds, mainly to figure
out the real effect of the class-based approach with respect to
the classless approach.

Another important parameter to consider is the computa-
tional time of the algorithms: TB-S and TB-C are considerably
slower than QB-S and QB-C, and this may play an important
role in highly dense networks with many users or when the
computational capabilities of the AP are low due to energy or
hardware constraints.

An interesting item for future work may concern the use
of real measurements of the channel occupancy. The improve-
ment in the algorithms’ performance strongly depends on the
accuracy of the SNR estimate we used: a conservative estimate
means that potentially admittable clients may be blocked, so



the SSIM would be higher and the blocking probability lower;
instead an aggressive estimate may inflate the real QoE and
cause unwanted packet losses.

We plan to implement a distributed version of the proposed
algorithms to provide better scalability in dense networks and
reduce the control action required for the AP.

Another interesting scenario considers mobility: if the
clients move and are handed off between different APs, possi-
ble improvements of the algorithms include their integration in
cognitive networks and the use of mobility prediction models
when making video admission decisions.
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