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Abstract—Handover in HetNets is an interesting research
challenge that has attracted considerable attention in recent
years, producing a variety of handover schemes that are difficult
to compare because they differ in the considered assumptions
and target user/network utility functions. Therefore, how much
room is left for further optimization is quite unclear. In this
letter, we propose a framework to derive an upper bound for
the performance of handover in HetNets that can be used as
a benchmark to compare different practical handover schemes.
The approach computes the optimal handover strategy as a
function of the user’s speed, cell size and load conditions, under
the ideal assumption of non-causal knowledge of the channels
from terminal and base stations. The proposed framework is
then used to provide a comparative performance analysis among
some existing handover schemes.

I. INTRODUCTION

Handover (HO) is the process that allows a mobile User
Equipment (UE) to change its serving base station (BS) to
maintain a sufficient service level. In classic cellular systems,
consisting of macro cells of approximately equal size, the HO
process is typically driven by the Reference Signal Received
Power (RSRP) from the different BSs. Such a simple strategy,
however, is no longer efficient in a Heterogeneous Network
(HetNet) scenario, where small cells (micro, pico and femto
cells) can be densely deployed within the coverage area of
macro cells and cell loads can vary widely. In this scenario, it
is hence important to enhance the HO strategy with context-
awareness, e.g., accounting for the size and traffic load of
the serving and surrounding cells, the UE speed and mobility
pattern, and so on [1], [2].

The recent literature indeed reports a number of different
HO strategies for HetNets embodying different levels of
context-awareness, and targeting different key performance
indices, such as power consumption for a given minimum
Signal To Interference and Noise Ratio (SINR) [3], energy
consumption and interference at the UE side [4], network
capacity under user fairness constraints [5], or congestion level
of the different cells [6]–[8]. The different assumptions and
target metrics considered in these works, however, make it
rather difficult to compare the various HO algorithms and to
assess the residual margin for further improvements [9].

Motivated by these considerations, in this letter we propose
a mathematical framework that makes it possible to derive an
upper bound for the HO performance under the assumption
that the position of the Base Stations (BSs), the UE trajectory,
and the channel parameters are known in advance. This bound
can hence be used as a benchmark to compare the performance
of different practical algorithms and assess the remaining
room for improvement. Hence, the scope of this letter is not
to present a new handover algorithm, but rather a general
framework to compute the performance upper bound of any

HO algorithm.1 To illustrate the potential of the proposed
model, we present a performance comparison of three different
HO policies taken from [10]–[12], and assess their distance
from the bound. In this case-study we focus on the average
Shannon capacity experienced by a mobile UE along its
trajectory, but the model is general enough to accommodate
different context parameters and performance indices.

II. SYSTEM MODEL AND OPTIMAL HANDOVER POLICY

The addressed scenario consists of a set {B0, B1, . . . , BN}
of BSs, whose locations are assumed to be known. We then
target a mobile UE that crosses the area along a predetermined
trajectory. We denote by Γi(a, t) the RSRP that the UE
collected from Bi at time t, when it was in position a along
the trajectory. Assuming a pathloss plus fading propagation
model, in the downlink channel we then have Γi(a, t) =
Γtxi gi(a)αi(t), i ∈ {0, . . . , N} , where Γtxi is the transmit
power of Bi, gi(a) is the pathloss from Bi to point a, which
is assumed known, and αi(t) is the fast-fading channel gain
at time t that, instead, is assumed unknown.2 We can hence
determine the average performance experienced by the UE
when crossing the area, for a given HO strategy.

For analytical tractability, it is convenient to consider a
discrete version of the problem that is obtained by sampling
the process Γi(a, t) with a time step Tc long enough to break
the correlation between fading samples. For instance, for a
given UE speed v, and assuming Rayleigh fading, the sampling
interval can be set equal to the channel coherence time, which
is given by (see [13]) Tc =

√
9/(16π)c2/(vfc) where c is the

speed of light and fc is the carrier frequency.
The sampling period in the time dimension corresponds

to a constant sampling distance along the trajectory, whose
length ∆c = vTc =

√
9/(16π)c2/fc can be interpreted as a

coherence space. The sampled version of the RSRP process,
hence, can be written as

Γi(ak, τk) = Γtxi gi(ak)αi(τk) , (1)

where ak and τk are the kth sampling points along the UE
trajectory and in time, respectively. Assuming the UE is served
by Bi at this sampling point, the Signal-to-Interference-Ratio3

(SIR) experienced by the UE can be expressed as

γi(ak, τk) =
Γi(ak, τk)∑
j 6=i Γj(ak, τk)

. (2)

At each point along its trajectory, the UE can either be
served by a certain BS, or perform a HO towards another

1Note that the bound is indeed achievable if the network topology, UE
mobility pattern, and channel states are known.

2The proposed framework can also be used to determine the achievable HO
performance under exact and non-causal knowledge of the whole channel gain
along the trajectory, as done at the end of this letter.

3Assuming the system is interference-limited, the noise term is neglected.



BS. We assume that the HO process takes a time TH to be
concluded, corresponding to a certain number h = dvTH/∆ce
of spatial sampling intervals, and that during this time the UE
is not served by any BS. Note that the higher the speed v of
the UE, the larger the number of steps spent in this transition
state.4 We hence denote by Bi the state of the UE when it
is connected to Bi, while H`j indicates that the UE is at the
`th step of the HO procedure to connect to Bj . The set of
all possible states is then denoted as5 Ω = B ∪ H, where
B = {Bi}i=0,...,N and H = {H`j}

`=1,...,h
j=0,...,N .

Denoting by K the total number of sample points along
the UE trajectory, any HO strategy can be represented by a
vector of K elements, S = [s(1), . . . , s(K)], where s(i) ∈ Ω
represents the state of the UE at the ith sample point. The
objective, hence, is to find the policy S∗ that maximizes
a certain utility function over all the K points along the
trajectory followed by the UE.

If the utility function can be expressed as the sum of the
utility experienced by the UE at each point along the trajectory,
then the optimization problem can be solved using a simple
adaptation of the Viterbi algorithm. Let πs ⊂ Ω be the set of
states from which the UE can reach state s ∈ Ω in one step.
We have

πs =


{s} ∪ {Hhs } , s ∈ B ;
B \ {Bj} , s = H1

j ;

{H`−1
j } , s = H`j , ` 6= 1 ;

(3)

where the first row says that the UE can be connected to
BS Bs only if it was already connected to the same BS at
the previous step or it just completed the handover process
towards that BS, the second row indicates that the UE will
never start a HO process towards the same BS it is already
connected to, while the third row states that, once started, the
HO process continues for exactly h steps. We can then build
a trellis diagram of depth K, where every step k = 1, . . . ,K
corresponds to a sample along the UE trajectory, and where
state q at step k+ 1 can only be reached from a state p ∈ πq
at step k.6

Now, each link of the trellis that ends into state s at step k
is assigned a certain gain Cs(k), which only depends on the
arrival state s. Following the rules of the Viterbi algorithm,
and assuming the initial state of the UE is s0 ∈ Ω, the
utility function at every step k can be expressed recursively
as follows:

Us(k)=max
q∈πs

Uq(k−1)+Cs(k) , ∀s ∈ Ω, k = 1, . . . ,K , (4)

with Us0(0) = Cs0(0) and Us(0) = 0 for any s 6= s0. Once
the utility function is computed for all the possible states along
the trellis, the optimal policy is obtained by starting from

s∗(K) = arg max
s∈Ω

Us(K) , (5)

4The model can accommodate different values of TH for each serving BS,
though for ease of presentation here we assume TH to be a common constant.

5The symbols ∪ and \ denote the set union and the set theoretic difference
operations.

6While the trellis of the standard Viterbi algorithm is fully connected at
every step, the precedence rules expressed in (3) make it possible to reduce the
complexity of the algorithm from O(K(N+1)2h2) to O(K(N+1)(N+1+
h)). We remark also that the complexity can be further reduced by considering
only the handover processes among neighboring cells.
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Fig. 1: Reference heterogeneous scenario.

and going backward along the path that maximizes the utility
at each step, i.e.,

s∗(k) = arg max
q∈πs∗(k+1)

Uq(k) , k = K − 1, . . . , 1 . (6)

Note that the computation of the optimal policy S∗ requires
the non-causal (anticipatory) knowledge of the gain Cs(k) for
any step k and any state s, a condition hardly met in practice.
For this reason, the performance attained by S∗ represents an
upper bound for any practical HO algorithm where such non-
causal knowledge is not available, thereby providing a useful
benchmark.

III. PERFORMANCE EVALUATION

In this section, we compare the performance achieved in a
given scenario by some practical HO algorithms proposed in
the literature, and assess their gap with respect to the optimal
HO performance obtained with the proposed model in the
same scenario.

A. Optimal performance analysis

We consider the case of a single macro cell, containing
N small-cell BSs. We assume that the target UE follows a
straight trajectory at constant speed v, and that the RSRPs
are affected by Rayleigh fading, so that the coefficients αi(t)
are exponential random variables with unit mean. The utility
function is the average Shannon capacity experienced by the
UE along its trajectory. Hence, the gain in state s at time k is
given by

Cs(k) =

{
λsE [log2 (1 + γs(ak, τk))] , s ∈ B ;
0 , s ∈ H ;

(7)

where γs(ak, τk) is defined in (2), while λs ∈ [0, 1] is
the available fraction of the cell capacity. Note that we
assume zero capacity during handover, in order to reflect the
performance loss incurred by the UE when switching BS.
Furthermore, the gain can be set to zero if the SIR drops below
a certain minimum threshold that, for the sake of simplicity,
is here neglected. For the specific case of Rayleigh fading,
the gain (7) for any s ∈ B admits the closed form expression
(derived in the Appendix for the reader’s convenience)

Cs(k) = λs
∑

i∈B\{s}

ψs,i(ak)

1− Γ̄i(ak)
Γ̄s(ak)

log2

Γ̄s(ak)

Γ̄i(ak)
, (8)
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Fig. 2: Power profiles from the neighboring BSs along the UE
trajectory 1, with speed v = 40 Km/h. The optimal policies are
shown when λM = 1 (Opt1) and λM = 0.2 (Opt2).

where
ψs,i(ak) =

1∏
j∈B\{s,i}

(
1− Γ̄j(ak)

Γ̄i(ak)

) (9)

and Γ̄i(ak) = Γtxi gi(ak) is the received power averaged over
the fading process. Using (8) into (4) we can finally determine
the optimal HO policy through the algorithm described in the
previous section.

Figure 1 shows a test scenario, where 10 pico BSs and
20 femto BSs are randomly deployed within a macro cell
coverage area of radius R = 600 m. The trajectory followed
by the UE is shown as a solid line (traj. 1). The powers
transmitted by the three-tier cells, Macro, Pico, and Femto,
are {P txM , P txP , P txF } = {46, 30, 24} dBm, as in [14], while
the pathloss coefficients are {ηM , ηP , ηF } = {4.5, 2.5, 2.5}.
In this scenario, small cells are unloaded, i.e., λP = λF = 1,
while for the macro cell we consider two cases, with λM = 0.2
and λM = 1, respectively.

Figure 2 shows the average RSRP for the macro BS M , and
for the BSs that are close to the trajectory of the UE, namely
the pico cells {P8,P4} and femto cells {F4,F15}. In addition,
the figure shows the average RSRP experienced by the UE
when performing the optimal HO strategy in the case the
macro cell is unloaded (Opt1), and heavily loaded (Opt2). As
can be seen, in the second case the optimal HO strategy (thick
red solid line) favors the connection to the closest (unloaded)
BSs (including P8), prolonging the permanence time in the
femto and pico cell with respect to the optimal strategy when
the macro cell is unloaded.

B. Simulation results

To gain insight on the room available for improvement in
the design of HO procedures, we have simulated some HO
algorithms found in the literature in a realistic scenario with
9 macro cells placed on a grid and 75 pico cells and 145
femto cells randomly deployed at the macro cell edges. The
fraction of available cell capacity for the macro, pico and
femto cells are {λM , λP , λF } = {0.5, 0.8, 1}, respectively,
while the transmitted powers and pathloss coefficients are the
same as before. We generate random trajectories that cross the
network area of size 3× 3.6 Km2.
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Fig. 3: Trajectory average capacity according to different HO
policies.

The first HO algorithm considered in the comparison is the
Travel Distance Prediction (TravelDistPred) [10], where the
predicted distance within the cell coverage area is computed
as soon as the RSRP of the target cell is higher than that
of the serving cell. If the expected distance is higher than
2/3 of the target cell radius, the HO is performed, otherwise
it is avoided. The Time To Trigger (TTT) parameter, after
which the HO is started, is set to T = 10∆c/v, where v
is the UE speed, and ∆c is a fixed parameter. The second
algorithm is the Speed and Tier dependent policy (SpeedTier)
[11], where different TTTs are chosen according to the UE
speed level (normal, medium, high) and the pair serving-
target cell tiers (macro-to-macro, macro-to-small, small-to-
macro, small-to-small). The third considered algorithm is the
Context-aware TTT mechanism (ConAwTTT) [12], where the
TTT is optimized according to UE speed and cell power
profiles, while the traffic load is taken into account by properly
adapting the hysteresis margin. Finally, we consider the HO
performance bound derived in this paper (Opt).

In Figure 3 we plot the relative capacity gap Ga of the
considered algorithm a with respect to the optimal policy as

Ga =

∑
k∈Ka

[Copt(k)− Ca(k)]∑
k∈Ka

Copt(k)
, (10)

where Copt(k) and Ca(k) are the capacities at point k of
the optimal policy and of one of the handover algorithms
described above, while Ka is the set of points along the
UE trajectory where Copt(k) 6= Ca(k). We can observe how
the performance of SpeedTier and TravelDistPred intersect
when varying v, while ConAwTTT, that takes into account
different context parameters (including cell loads), achieves
higher performance, closer to the optimal, for different UE
speeds.

Finally, we use our mathematical model to gain insight
on the performance that could be achieved by knowing the
exact value of the RSRP (including the fading terms) at each
point of the trajectory. To this end, we ran 1000 independent
simulations of a UE crossing the macro cell along trajec-
tory 2 in Figure 1 and, for each realization, we computed
the optimal HO strategy by considering the gain function
Cs(k) = λs log2 (1 + γs(ak, τk)). Figure 4 shows the average
of the optimal performance obtained by considering the actual
instantaneous gain at each point along the trajectory, and that
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obtained by considering the average gain for each point along
the trajectory, i.e., using (7). We can see that these values grow
linearly with the fraction of available channel capacity of the
macro cell, λM , but the slope of the capacity curve computed
from the exact samples is much higher than the other one.
Hence, an accurate estimate of the fading conditions along the
trajectory may potentially allow for significant performance
improvements.

IV. CONCLUSIONS

In this letter, we have proposed a simple but effective mathe-
matical framework to assess the limit of the HO performance
in a given context. The model has been used to derive the
HO performance bound in a sample scenario, thus providing
a benchmark to assess the performance of some practical
algorithms available in the literature. The model turns out to
be a useful tool to understand which context parameters have
a larger impact on the HO performance and, hence, can be
a precious tool to design context-aware HO policies and to
assess the residual margin of improvement. For example, the
proposed framework can be used to design anticipatory HO
strategies, which are based on estimates of the gain Cs(k) for
any k and s, rather than on the exact values.

APPENDIX

For the sake of simplicity, we omit the dependence on ak
and τk in the notation. The cumulative distribution function
(CDF) of γs is computed as

Fγs(x) = Pr [γs ≤ x] = Pr

αs ≤ x

Γ̄s

 ∑
i∈B\{s}

Γ̄iαi


= 1−

∏
i∈B\{s}

∫ +∞

0

fαi
(yi)e

−xyi
Γ̄i
Γ̄s dyi

= 1−
∏

i∈B\{s}

∫ +∞

0

e
−
(

1+x
Γ̄i
Γ̄s

)
yi dyi = 1−

∏
i∈B\{s}

1

1 + x Γ̄i

Γ̄s

.

The probability density function (PDF) of γs is given by

fγs(x) =
d

dx
Fγs(x) =

∑
i∈B\{s}

Γ̄i

Γ̄s

∏
j∈B\{s,i}

(
1 + x

Γ̄j

Γ̄s

)
∏
i∈B\{s}

(
1 + x Γ̄i

Γ̄s

)2

=
∑

i∈B\{s}

(
Γ̄i
Γ̄s

)N
1∏

j∈B\{s,i}

(
Γ̄i

Γ̄s
− Γ̄j

Γ̄s

) 1(
1 + x Γ̄i

Γ̄s

)2

=
∑

i∈B\{s}

1∏
j∈B\{s,i}

(
1− Γ̄j

Γ̄i

)
︸ ︷︷ ︸

ψs,i

Γ̄i

Γ̄s(
1 + x Γ̄i

Γ̄s

)2 .

Finally, the expectation in (7) is computed as

E [log2 (1 + γs)] =

∫ +∞

0

fγs(x) log2(1 + x) dx

= log2 e

∫ +∞

0

∑
i∈B\{s}

ψs,i

Γ̄i

Γ̄s(
1 + x Γ̄i

Γ̄s

)2 ln(1 + x) dx

= log2 e
∑

i∈B\{s}

ψs,i

1− Γ̄i

Γ̄s

ln

(
1 + x

1 + x Γ̄i

Γ̄s

)∣∣∣∣∣
+∞

0

=
∑

i∈B\{s}

ψs,i

1− Γ̄i

Γ̄s

log2

Γ̄s
Γ̄i
.
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