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Abstract—The term “ranging” is often used to indicate the
operations that make it possible to estimate the distance between
two nodes by processing some signals generated and/or received
by the nodes. In wireless systems, a very popular ranging
method makes use of the Radio Signal Strength (RSS), which
is a measure of the received radio signal power. However, RSS-
based ranging is considered very inaccurate, particularly in
indoor environments, mainly because of the randomness of the
received signal power.

In this tutorial paper, we provide an in-depth analysis of the
main factors that affect the variability of the received signal
power and the accuracy of the RSS measurements. Starting
from a survey of the most common and widely accepted models
for the radio signal propagation and the RSS-based ranging,
we then focus our attention on some technological and proce-
dural pitfalls that are often overlooked, but may significantly
affect the accuracy of the RSS-based ranging, and we suggest
possible techniques to alleviate such problems. The theoretical
argumentation is backed up by a set of empirical results in
different scenarios. We conclude the paper by providing some
best-practice recommendations for proper RSS-based ranging
estimation in wireless networks and discussing new approaches
and open research challenges.

I. INTRODUCTION

The vast majority of today’s wireless transceivers offers the
possibility of measuring the so-called Radio Signal Strength
(RSS), i.e., the power (or energy) of the received radio signal.
This information can be profitably used in many different
ways and for a variety of applications. As a consequence,
the collection and processing of RSS measurements have
gathered huge interest and produced a steady and conspicuous
stream of publications in the last decade. To have a rough idea
of the popularity of the topic, it suffices to query the IEEE
Xplore digital library1 for the documents that have “RSS” or
“RSSI”2 in their Index Terms to get thousands of hits, out of
which, several hundreds published in the last two years.

A quick survey of applications based on RSS measure-
ments in wireless systems are given in Sec. II. A very
important and popular class of applications is that for the
localization and tracking of wireless nodes in a certain area
[1]. Although the literature on RSS-based localization is
extremely wide and variegate, a first rough classification can
be made in terms of range-free [2] and range-based [3]
algorithms.

Range-free methods do not use the RSS values to infer the
distances among the nodes, but rather consider connectivity
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1http://ieeexplore.ieee.org
2The acronym RSSI stands for Radio Signal Strength Indicator and refers

to the integer value, typically in the range {0, 255}, provided by many
commercial wireless transceivers in place of the actual value (in dBm) of
the received signal power, according to a given power-to-RSSI transduction
law. In the following of this paper, we will use the acronym RSS also with
reference to RSSI.

or signal propagation aspects (see, e.g., the surveys [4], [5],
or the papers [6]–[14]).

Range-based approaches, on the other hand, make use of
distance estimates obtained by processing signals exchanged
by the nodes, an operation that is commonly referred to as
ranging. Once a sufficient number of range estimates between
pairs of nodes have been collected, it is possible to esti-
mate the nodes position in the area by using multilateration
algorithms [15], [16], semidefinite programming [17]–[19],
maximum likelihood estimators [20], [21], or spring-mass
relaxation approaches [22]–[24].

Common ranging techniques are based on the measurement
of the time of flight (TOF) of acoustic [25], light [26], or
radio frequency (RF) [27], [28] signal pulses. The TOF of a
pulse is the time taken by the signal to cover the distance that
separates transmitter and receiver. Knowing the propagation
speed of the signal in the considered environment, it is then
possible to estimate the distance between transmitter and
receiver.

The accuracy of this method, however, is limited by the
precision of the time-synchronization between the transmitter
and the receiver, and by the echo phenomena. The first issue
can be counteracted by using pair-wise ranging techniques, in
which the signal impulse received by a node is immediately
echoed back to the source, which then measures the round-
trip time of flight [29]. Yet another method, based on the
difference of time of flight (DTOF), consists in measuring
the propagation time of two signal pulses of different nature,
usually RF and acoustic, which are simultaneously emitted
by the transmitter, but separated by a time interval ∆t

at the receiver because of the very different propagation
speeds. Neglecting the propagation time of the RF impulse,
the distance between the nodes can then be estimated as
d̂ = v2∆t, where v2 is the speed of the acoustic pulse in
air [30].

Overall, RF-based TOF ranging remains quite critical in
indoor environments, because of the short distances to be es-
timated and the multipath distortion of the transmitted signals
that may undergo several reflections and obstructions before
reaching the receiver. On the other hand, acoustic-based
TOF methods generally achieve quite good performance, but
require ancillary hardware and more energy [31].

In this scenario, the RSS-based ranging techniques are
particularly attractive because of their intrinsic simplicity,
the native support for RSS measurements provided by the
most common wireless transceivers (TmoteSky, TelosB, Mi-
caZ, Imote2, and so on), and the possibility to get RSS
measurements from standard data packet traffic, without any
additional energy expenditure.

The underlying assumption of the RSS-based ranging is
that the average power of a radio signal decays with the
distance from the transmitter according to some deterministic
attenuation law, generally referred to as Path-Loss Model
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(PLM). Knowing the PLM, it is hence possible to invert the
propagation law to map the RSS measured at the receiver
into an estimate of the distance from the transmitter [32].

Despite its wide popularity, RSS is often reckoned to
be inappropriate for accurate ranging, particularly in indoor
environments where the random factors that affect the radio
signal propagation may yield unpredictable received power
values, which make the RSS-based ranging quite unreliable
[23], [33], [34]. Notwithstanding this (or, perhaps, because
of this), the subject has collected huge interest and produced
a steady and conspicuous stream of publications in the last
decade.

For example, a software-defined tool based on the uni-
versal radio peripheral (USRP) with GNU software for
experimenting with RSS measurements in IEEE 802.15.4
networks is proposed in [35]. An experimental study of the
RSS measurements and the RSS-based ranging in outdoor
scenarios is carried out in [36]. Interestingly, the paper
proves that the RSS-based ranging can provide reasonable
localization performance in outdoor environments but, at the
same time, reveals the fragility of the approach, which is
extremely sensitive to the environmental conditions and the
experimental settings. Another source of errors that is seldom
considered in the RSS-based localization literature is the
attenuation produced by the human body and the hand grip
on the device. An experimental evaluation of human-induced
perturbations on the RSS measurements can be found in [37],
where the authors show that both hand-grip and body-loss can
severely compromise the accuracy of the RSS-based ranging,
even when cooperative localization schemes are used. On
the other hand, they experimentally demonstrate that these
human-related impairments can not only be mitigated, but
even exploited to improve the performance of cooperative
localization algorithms, if correctly understood and accounted
for. However, this requires a deep knowledge and characteri-
zation of the application scenario and the access to ancillary
signals, such as the orientation of the devices, which may not
always be feasible. A complete survey of such a huge body
of literature, however, is out of the scope of this manuscript,
and the reader interested on a more thorough introduction
of the subject is referred to the literature, where there are a
number of excellent survey papers as, for instance, [5], [31],
[38]–[42].

The purpose of this tutorial paper, instead, is to provide a
digest of the best-practice guidelines for RSS measurements
and RSS-based ranging. In this tutorial paper, we system-
atically analyse and revise the typical steps involved in the
RSS-based ranging, and we provide practical suggestions to
improve the quality of the RSS measurements and, in turn,
the accuracy of the RSS-based ranging.

We hence address the matter of the RSS-based ranging by
providing an in-depth analysis of the main factors that affect
the variability of the received signal power and the accuracy
of the RSS measurements. Starting from a survey of the most
common and widely accepted models of radio signal propa-
gation and RSS-based ranging, we then focus our attention
on some technological and methodological pitfalls that are
often overlooked, but may significantly affect the accuracy of
RSS-based ranging, and we discuss possible counteractions.
To support our claims, we present a set of empirical results

collected in different scenarios by using TmoteSky nodes,
whose MAC and PHY layers are compatible with the IEEE
802.15.4 standard, as well as other data publicly available in
the Internet.

Although most of the aspects discussed in the paper have
general validity, the study is mainly focused on indoor scenar-
ios. The reason for this choice is twofold: first, indoor RSS-
based ranging is generally more challenging than outdoor,
because of the harsher wireless signal propagation; therefore
greater benefit is expected by the proper handling of the
RSS measurement process. Second, the radio transceivers of
indoor wireless devices are generally cheaper than that of out-
door devices, both in terms of cost and manufacturing, so that
the RSS measurements collected by indoor wireless devices
are more likely affected by the device-dependent artefacts
that will be discussed in the paper. Nonetheless, we remark
that most of the best practice methodologies referenced in
this paper generally apply to both indoor and outdoor RSS
measurements, though with possibly minor impact in the
second case. For the sake of completeness, we also report
some outdoor RSS measurements and discuss similarities and
differences with the RSS measurements typically collected in
indoor environments.

The rest of the paper is organized as follows. Sec. II
briefly surveys common applications based on RSS mea-
surements and/or ranging. The following three sections are
of service for the remaining of the argumentation. More
specifically, Sec. III introduces the main notation of the
paper, Sec. IV defines the reference mathematical framework
for the RSS measurements and the RSS-based ranging, and
the models and methodologies which are at the core of the
study, while Sec. V illustrates the hardware and the various
experimental scenarios that have been used to substantiate the
theoretical argumentation. Then, we will address one by one
the fundamental steps involved in the RSS-based ranging:
Sec. VI deals with the issues regarding the calibration of
the RSS circuit; Sec. VII discusses the reduction of short-
term variations in the RSS readings by averaging multiple
RSS samples collected in different time instants; Sec. VIII
addresses the estimate of the PLM parameters; and Sec. IX
analyzes the technical and methodological pitfalls that may
increase the variability of the RSS measurements and, in turn,
worsen the accuracy of the RSS-based ranging.

The effects of the methodologies discussed in the previous
sections are illustrated in Sec. X by using mainly indoor
experimental RSS measurements, while Sec. XI discusses
other scenarios, such as outdoor, non line-of-sight, and so
on.

Finally, Sec. XII concludes the paper by drawing some
final remarks and discussing open research challenges.

II. APPLICATIONS

This section provides a quick overview of some represen-
tative applications that make use of RSS measurements for
different purposes.

As mentioned in the introduction, a first, important use
of the RSS measurements is to perform some sort of rang-
ing. This type of application assumes that the radio signal
strength decreases progressively with the distance from the
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transmitter. As we will see in the next sections, this determin-
istic relation between received power and distance is often
spoiled by the “noise” that affects the RSS measurements,
originated by the propagation conditions of the environment
and the peculiarities of the wireless equipment used to collect
the measurements. Nonetheless, the RSS-based ranging has
been largely used in the literature, and even in commercial
applications, with some satisfaction.

An example is offered by the proximity services, which
associate the reception of a sufficiently strong radio signal
(e.g., LTE, Bluetooth) to the presence of a node within a
limited distance from the receiver [43], [44], thus enabling
proximity marketing applications, such as local advertising,
distribution of media at malls/concerts/exhibitions, informa-
tion at airports or open fairs, gaming, social applications, and
so on.

Another ranging-based application is the symbolic localiza-
tion, whose goal is to identify the location of the node within
predefined areas in a map (e.g., a room in a building, or a
specific location in a grid), rather than the exact geographical
position of the node [5], [45]. The symbolic localization is
useful, for example, to find people in a large building or at
a conference, to locate the deposit area of a certain good
in a wide warehouse, to automatically associate antitheft
devices to the art pieces in a museum, or to find the place
occupied by a certain soil-monitoring sensor in a regular
pattern of sensors placed in a greenhouse [46]. In this case,
beacons are typically placed within the target location (e.g.,
rooms), and the RSS samples collected by the mobile node
are compared to find the most likely location, still using a
proximity principle.

We then have the more classical self-localization algo-
rithms, where the power-distance decay law is inverted to get
some (noisy) distance estimates between node and beacons,
which are then used to infer the geographical position of
the node with respect to the beacons coordinates, using
different techniques (see, e.g., [36], [47], [48]). This type
of localization is needed whenever the nodes can occupy
any position in the area as, for example, in the case of
random deployment of environmental sensors in a field to be
monitored, or of tags attached to objects that can be freely
placed in the area.

When nodes are mobile, the RSS-based measurements can
be used by tracking algorithms, which attempt to estimate
the motion of the node in the space by using consecutive
RSS readings from the beacons, possibly together with some
other types of signal [49]–[52].

A recent and interesting application of the RSS-based
ranging is in the Simultaneous Localization and Mapping
(SLAM) problem, where the radio signals broadcasted by a
number of (smart) objects placed in an unknown environment
are used by an autonomous mobile robot to estimate its
own position, while simultaneously mapping the position
of the objects in the environment. The variability of the
RSS measurements is counteracted by using different filter-
ing techniques, such as the Extended Kalman Filter (EKF-
SLAM), the Delayed Particle Filter (DPF), and so on [53]–
[55]. In [56], [57], it is also proposed to use the RSS-based
SLAM for a first, rough estimate of the object positions in
the environment, and then using stereoscopic visual features
identification algorithms to finely locate the object in the

space. This service may enable the creation of smart envi-
ronments that can be autonomously navigated by team of
service robots for different purposes, e.g., supporting rescue
teams in dangerous situations (as exploring burning or unsafe
buildings), helping elderly or impaired people in their daily
life (assisted leaving), increasing factory automation, and so
on.

Another use of the RSS measurements, not related to the
distance estimation, regards the assessment of the radio chan-
nel quality. The basic assumption here is that the stronger
the radio signal, the better the reception. Generally speaking,
this principle is correct, even though the actual performance
of the wireless communication depends on a number of
other factors as, for instance, the level of interference, the
frequency response of the channel, the capabilities of the
receiver. Nonetheless, the RSS is often used as a practical
way to measure the channel quality and exploited in differ-
ent manners. For example, some rate adaptation algorithms
change the transmit rate towards a certain node according to
the RSS measured from the node, or even reported by the
node itself [58]–[63].

Another application is the cell-selection in mobile telecom-
munication systems, where the RSS measured from different
base stations is used by the mobile terminals, possibly with
other parameters, to determine the optimal serving cell among
those available [64]–[68]. Similarly, the RSS can be used to
select the best relay in multi-hop routing algorithms [69], or
the best gateway for downlink transmission to remote sensor
nodes, as described in the specifications of the emerging Low-
power long-Range (LoRaTM) technology [70]–[72]. The RSS
measurements can also be used to plan the arrangement of
access points in a building or open area, in order to guarantee
good radio coverage in every location [73]–[75].

Yet another use of the RSS measurements is as channel
signature. The underlying idea is to use the vector of RSS
samples collected by a node in a certain position from a
number of fixed (but not necessarily localized) transmitters
as a unique feature of the receiver position, thus exploiting
the space variability of the received signal power. Once a
(multidimensional) RSS map of the area is available, it is
possible to localize a target node by applying the so-called
fingerprinting methods, which consist in searching the RSS
database for the sampling position with the closest RSS
signature to that measured by the target node [11]. Evolutions
of this approach include the use of statistical and machine-
learning methods for position extrapolation [12], [13].

Besides localization, the RSS signatures can also be used
to detect events that cause some noticeable variations of
the propagation conditions, such as the passage of objects
or persons in the monitored area, a technique which is
known in the literature as radio tomographic imaging [76].
This unobtrusive technique can be used to localize people
in indoor and domestic environments, or detect dangerous
events (as falls), which is one of the key requirements for
ambient assisted living systems [77].

All these applications are negatively affected by errors in
the collection and management of the RSS measurements,
even though with different degrees of sensitivity. It is there-
fore of primary importance to understand which are the
factors that may degrade the quality of the RSS readings, and
which are the possible countermeasures that can be adopted
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Table I: Notation.

Symbol Meaning
mX , σ2

X , fX(·) Mean, variance, and PDF of the random variable
X

X(t, s), X̄(s) Space-time dependent process and corresponding
space dependent time-averaged process

X̂ Estimate of the parameter X
Ptx Transmit signal power
Gtx, Grx, G Transmitter, Receiver, Total antenna gain
s Transmitter-receiver geographical position
ξ Conversion constant equal to 10 log(e)
Prx(t, s) Received power at time t in position s (eq. (2))
P̄rx(s) Time-averaged received power with nodes in po-

sition s (eq. (5))
P̄rx(d) Random variable modeling the time-averaged re-

ceived power at distance d (eq. (6))
Pobs A measured received signal power value
ρ(t, s) Received RSS (eq. (1))
R(x) Actual power-to-RSS mapping function (eq. (1))
R◦(x) Nominal power-to-RSS transduction law

(eq. (17))
cj RSS offset of node j (eq. (17))
R Vector of time-averaged RSS samples (eq. (19))
p Vector of PLM parameters (eq. (19))
p̂ Vector of PLM estimated parameters (eq. (21))
X Matrix of log-distance values used for PLM pa-

rameters estimation (eq. (20))
D(d) Path-loss at distance d (eq.s (3)–(4))
Dinv(d) Inverse function of D(·) (eq. (9))
K Path-loss constant (eq.s (3)–(4))
ηh, δh Path-loss propagation coefficients and breaking

points in multi-slope piece-wise linear PLM
(eq. (4))

η, δ0 Path-loss propagation coefficient and reference
distance for single-slope PLM (eq. (3))

a Short-term (fast) fading process
a(t) A realization of the fast fading at time t
Ψ Long-term (slow) fading process
µ, σ Parameters of the lognormal distribution
Ψ(s) A realization of the long-term fading at position

s

d̂(Pobs) MLE of the distance for an average received
power Pobs

d̂rnd Random variable that models the MLE of the
distance

ε(d) Absolute ranging error at distance d
εr(d) Relative ranging error at distance d
εrnd(d) Random variable that models the ranging error at

distance d

to alleviate their effect. This is the objective of the remaining
of the paper.

III. NOTATION

Before plugging into the study of the RSS-based ranging,
we need to introduce the main notation adopted in this paper.

The base 10 and natural logarithm of x are denoted
by log(x) and ln(x), respectively. Quantities that can be
represented both in linear and logarithmic scale are denoted
with the same symbol, with the addition of the subscript “LN”
in the former case, so that, for a generic dimensionless term
X , it holds X = 10 log(X

LN
).

The symbol s indicates the vector of geographical coordi-
nates of a transmitter-receiver pair, while d =‖s‖2 denotes
the Euclidean distance between the nodes. Note that, for ease
of writing, in the following we will refer to s as the position
of the transmitter/receiver pair.

A quantity X that may change in time and space is
indicated as X(t, s), whereas X̄(s) denotes its time average.
For ease of notation, the argument s will be omitted when
not necessary. An estimate of X is denoted by X̂ .

Given a generic random variable X , its Probability Density
Function (PDF) is denoted by fX(·), while the statistical
mean and variance are denoted by mX and σ2

X , respectively.
Note that, since all the processes considered in the paper
are supposed to be ergodic (both in time and space), we
will freely interchange ergodic and stochastic averages, on a
convenience basis.

For reader’s convenience, the main notation used in the
remaining of the paper has been collected in Tab. I.

IV. RSS MEASUREMENTS AND RANGING MODELS

This section sets the stage for the rest of the paper, intro-
ducing the models and methodologies which serve as baseline
for the following discussion. More specifically, we introduce
some common reference models for the RSS measurements,
the wireless propagation channel, and the RSS-based ranging.
Furthermore, we summarize the typical phases involved in the
RSS-based ranging process.

A. RSS measurements model

Given a pair of nodes in position s, set apart by a line-of-
sight (LOS) distance d =‖s‖

2
, the RSS measured at time t

by the receiver can be expressed as

ρ(t, s) = R(Prx(t, s)) , (1)

where Prx(t, s) is the actual received power (typically ex-
pressed in dBm), and R(·) is the power-to-RSS trans-
duction law provided by the receiver RSS circuit. Ideally,
R(Prx(t, s)) should be a rescaled version of the actual
received power Prx(t, s). In practice, however, this is not
generally the case, as it will be discussed in more details in
Sec. VI.

B. Received power model

The received power can be generally expressed (in [dBm])
as

Prx(t, s) = D(d) + Ψ(s) + a(t) . (2)

In the above expression, the function D(d) accounts for the
deterministic component of the received power at distance d
from the transmitter, according with the considered PLM. The
terms Ψ(s) and a(t), instead, model the random variations
of the received signal power in space and time, respectively.
Such variations are generally due to self-interference phe-
nomena produced by multipath signal propagation and are
referred to as fading. More specifically, the space-dependent
term Ψ(s) is named long-term (or slow) fading process, while
the time-dependent component a(t) is called short-term (or
fast) fading process [78], [79].

The most popular models for the three components of the
received signal power, namely the PLM, the long-term fading,
and the short-term fading, are discussed in the following.

1) Path-loss models (PLMs): A common model for D(d)
is the one-slope path-loss propagation model [78], according
to which

D(d) = K − 10η log(d/δ0) ,∀d ≥ δ0 . (3)

In the above equation, δ0 is the reference distance after
which the far-field assumption and, consequently, the PLM
are valid; η is the so-called path-loss coefficient and reflects
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Table II: Wall attenuation factors for common constructing
materials [80].

Plasterboard wall 3 dB
Glass wall with metal frame 6 dB
Cinder block wall 4 dB
Office window 3 dB
Metal door 6 dB
Metal door in brick wall 12.4 dB

the way the signal power decays with the distance d from the
transmitter; while the term K represents the received power
at the reference distance δ0, i.e. K = D(d0), and hence
collects all constant factors in the propagation law, namely:
the transmit power Ptx; the transmitter and receiver antenna
gains, Gtx and Grx, respectively, and the wall and floor
attenuation coefficients, which depend on the constructing
materials as reported in Tab. II.

While the one-slope model is adequate in free space prop-
agation, a multi-slope piece-wise linear propagation model
appears more suitable in indoor environments and in the
presence of strong reflections [78]. In this case, the average
received power at distance d is expressed as

D(d) = K −
m∑

h=1

10ηh log

(
〈d〉δhδh−1

δh−1

)
, (4)

where 〈X〉ba = min {max {X, a}, b}, and 0 < δ0 < δ1 <
. . . < δm = ∞. In practice, (4) defines a continuous piece-
wise linear function composed of m + 1 linear segments,
with zero slope for d ≤ δ0, and slope ηh in the interval
(δh−1, δh], h = 1, . . . ,m. Clearly, the piece-wise linear
model generalizes the single slope model, which is recaptured
by considering a single segment, i.e., setting m = 1.

Notice that the parameters in (4) generally depend on the
specific characteristics of the environment. Therefore, they
can either be set according to precomputed tables provided
in the literature for typical environments (see, e.g., [78]), or
estimated directly from the collected RSS measurements, as
explained later in Sec. VIII. Another possibility consists in
deploying a certain number of anchors (transmitters placed
in known position) and characterize the coefficients of (4)
from the RSS measurements collected in loco, as proposed
in [81].

2) Short-term fading models: The short-term fading pro-
cess a(t) is assumed stationary and ergodic. Therefore, it is
common practice to reduce its impact by averaging multiple
RSS samples over time [20]. Ideally, time averaging yields

P̄rx(s) = lim
t→∞

1

T

∫ T

0

Prx(t, s) = D(d) + Ψ(s) , (5)

where the mean of a(t) gets absorbed by the constant term K
in D(·). Nonetheless, the way the time average is computed
may (marginally) affect the performance of the RSS-based
ranging, as discussed in Sec. VII.

3) Long-term fading models: The long-term fading is
assumed position-dependent, but almost time invariant, so
that it is unaffected by time averaging. This kind of fading is
generated by the scattering of the radio signal due to obstacles
in the signal path and/or from the self-interference produced
by multiple strong reflections of the signal. This term is
often referred to as shadowing and commonly modeled (in

dB scale) as a normal random variable, with zero mean and
standard deviation σΨ that typically ranges from 2 dB to
6 dB in indoor environments [78], [82]. Accordingly, the
long-term fading coefficient in linear scale, Ψ

LN
= 10Ψ/10,

turns out to be lognormal distributed, with parameters µ = 0
and σ2 = σ2

Ψ/ξ
2, where ξ = 10 log(e). For this reason,

this type of long-term fading model is also referred to as
lognormal shadowing.

We remark that, in the rest of the paper, the terms long-
term fading and shadowing are used interchangeably to refer
to the fading components that are position-dependent. In
principle, this fading term can be mitigated by changing the
position s of the transmitter/receiver pair, while maintaining
fixed their distance d =‖s‖

2
. For example, a pair of nodes

that move by maintaining the same reciprocal distance (e.g.,
sensors attached to a rigid but mobile robotic arm) can
collect multiple RSS readings on different locations and
average them out to alleviate the influence of the space-
dependent fading term, thus obtaining a better estimate of
the signal power attenuation due only to the distance d.
Unfortunately, this kind of “space averaging” is not feasible
in many practical scenarios, so that the effect of the long-term
fading cannot usually be eliminated or even attenuated.

C. Path-loss plus shadowing reference channel model

Summing up, the reference model typically considered in
the RSS-based ranging literature is the so-called path-loss
plus shadowing model (or path-loss plus lognormal fading),
according to which the mean received power at distance d
from the transmitter can be expressed (in dBm) as

P̄rx(d) = D(d) + Ψ = K − 10η log

(
d

δ0

)
+ Ψ , (6)

where Ψ is a zero-mean Gaussian random variable with
standard deviation σΨ. This model provides the baseline for
our analysis. Note that, for a given distance d, the time-
averaged received power P̄rx(d) is still stochastic, because
of the shadowing term Ψ. The PDF of P̄rx(d), hence, is a
shifted version of the PDF of Ψ, i.e.,

fP̄rx(d)(Pobs) = fΨ (Pobs −D(d)) . (7)

PLM breaking 
distances 

Prx(t, s) = P̄rx(s) + a(t)
Received power at 
time t with nodes 
in position s 

Mean received 
power with nodes 
in position s 
 

Short-term 
fading 

P̄rx(s) = D(d) + (s)
Deterministic 
power at 
distance d 
 

D(d) = K � 10

mX

h=1

⌘h log

 
hdi�h

�h�1

�h�1

!

Long-term 
fading 

Deterministic 
power at 
reference 
distance δ0
 

Path loss 
coefficients
 

•  Rayleigh*(exponential): indoor& 
outdoor, with weak/no LOS 

•  Rice: indoor&outdoor, strong LOS 
•  Nakagami: outdoor, multipath 

with large time delay spread 

•  Gaussian* (lognormal): indoor or  
outdoor with obstructed path 

•  Extreme Value (Weibull): indoor 
with strong multipath clusters 

•  Gaussian mixture: outdoor 

•  m=1*: outdoor, homogeneous 
environment 

•  m∈{2,3}: mix of short & long       
distances, heterogeneous 
environment 

Figure 1: Path loss models summary picture.
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Fig. 1 offers a visual summary of the most popular PLMs
considered in the literature, and of the statistical models
used to describe their components (some of which will be
discussed later on in the paper).

D. Reference RSS-based ranging model

As mentioned, the RSS-based ranging consists in es-
timating the distance d between transmitter and receiver
from the average signal power measured at the receiver. We
recall that the average received power P̄rx(d), as given in
(6), is a random variable because of the fading term Ψ.
Therefore, given an observation Pobs of P̄rx, the Maximum
Likelihood Estimate (MLE) of the distance between the nodes
is given by the value of d that maximizes the probability that
P̄rx(d) = Pobs, i.e.,

d̂(Pobs) = arg max
d≥0

fP̄rx(d)(Pobs) ,

= arg max
d≥0

fΨ(Pobs −D(d)) ,

= Dinv(Pobs − µΨ) ;

(8)

where the second step follows from (7), while in the last step
we used Dinv(·) to denote the inverse function of D(·), and
µΨ to indicate the mode that maximizes fΨ(·).

Observe that, when µΨ depends on d, the computation of
(8) may require numerical and iterative methods. Conversely,
if µΨ is invariant in d, then the distance estimate can be
obtained with simple operations.

The accuracy of the estimation (8) depends on D(·) and
on the statistical distribution of Ψ. Considering the reference
model (6), the deterministic component is given by D(d) =
K − 10η log(d/δ0), whose inverse is

Dinv(x) = δ010(K−x)/(10η) , (9)

while the random term Ψ is modeled as a zero-mean normal
random variable and, hence, its PDF is maximized at µΨ = 0.
The distance estimate for a mean received power value Pobs

is thus given by

d̂(Pobs) = Dinv(Pobs) = δ010
K−Pobs

10η , (10)

which is likely the most widely used formula for RSS-based
ranging.

Note that the estimate given by (10) is a deterministic
function of the observed power Pobs. However, for a given
distance d, the received power may change because of the
shadowing term, as for (6) and (7). Consequently, for a
given distance d, the estimate d̂ may change, depending on
the actual position of the transmitter/receiver pair. To get a
statistical characterization of d̂ for a given distance d, we can
replace Pobs in (10) with the random variable P̄rx, whose
expression is given in (6), obtaining the following stochastic
model for the distance estimate:

d̂rnd = δ0 10
10η log(d/δ0)−Ψ

10η = d 10−
Ψ

10η = dΨ
LN

−1/η , (11)

where we recall that Ψ
LN

is the equivalent of Ψ in linear
scale. The statistical distributions of Ψ and Ψ

LN
are discussed

in Appendix A.

E. Ranging error statistics

The ranging error can then be defined as the difference
between the actual distance d and its estimate d̂, i.e.,

ε(d) = d− d̂ . (12)

Normalizing ε over the distance d we obtained the relative
ranging error

εr(d) =
ε(d)

d
. (13)

Using d̂rnd in place of d̂ in the ranging error expressions,
we can obtain the stochastic models for the absolute and
relative ranging errors and, in turn, their mean and variance
as functions of the real distance d and of the parameters of
the channel model. From (12) we thus have

εrnd(d) = d− d̂rnd = d
(

1−Ψ
LN

−1/η
)
, (14)

and, under the customary assumption that Ψ
LN

is lognormal
distributed, we can express the statistical mean and variance
of the ranging error as (see [20], [33]):

mε(d) = d

(
1− e

σ2

2η2

)
; σ2

ε(d) = d2

(
e
σ2

η2 − 1

)
e
σ2

η2 .

(15)
The mean and variance of the relative ranging error, instead,
are equal to

mεr (d) =
mε(d)

d
= 1− e

σ2

2η2 ;

σ2
εr (d) =

σ2
ε(d)

d2
=

(
e
σ2

η2 − 1

)
e
σ2

η2 .
(16)

From (15) and (16) it is apparent that the mean ranging
error is negative, which means that the RSS-based ranging is,
on average, affected by a positive bias, i.e., the estimated dis-
tance is usually larger than the actual distance. Furthermore,
both the bias and the variance of the estimate error worsen
for higher values of σ, and larger distances. By knowing the
value of σ, however, it is possible to remove the bias and
reduce the estimate variance by dividing d̂ over exp(σ2/2),
as proposed in [83]. Therefore, an accurate estimation of the
variance of the shadowing term can greatly improved the
accuracy of the RSS-based ranging.

F. Reference RSS-based ranging procedure

The naive RSS-based ranging procedure is based on two
assumptions:

i) RSS measurements can be uniquely mapped into the
exact received signal powers (in dBm scale);

ii) the received signal power decreases with the distance
d from the transmitter according to a deterministic and
monotonic law.

Unfortunately, both these assumptions fail to apply in
practice. In fact, the power-to-RSS transduction law is not
always linear or exactly known, while the received power
is typically affected by random noise terms due to signal
propagation phenomena. These factors affect the accuracy
of the RSS-based ranging to different extent, as will be
discussed later on.

Accounting for these aspects, a proper method to exploit
the RSS measurements for ranging purposes shall consists in
the following steps.
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1) Calibration of raw RSS measurements: mapping raw
RSS measurements ρ(t, s) into fairly accurate estimate
of the received power Prx(t, s), by inverting (1).

2) Time averaging: reduction of the short-term fading
component to get P̄rx(s) as for (5).

3) Path-loss model estimation: estimation of the parame-
ters K, m, {δh, ηh}, h = 0, . . . ,m of the PLM (4).

4) Analysis of the residual variability of the RSS mea-
surements: estimation of the statistical distribution of
the long-term fading Ψ, considering all the collateral
phenomena that may apparently increase its variance.

5) RSS-based ranging: mapping of the refined RSS mea-
surements into a distance estimate by using (8).

The accuracy of the ranging estimate obtained by following
this procedure, however, may be largely affected by the
way these steps are implemented. In the rest of the paper,
we analyze each step in greater detail, and investigate its
potential influence on the accuracy of the RSS-based ranging.

Before delving into the topic, however, we present the
experimental setup that have been used to back up the
theoretical argumentation with empirical results.

V. EXPERIMENTAL SETUP

To substantiate the argumentation developed in the next
sections, we collected a number of RSS measurements by
using some nodes of a testbed [84]–[87]. We first describe
the hardware used in the experiments and, then, the different
setups used to harvest RSS measurements.

We remark that the experimental measurements are un-
avoidably affected by the specificities of the technology used
to collect the RSS measurements and, hence, the reported
results have necessarily a local significance in their absolute
values. Nonetheless, the lesson that can be learned from the
trends observed in the reported results are rather general and
apply to a much wider set of scenarios.

A. Harwdare

All the experiments have been performed by using
TmoteSky sensor nodes [88]. These devices are equipped
with the Chipcon wireless transceiver CC2420, which is a
very popular IEEE 802.15.4 radio used by Ember, MicaZ,
Telos, Intel Mote2 and others. It operates in the 2.4 GHz
ISM band using O-QPSK modulation with Direct Sequence
Spread Spectrum (DSSS) coding. The radio module sup-
ports a maximum bitrate of 250 kbit/s, with −94 dBm of
sensitivity, and provides two measurements related to the
received signal quality, namely Radio Signal Strength (RSS)
and Link Quality Indicator (LQI). In accordance with the
IEEE 802.15.4 standard, the RSS value is averaged over 8
symbol periods (128 µs) [89]. A more detailed analysis of
the functional aspects of the CC2420 transceiver and its RSS
measurement circuit can be found in [35].

The transceiver makes use of a patch antenna, integrated
on the board. As discussed in Sec. IX-A, the integrated
antenna is not isotropic. However, the board is also equipped
with an SMA connector for an external antenna that can
be activated in place of the patch antenna by changing the
electrical contacts of a capacitor. We made this hardware
modification to a certain number of boards that were then
equipped with a DN-70100 omnidirectional external antenna,

produced by Digitus. The external antenna is 19.7 cm long,
with a diameter of 12 mm, and provides a gain of 5 dBi
(reception).

A simple communication protocol has been designed and
developed in order to collect RSS samples over the 16 IEEE
802.15.4 RF-channels within the available B = 80 MHz of
the ISM band at 2.4 GHz.

B. Experimental scenarios

We collected RSS data in six different scenarios, which
have been specifically designed to gain insights on the
different aspects that affect the accuracy of the RSS-based
ranging. The scenarios are described below.

[ANTENNA]: This setup has been conceived to collect RSS
samples at different distances d, and on different positions s
for any given distance, thus making it possible to average
out both the time-dependent and position-dependent fading
terms. Furthermore, the scenario makes it possible to gain
insights on the radiation pattern of the internal and external
antennas.

The scenario consists of two nodes, A and B, which were
placed at 30 cm from the floor of a wide empty room. Node
A was kept fixed, while B was moved around A describing
a circular trajectory of radius d, with angular steps of 10
degrees. The procedure was repeated varying the radius of
the circular trajectory from 0.2 m to 2.4 m, with a step of
0.1 m. In each position, the nodes exchanged 10 packets
either way, registering the RSS of each received packet, for
a total of approximately 8280 RSS readings per node.

The experiment was repeated with three different config-
urations of node A, named rotating (r), fixed (f),
and external (e). In the rotating mode, node A was
equipped with the internal antenna and consistently rotated
around its axis with B, in such a way that the relative
orientation of the two devices and, in turn, their antenna
gains, remained unchanged during the entire experiment. In
the fixed case, instead, node A remained fixed in the
original position, so that it faced node B from different
angles as B rotated around it. The same setting was used for
the external case, with the difference that node A was
equipped with the external omnidirectional antenna, rather
than the internal antenna, as in the other cases. In all the
experiments, node B was rotated around its axis with a step of
10 degrees, while describing the circular trajectory, in order
to always face node A with the same side. In this way, node
B antenna gain in the LOS direction to A is constant.

[ROOM]: This scenario was conceived to collect RSS value
at different distances, and over different carrier frequencies.

The scenario consists of four nodes, each equipped with
the external isotropic antenna to avoid any issue related to
antenna gains. Nodes were placed on cones at 30 cm from the
floor, and programmed to exchange 20 packets with any other
node, over a given RF channel. Consecutive transmissions
from the same node were separated by at least 100 ms. The
operation was repeated on all 16 RF channels, while keeping
the nodes in the same positions. The whole process was
repeated for 6 different locations of the nodes. Overall we
collected 20× 12× 16× 6 = 23040 RSS samples.

[DESK]: This scenario was conceived to assess the impact
of different transmit powers and table surface reflections.
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To this end, we placed two nodes, A and B, on a long
desk. Both nodes were equipped with integrated antenna.
Node A was fixed, while B was moved away from A along
a straight line, while maintaining the same orientation to
A. The distance between the nodes was increased from
0.2 m up to 7.2 m, with a step of 0.2 m. The trans-
mit power of the nodes, instead, was varied in the set
{0,−1,−3,−5,−7,−10− 15,−25} dBm, while the carrier
frequency was changed over all the 16 available channels.
For any combination of distance, transmit power, and RF
channels, nodes exchanged 8 packets either way, for a total
of 7378 RSS samples.

[AISLE]: This scenario was conceived to assess the per-
formance of the RSS-based ranging in an aisle.

We deployed five sensor nodes on the top of 30 cm tall
cones, resting on the floor along an aisle, and another sensor
node was used to collect RSS samples at 26 locations spaced
apart by 50 cm along a piece-wise linear path of approx-
imately 13 meters that crossed the aisle. All nodes were
equipped with external antennas. We collected both fixed-to-
fixed and mobile-to-fixed two-way RSS measurements over
all the 16 RF channels supported by the transceivers, for
a total of approximately 4800 samples. In this environment
there was no furniture so that the reflections of the transmitted
signal were mainly due to the floor, the walls and the ceiling.

[LAB]: With a similar setting as AISLE, we deployed seven
sensor nodes on cones in a lab of approximately 10× 6 m2.
A further node was placed in different positions during the
experiments. All nodes were equipped with external antennas.
We collected both fixed-to-fixed and mobile-to-fixed two-
ways RSS measurements over all the 16 RF channels, for a
total of approximately 11000 samples. This environment was
occupied by furnitures, electronic equipments, and people.

[OUTDOOR]: Five nodes were uniformly deployed over a
15 × 8 m2 outdoor area, at 80 cm from the floor. Another
node was moved through the area. All nodes were equipped
with external antenna. We collected approximately 4800 RSS
samples over 16 different RF channels.

In all the experiments we can assume LOS between each
pair of nodes. Moreover, nodes were deployed at the same
height, so that we cover only the case of 2–dimensional
network deployment.3

In addition to these datasets, we also used some other
measurements taken from public databases to investigate
other scenarios, such as outdoor, non line-of-sight (NLOS),
and so on. The references to such additional data sources are
provided in Sec. XI where these other scenarios are discussed.

VI. CALIBRATION OF RAW RSS MEASUREMENTS

In principle, the RSS value returned by the board (once
converted and scaled as indicated by the the data-sheet of
the radio transceiver) should be equal to the received power
in dBm scale, Pobs. In practice, the two values may differ
for the following reasons:

(i) the RSS register can only take a finite number of values,
so that it returns a quantized version of the actual
received power, introducing a certain quantization error;

3The collected data can be downloaded from the SIGNET group website
at http://telecom.dei.unipd.it/download or contacting the author.

(ii) the transduction law may be irregular, e.g., piece-wise
linear and even non-injective, in some intervals of the
operating range;

(iii) the RSS readings of different nodes may be affected by
different offsets.

These non-idealities generally have different effects on the
RSS ranging accuracy, also depending on the specificities of
the hardware. To substantiate our argumentation, we consider
the characteristics of the CC2420 transceivers, produced
by Texas Instruments [89], which is largely used in today
platforms for WSNs.

A. RSS granularity

According to the specification of the CC2420 transceiver,
the RSS reading has a dynamic range of about 100 dB with
a granularity of ∆q ' 1 dB. Therefore, assuming that the
quantization error is uniformly distributed in the quantization
interval, its standard deviation is approximately equal to√

∆2
q

12 ' 0.3 dB, which is rather low and almost negligible
in all practical cases. These considerations are confirmed
by the experimental study presented in [35]. Similar values
are also reported in the datasheets of other common radio
transceivers. For example, the datasheet of the Low-Power
Sub-1 GHz RF Transceiver CC1101 [90], produced by Texas
Instruments, reports an RSS granularity of 0.5 dB, which is
hence negligible.

B. RSS non-linearities

Let R◦(·) represent the nominal power-to-RSS transduc-
tion law that characterizes the RSS circuit. Neglecting the
quantization error, an ideal RSS circuit should implement a
transparent transduction law, i.e., it should hold R◦(Pobs) =
Pobs for all received power values in the operating range.
Unfortunately, the RSS circuits do not generally provide
such an ideal mapping. For instance, the transduction law
provided by the CC2420 RSS circuit is shown in Fig. 2 by
the black solid line with white circle markers, labelled as raw
RSS. This curve reproduces the power-to-RSS curve reported
by the manufacturer in [89, p48]. We can assume that the
transduction law is deterministic, though small variations
due to the operating temperature of the chipset or other
non-idealities are possible. We note that the curve does not
perfectly overlap with the diagonal dashed line that represents
the ideal transduction law. Instead, R◦(x) is only piece-wise
linear, and it is even non-injective in some intervals.

In this paper, we use the term calibration to indicate
the operations that are intended to “rectify” the power-
to-RSS transduction function, thus making it possible to
unambiguously invert the R◦(x) function in order to obtain
an estimate of x.

The R◦(x) function can be easily and unambiguously
inverted in the injective regions. However, each RSS value
that falls in a non-injective region can be associated to
three distinct received power values. A possible technique
to resolve this ambiguity consists in taking a combination
of the uncertain values. For instance, let xa, xb, xc be three
power values that return the same RSS value ρ, i.e., such
that R◦(xi) = ρ, i = a, b, c. We consider the following three
possible RSS-calibration strategies to solve the uncertainty:
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Figure 2: RSS transduction law for CC2420 transceiver.

Calibrate RSS (min): R−1
◦ (ρ) = min {xa, xb, xc},

Calibrate RSS(mean): R−1
◦ (ρ) = (xa + xb + xc)/3,

Calibrate RSS (max): R−1
◦ (ρ) = max {xa, xb, xc}.

As an example, we consider the case of the CC2420
transceiver. The calibrated curves obtained with each of the
three techniques are shown in Fig. 2, marked with triangles,
asterisks, and squares, respectively. As we can see, the
Calibrate RSS (mean) is quite close to the ideal curve
(dashed line), though it still exhibits a deviation of ±2 dB
with respect to the actual received power Pobs in the first
non-injective region, i.e., for Pobs ∈ [−60,−53] dBm, and
±4 dB of deviation for Pobs ∈ [−30,−24] dBm.

A more sophisticated method to obtain unambiguous re-
verse mapping, suggested in [91], consists in performing
multiple RSS measurements between the same pair of nodes
by varying the transmit power, in the attempt of getting some
RSS samples outside the non-injective regions.

Fig. 3 offers another example of a real RSS transduc-
tion law, as determined by the manufacturer of the chipset
CC1101 for two different data rates at 868 MHz (see [90,
p46]). We can observe that, also in this case, the transduction
law is not perfectly linear, with an error with respect to the
ideal line ranging from about −4.0 dB to 3.3 dB, excluding
the saturation effects at the range boundaries. Furthermore,
we observe that the transduction law changes with the trans-
mit rate, which adds another element of variability.

These non-linearity of the RSS-to-power transduction laws
can significantly affect the computation of the signal to noise
power ratio (SNR) at the receiver, as experimentally observed
in [91]. Also the estimate of the channel parameters obtained
from the RSS measurements may be negatively affected
by these singularities. A very basic and quite conservative
strategy to avoid this problem is simply to neglect the RSS
values in the non-injective regions when performing RSS-
based ranging.

C. RSS offset

The RSS measurements of different nodes may be affected
by different offsets. For example, the CC2420 datasheet
reports a tolerance of ±6 dB for the RSS measurements,
which may yield large uncertainty in the RSS ranging. The
presence of such an offset can actually be experimentally
observed with the platform used in our testbed. To this
end, we consider the RSS measurements collected in the
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Figure 3: RSS transduction law for the CC1101 transceiver
at 868 MHz, at different transmit rates [90, p46].
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Figure 4: Raw RSS vs distance in ANTENNA scenario, in the
cases (e) and (r) (filled and empty markers, respectively).

ANTENNA (e) and (r) scenarios, where we have constant
antenna gains. To smooth out the effect of the short-term and
long-term fading, we average all the RSS samples collected
by each node at any given distance d. The resulting average
RSS values are plotted in Fig. 4 for node A (M) and B (◦).

At a first sight, we can see that the average RSS decreases
almost linearly with the distance, in good agreement with
the behavior predicted by the one-slope path-loss model (3).
Second, we see that the RSS measured by nodes A and B
are divided by a relative RSS offset of approximately 2.8 dB
in the case (e) and 3.5 dB in the case (r).4 Finally, we can
note that the gap between the mean RSS curves for the two
nodes is rather independent of the distance.

The experimental data confirm that the RSS offset of these
devices is indeed additive and constant over the range of
received power values. Therefore, the power-to-RSS map for
a certain node j can be generally written as

ρj = Rj(Prx(t, s)) = R◦(Prx(t, s)) + cj (17)

where cj represents the RSS offset at receiver j.

4The relative RSS offsets in the cases (e) and (r) are different because
we used two different devices as node A, one equipped with the external
antenna and the other using the internal antenna. This also justifies the 20 dB
gap between the RSS values collected in the cases (e) and (r).
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Assuming symmetric propagation conditions, a rough esti-
mate of the relative RSS offset between two nodes, i and j,
can be obtained by exchanging multiple packets between the
nodes and computing the difference between the mean RSS
measured by each of them. If the RSS offset of node j is
pre-compensated (cj = 0), then this technique can be used to
estimate and compensate the offset of the surrounding nodes,
in a distributed manner.

Alternatively, it is possible to make all the nodes agree
upon a common offset c? by means of consensus techniques
(see, e.g., [92]). In this case, the RSS reported by each node
will be affected by the same constant offset c?, which will
be eventually absorbed by K in (6). If R◦(x) is perfectly
linear, this offset becomes totally irrelevant for RSS ranging,
since it simplifies out when computing the distance estimate
using (10). However, if the transduction law is only piece-
wise linear (as for the CC2420 transceiver), any offset, even
common to all the nodes, may still significantly increase the
variance of the ranging error.

To gain insights on the effect of non-linearities and offsets
in the power-to-RSS transduction function, we generated
6000 synthetic realizations of received power values, accord-
ing to the reference model (6) with parameters K = −20 dB,
δ0 = 1 m, η = 2, σ2

Ψ = 2 dB, for 50 different distances,
uniformly distributed from 1 to 20 meters. Then, we mapped
each received power value Prx(t, s) in a RSS value by using
(17), where we used the CC2420 power-to-RSS function
shown in Fig. 2 for R◦(·). The values of RSS obtained in this
way were then used to perform RSS-based ranging estimates.

Fig. 5 plots the standard deviation σε(d) of the ranging
error we obtained when varying the transmitter-receiver dis-
tance d. The different curves correspond to different ways to
map the RSS values back into an estimated receive power
value Pobs, which is then used in the ranging equation (10).
We considered the following cases.

Ideal: it assumes perfect power-to-RSS mapping and zero
offset, i.e., Pobs = R◦(Prx(t, s)) = Prx(t, s). It is used as
benchmark to evaluate the impact of the non idealities in the
power-to-RSS mapping.

Equalized: it assumes the same RSS offsets c? for all
nodes, but no further calibration of RSS measurements is
considered. In other words, the transduction function is given
by Pobs = R◦(Prx(t, s)) + c?. We remark that, in this case,
c? simplifies out in (10), therefore the ranging accuracy is
only affected by the non-linearities of the R◦(·) function.

Calibrated: It considers the calibration of the raw RSS
values by inversion of R◦(·) using the “mean” criterion in
the non-injective regions, but without compensation for the
RSS offset. Hence, it gives Pobs = R−1

◦ (R◦(Prx(t, s) )+c?).

Comparing the curves, we can see that the RSS cali-
bration actually brings some improvement over the offset
equalization only when the RSS offset is less than few dBs.
Instead, performing the RSS calibration in the presence of
non-negligible offsets may significantly worsen the ranging
error.

This leads to the conclusion that, when the power-to-RSS
transduction law is not perfectly linear, the RSS calibra-
tion shall be considered only when the RSS offsets can be
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Figure 5: Standard deviation of the ranging error, σε, with
K = −20 dBm, δ0 = 1 m, η = 2, σΨ = 2 dB, in the presence
of non-ideal power-to-RSS mapping.

accurately estimated and compensated for. Otherwise, it is
more effective to elect a reference node and equalize the
RSS readings with respect to a common (though unknown)
RSS offset c?, without trying to correct the non linearities of
R◦(·).

VII. TIME AVERAGING

Once refined the RSS measurements, the next operation
which is typically performed to improve the accuracy of the
RSS-based range estimate is to average out the fast fading
term a(t) to get P̄rx(s) (see (2) and (5)). This operation,
though trivial, still requires some care. In fact, it can be
performed either in the linear or logarithmic scale, with
different results, as it will be discussed in the following.

A. Fast fading models

We start by recalling some common statistical models
for the fast fading term, referring to Appendix B for the
mathematical details. A well-accepted model is the so-called
Rician fading, according to which the fading coefficient in
linear scale, a

LN
(t), is modeled as the module of a complex

Gaussian process, which is distributed as a Rice random
variable. The model is suited to describe the amplitude
distribution of a received signal given by the overlapping
of a Line-of-Sight component and a number of scattered
replicas. The Rice distribution is indeed characterized by two
parameters: the so-called Rice Factor, RF , which is given
by the ratio between the power in the direct path and the
power in the other, scattered, paths; and the overall signal
power [82]. Larger values of RF indicates the dominance of
the LOS path over the reflected paths, so that the amplitude
of the received signal becomes less erratic. Accordingly,
the variance of a

LN
(t), derived in Appendix B, decreases

approximately as 1/RF as RF grows.
Another common model for the short-term fading is the

Rayleigh fading model, which is suitable in the presence
of several multipath components without dominant LOS
ray, and can be obtained from the Rice model by setting
RF = 0. In this case, a

LN
(t) is modeled as an exponential-

distributed random variable, with unit mean and variance,
whose simplicity and mathematical tractability have greatly
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contributed to the popularity of the Rayleigh model in the
literature.5

B. Getting rid of the fast fading term

As mentioned, the time-varying random term a(t) in (2)
is usually disregarded, under the assumption that it can
be smoothed out by averaging RSS samples taken over a
suitable time window. However, the time average can be
computed either in linear scale, and then converted back in
dB scale, or directly in dB scale. We will denote by ā(N)
the average computed over N RSS values in linear scale
and then converted in dB, and by a(N) the average of the
N RSS values performed directly in dB scale. We observe
that these averages are random variables, depending on the
realization of the N considered RSS samples. To compare the
two approaches, we can hence resort to the statistical mean
and standard deviation of these averages, whose expressions
are derived in Appendix C.

A direct comparison of the statistics of ā(N) and a(N) is
given in Fig. 6, which reports mean and standard deviation
of the two random variables when varying the number N of
averaged samples.

At a first look, we note that ā(N) exhibits lower standard
deviation than a(N), though the difference is practically
negligible. Furthermore, we note that the two standard de-
viation curves show an initial steep decrease, followed by
a flatter behavior for larger values of N , so that decreasing
the standard deviations below 1 dB requires a rather large
number of samples, which means large energy costs and
relatively long delays. For example, the coherence time of
a Rayleigh fading channel at 2.4 GHz, with an equivalent
relative speed between transmitter and receiver of 2 m/s, is
approximately 80 ms. Therefore, collecting N = 30 fading
samples, sufficiently spaced apart to be almost uncorrelated,
would require at least T = 2.4 s. We also note that the
average in dB scale exhibits a non-zero mean, i.e., a bias,
which is not present in the other case.

In conclusion, it is slightly more convenient to average
out the fast fading term in linear scale and, then, convert the
result back in dB scale. Furthermore, increasing the number
N of RSS samples beyond a few units, say 10 or 15, has
diminishing effect in reducing the variance of the residual
fading term.

VIII. PATH-LOSS MODEL ESTIMATE

Once refined the RSS measurements and averaged out (as
far as possible) the slow-term fading component, we are ready
to estimate the parameters of the propagation model. This
operation is sometimes referred to as channel calibration
[93]–[95], though in this work we prefer to reserve the word
“calibration” to the operations aimed at rectifying the power-
to-RSS transduction function R(·).

We then suppose to have collected a column vector
R = [r1, . . . , rM ]T of time-averaged RSS values, measured
over known distances d = [d1, d2, . . . , dM ]T. In practice,

5Although there are many other statistical models to describe the fast
fading component of a wireless signal (e.g., Nakagami, Weibull, Suzuki),
we limit our attention here to the Rice and Rayleigh fading models because
they are by far the most common in the literature dealing with RSS-based
ranging.
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Figure 6: Mean (◦) and standard deviation (�) of ā(N) (solid
lines) and a(N) (dashed lines) when varying the number of
samples N .

the vector R can be built by collecting RSS measurements
between a certain number of anchor nodes. Otherwise, it is
possible to perform a site survey with a certain number of
probing nodes placed at different distances.

Neglecting the non-idealities of the power-to-RSS trans-
duction law R(·) (i.e., assuming perfect calibration), the
average RSS samples can be expressed as in (5), i.e., for
i = 1, . . . ,M we can write

ri = D(di) + Ψ = K−
m∑

h=1

10ηh log

(
〈d〉δhδh−1

δh−1

)
+ Ψ ; (18)

where the right-most term follows from (4). The objective
of the PLM parameters estimation is to find the values of
K, m, and {δh, ηh}, with h ∈ {0, . . . ,m− 1}, that best fit
the empirical data, i.e., that minimize the mean squared error
(MSE) between the observed RSS values and the expected
RSS values given by (4) at the same distances.

The choice of the number of pieces of the path-loss model,
m, is somehow arbitrary. A common approach is to plot the
collected RSS measurements over the sampling distances in
logscale and to visually determine the number of slopes of the
piece-wise linear trajectory that best interpolate the points.
We observe that the larger the number of breakpoints m, the
larger the number of parameters of the PLM to be estimated
and, hence, the higher the computational complexity and the
lower the accuracy of such estimates for a given number of
RSS samples. Moreover, the risk of overfitting also increases
with m. As a practical rule, m should be fixed to the smallest
value for which the RSS samples appear evenly distributed
(in dB scale) around the piece-wise PLM for most of the
distances, with approximately constant standard deviation.
Furthermore, the resulting piece-wise linear characteristic
should be convex and monotonic decreasing with the dis-
tance, since the attenuation is usually more pronounced for
larger distances. In most practical cases, a good fitting of the
RSS samples can be obtained with m ≤ 3 (see [78]).

Similarly, the value of the breakpoints {δh} can be taken
from the literature, depending on the specific environment
where the RSS measurements are collected, or determined
based on common sense, from direct “visual” inspection of
the RSS measurements, or even selected by means of a brute-
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force semi-exhaustive search of all reasonable combinations
of the parameters.

Given the breakpoints {δh}, h ∈ {0, . . . ,m − 1}, it is
possible to estimate the other parameters of (4) by using,
for instance, the least square method that minimizes the
MSE between predicated and measured RSS values. More
specifically, the MSE can be expressed as

MSE = (R−X p) (R−X p)
T (19)

where p = [K , η1 , . . . , ηm]T is the parameters vector, and

X =




1 −10 log
〈d1〉δ1δ0
δ0

· · · −10 log
〈d1〉∞δm−1

δm−1

...

1 −10 log
〈dM 〉δ1δ0
δ0

· · · −10 log
〈dM 〉∞δm−1

δm−1



.

(20)
Using the least square method, the vector p̂ =
[K̂, η̂1, . . . , η̂m]T of estimated parameters is then obtained as:

p̂ =
(
XTX

)−1
XT R . (21)

Note that, to reduce clutter, in the following we will use the
same notation for actual and estimated parameters, unless an
explicit distinction is required to avoid ambiguity.

A. Empirical analysis of path-loss model estimate

To appreciate the effect of a multi-slope PLM, we applied
(21) to the (time-averaged) RSS measurements collected by
node A in the ANTENNA(r) scenario in two cases, namely
with m = 1 (one-slope model), and m = 2 (two-slope
model).

Fig. 7 shows the empirical RSS measurements (dots),
together with the theoretical values returned by the one-slope
model (solid line) and the two-slope model (dashed line),
whose parameters are reported in the figure’s legend. We can
observe that, in this particular case, the two-slope model is
capable of better fitting the empirical data, thus reducing the
MSE, i.e., the variance of the shadowing term6 σ2

Ψ. The better
fitting of the two-slope model with empirical data is reflected
by a reduction of the mean and the standard deviation of
the relative ranging error (15), shown in the upper and lower
graphs of Fig. 8. In particular we note that the relative ranging
error obtained using the two-slope model is less sensitive to
the distance, with a standard deviation that, for the considered
case, always remains below 20%.

IX. ANALYSIS OF THE RESIDUAL VARIABILITY OF THE
RSS MEASUREMENTS

From the estimate p̂ of the parameters of the PLM it
is possible to compute D(di) for any distance di, i.e., the
deterministic component of (18). According to that model,
the difference between expected and measured RSS values is
ascribed to the long-term fading Ψ.

Indeed, according to (18), the vector of shadowing coef-
ficients that affect the M averaged RSS values R can be
expressed as

Ψ̂ = R−X p̂ , (22)

6Note that, in the figure, we reported σΨ rather than σ2
Ψ to allow for a

direct comparison of the error with the RSS values.
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where we have used the vectorial representation introduced
in the previous section. The mean and variance of Ψ can
hence be estimated, respectively, as

mΨ =

∑N
k=1 Ψ̂k

N
, σ2

Ψ =

∑N
k=1 (Ψ̂k −mΨ)

2

N − 1
. (23)

In this way, however, the statistical power of the long-term
fading is inflated by external factors that are not connected
with the fading process and, then, can worsen the accuracy
of the RSS-based ranging. In fact, we observe that σ2

Ψ,
computed as in (23), actually absorbs the power of all residual
noise sources, such as errors in the path-loss parameter
estimates, non-idealities in the power-to-RSS transduction
law, position-dependent variations of the channel parameters,
and so on. Therefore, the value of σ2

Ψ estimated from (23)
may result much larger than the actual variance of the shadow
fading that characterizes the considered environment.
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In the following of this section, we analyze some of the
factors that may contribute to inflate the estimated power
of this noise term. Then, we explain the multichannel RSS
averaging technique, which has been proposed in [96] as an
effective and simple strategy to reduce the space variability of
the RSS measurements. Finally, we present empirical results
that show the impact of different RSS-refinement techniques
on the estimated variance of Ψ.

A. Technical pitfall: antenna radiation pattern

In many studies, the antenna orientation of the transceivers
is random and the antenna radiation pattern is usually over-
looked or implicitly assumed isotropic. Unfortunately, the
antenna supplied with most low-end wireless devices may
be somewhat anisotropic [97].

The resulting increase of RSS variability may be erro-
neously ascribed to the propagation conditions that, hence,
would result harsher than they actually are, thus contributing
to bring discredit on RSS for ranging purposes [98].

The ANTENNA scenario makes it possible to appreciate the
effect of the anisotropic radiation pattern of the TmoteSky
integrated antenna on the RSS reliability. The RSS samples
collected in the experiments (r), (f) and (e) are plotted in
Fig. 9, together with the empirical radiation pattern for the
integrated and external antenna, suitably scaled for image
clarity. The first three plots in the figure show the colormap
of the time-averaged RSS values measured on the different
positions: the darker the color, the lower the mean RSS value.

As expected, the RSS decreases when moving from the
center to the periphery of the plot, i.e., increasing the distance
between transmitter (node A) and receiver (node B). In case
(r), the mutual antenna orientation between A and B is
maintained fixed, so that the antenna gains do not change
with the position of B. We observe that the RSS is roughly
homogeneous in all directions, except for small variations
likely due to shadowing phenomena. In case (f), instead, the
orientation of the two antennas varies as B moves along the
circular trajectory around A. Here the gain greatly changes
with the direction as a consequence of the anisotropy of the
integrated antenna. Finally, the rather homogeneous decrease
of the measured RSS values observed in case (e) confirms
the isotropic emission pattern of the external antenna.

These conclusions can be better appreciated from the
antenna radiation patterns reported in the lower-right plot
of Fig. 9, from which we can notice that the integrated
antenna (solid line) is not isotropic in the horizontal plane,
but instead, presents three main lobs, roughly spaced by an
angle of 2π/3. The difference between the maximal and
minimal gain is about 15 dB. This empirical radiation pattern
closely resembles that reported in the TmoteSky datasheet
for the Inverted-F antenna with vertical mounting [88]. The
radiation pattern obtained for the external antenna (dashed
line) is much more regular, with a maximum peak difference
of 1.4 dB only.

Although these results have been obtained with a specific
technology, the problem of anisotropic radiating antennas
is rather general. Other examples can be found, e.g., in
[97], where it is reported that a specific Printed Circuit
Board (PCB) antenna, suitable for very low-cost devices,
have 5.16 dB higher radiated power in the direction of
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Figure 9: Upper-left and right, and lower left: colormaps
of the mean RSS in ANTENNA scenario, cases (r), (f), (e),
respectively. Lower-right: empirical antenna radiation patters
of the internal (solid) and external (dashed) antenna.

maximum emission compared to an ideal isotropic antenna,
and -12.81 dB lower transmit power in another direction.

It is now interesting to analyze the effect of the antenna
anisotropy on the channel parameters estimate. To this end,
we report in Fig. 10 the RSS values collected by the nodes
in cases (f), (r), and (e). Furthermore, we report the one-
slope path-loss curves obtained in the three cases by using the
least square method described in (21). The estimated channel
parameters are reported in the legend of the figure.

We see that the estimate of K changes in the three cases
due to the different mean antenna gains. What is more
interesting is that the estimate of the path-loss coefficient
η1 is approximately the same (around η1 ' 2.2) in all the
cases, while the estimate of the shadowing standard deviation
changes significantly, from 5.06 dB for case (f) to 2.14 dB
and 2.02 dB for cases (r) and (e), respectively. This means
that the antenna anisotropy, when neglected, may yield an
overestimation of the shadowing variance of several dBs
(about 3 dB in our study).

The effect of the antenna anisotropy in terms of ranging
error is shown in Fig. 11. The upper and lower plots report
the mean and standard deviation of the relative ranging error
εr, defined in (13), when varying the distance d between the
nodes. We observe that the RSS ranging error is significantly
larger in case (f) than in the other two cases. In particular, the
standard deviation of the ranging error in case (f) is always
above 50% of the actual distance, whereas it is below 20% for
most of the distances in the other cases, where the effect of
the antenna anisotropy is avoided, though it tends to increase
at larger distances.

In conclusion, the TmoteSky integrated antenna is not
suitable for a reliable RSS measurement. The solution to this
problem might be the use of external isotropic antennas. Also
in this case, however, it shall be noted that the isotropy is
typically guaranteed on the planar plane, i.e., when all the
nodes are deployed at the same height [98]. Another option
is to equalize the antenna anisotropy at the receiver, provided
that the radiation patterns and the mutual orientation of the
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nodes are known.

B. Methodological pitfall: packet reception probability

A fact that is often overlooked when performing RSS-
based ranging is that RSS measurements are typically taken
only for correctly received packets. Actually, in many com-
mercial transceivers the RSS value can be continuously read
from a suitable register. However, the value is frozen when
the demodulator detects a valid signal preamble and (usually)
appended after the packet payload, thus becoming easily
accessible to the upper layers (see, e.g., [90, p44]). In most
of the RSS-based works, the RSS values are thus extracted
from the received packets, rather than read from the RSS
register. Therefore, if a signal is too weak to be decoded,
its RSS is typically disregarded, so that the recorded RSS
values always refer to signals received with power above the
sensitivity level of the receiver. The statistical distribution of
such RSS values is then conditional on the good reception of
the packet and, hence, may offer a biased representation of
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Figure 12: Example of the impact of the power reception
threshold on the estimation of the PLM parameters.

the actual channel conditions. To account for this effect, the
expression (18) of the measured RSS can be corrected as

rj = D(d) + Ψ̊ ; (24)

where Ψ̊ is the conditional shadowing term, given that the
packet has been correctly received. Note that fΨ̊(a) depends
on the distance d: the closer the distance to the reception
range, the more significant the bias of Ψ̊ with respect to the
nominal distribution of Ψ. Neglecting this bias may worsen
the accuracy of the channel parameters estimate, thus yielding
a degradation of the RSS-based ranging accuracy. It is hence
important to estimate the channel parameters by using only
unbiased RSS measurements. The problem is to discriminate
between unbiased and biased RSS values.

In Appendix D we propose a simple method to estimate
the critical distance d◦ within which Ψ̊ has approximately
the same distribution as Ψ, i.e., the RSS samples are likely
unbiased. Considering only the RSS samples collected at
distances less than d◦ we can then apply the least square
parameters estimation method in its classical form (21).

This shrewdness is actually meaningful only when many
measurements are collected at the edge of the reception range,
and when the shadowing term exhibits large variance. An
example of such a scenario is reported in Fig. 12, where we
show a simulation of the simple path-loss plus shadowing
channel model with parameters K = −20 dB, δ0 = 0.1 m,
η1 = 2, σΨ = 4 dB. The dashed line shows the actual
deterministic path-loss component D(d) given by (3) with
these parameters. Dots represent the RSS samples, which
have been generated at random distances, uniformly spaced in
the range [1, 150] meters. We assumed a reception sensitivity
of Γthr = −70 dBm, so that all RSS values below this
reception threshold have been neglected and do not appear in
the figure. Square/circle markers denote the PLMs obtained
by considering/neglecting the power reception threshold in
the estimation of the PLM parameters, respectively. We can
see that the PLM obtained by considering the reception
threshold Γthr = −70 dBm is closer to the one used to
generated the data (dashed line), while the PLM obtained by
neglecting the effect of the receiver sensitivity (i.e., assuming
Γthr = −∞ dBm), exhibits a significant bias that, in turn,
yields worse ranging accuracy.
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C. Multichannel RSS averaging

As observed in [96], multichannel diversity has seldom
been used in the context of RSS-based ranging as a sim-
ple and effective way to improve ranging accuracy. This
neglectfulness is partially due to the common practice of
ascribing the space-variability of the RSS measurements to
the shadow fading, which models the random attenuation of
signal power due to path obstruction. As a matter of fact,
the spatial diversity brought in by carrier frequency shifts
is basically ineffective to counteract this type of shadowing
phenomena.

However, the space variability of the RSS measurements
may also be the result of the combination of the proper
shadow fading and the strong self-interference generated by
a few strong reflections of the transmitted signal [78], [99],
[100]. As shown in [96], indeed, a propagation environment
characterized by a few clusters of reflected waves may
yield a statistical distribution of the term Ψ closer to the
Extreme Value than the normal distribution.7 The Extreme
Value distribution has also been empirically observed in many
different experimental campaigns, both in indoor and outdoor
environments [34], [101]–[103].

In this case, multichannel average can be effective, since
it decreases the influence of the space-dependent fading
component due to signal self-interference [96], [104], [105].
Furthermore, as shown in [96], the average of multiple RSS
samples collected on different RF channels exhibits again
a lognormal distribution, with a significant lower standard
deviation than the original RSS samples.

The actual effectiveness of multichannel average, therefore,
strongly depends on the characteristics of the propagation
environment. If the delay spread of the channel is very small,
i.e., all multipath components arrive at the receiver almost
simultaneously, a change in the carrier frequency will be
basically ineffective. Conversely, in the presence of a few
clusters of waves, sufficiently spaced apart in time, the multi-
channel averaging may actually bring a significant reduction
of the shadowing variance. For instance, the IEEE 802.15.4
specifications define 16 RF channels evenly distributed over
B = 80 MHz of the ISM band at 2.4 GHz. At these fre-
quencies, the typical delay spreads τ in indoor environments
range from tens to hundreds of nanoseconds [106], [107].
Therefore, the product Bτ is typically larger than one and,
consequently, multichannel RSS averaging is expected to be
rather beneficial.

It is worth remarking that the main advantage of multi-
channel RSS averaging is its simplicity. However, it does not
fully exploit the information on the frequency component
of the received signals, embedded in the multichannel RSS
measurements. More effective approaches are described in
[104], [105].

D. Empirical analysis of the long-term fading distribution

To appreciate the effect of the different RSS refinement
techniques on the estimated variance of Ψ, we consider the
RSS measurements collected in the ROOM scenario, where
the relative RSS offsets {cj} of all nodes are known in

7A brief description of these statistical models for the long-term fading
is given in Appendix A.

advance and, hence, can be compensated to equalize the
RSS readings. With this setup, we collected RSS samples
at different time instants and over all the 16 available RF
channels supported by the CC2420 transceiver. This set of
raw RSS measurements has then been processed through a
cascade of refinement steps, namely:

Equal: offset equalization;
Cal: RSS calibration, i.e., inversion of R◦(·);
Time: time averaging;
Channel: frequency averaging.

These refinement steps are applied in sequence so that, in
the Channel case, the data are compensated for the RSS
offsets, calibrated, time averaged, and frequency averaged.
Averages are always performed in linear scale and the result
converted back in dB scale. The four resulting datasets are
then used to estimate the channel parameters and the standard
deviation of the long-term fading by using (21) and (23), and
considering a simple PLM with m = 1 and δ0 = 0.6 m.

The results are reported in the four graphs of Fig. 13. The
refined RSS samples are represented by markers, while the
estimated deterministic component D(d) is reported in solid
line. Comparing the figures and the values of the estimated
channel parameters reported above each graph we can make
some interesting observations.

First, we observe the peculiar distribution of the points
in the interval [−30,−25] dB, on the upper-right graph of
Fig. 13, which is due to the reverse mapping of the R◦(x)
curve in the non-injective regions using the “mean” criterion
(see also Fig. 2). Comparing the upper-right and the lower-
left graphs, we note that the time averaging has negligible
effect on the estimate of σΨ, which leads to the conclusion
that, in this scenario, the short-term fading has limited impact
on the RSS variability. This result is probably due to the
presence of a dominant component in the received signal,
compatible with a Rician fading model with very large Rice
factor. Conversely, looking at the last graph, we note that the
multichannel averaging yields a significant reduction of σΨ,
which drops from about 4.3 dB down to 2.3 dB. Very similar
results have been observed in other scenarios, both indoor and
outdoor, not reported here for the sake of conciseness.

From the rich data set collected in the ROOM scenario
we could also derive a complete statistical characterization
of the error term Ψ. Fig. 14 reports the empirical PDF
of Ψ (blue bars), together with its Normal fit (solid line)
and Extreme Value fit (dashed line), for each of the four
data refinement steps discussed above. We can see that the
empirical PDF of Ψ in the first three cases (equalized,
calibrated, and time-averaged) is closer to the Extreme Value
than the Normal distribution, whereas in the fourth case the
normal distribution fits better. However, a more objective
analysis of the empirical distribution of Ψ reveals that,
in the first three cases, the null hypothesis for either the
Extreme Value and the Normal distribution is rejected by the
Kolmogorov-Smirnov (KS) goodness-of-fit hypothesis test.
Instead, the Normal null hypothesis is accepted by the KS
test in the last case. We can then conclude that, for the
data set collected in the ROOM scenario, the error term Ψ
obtained from equalized/calibrated/time-averaged RSS data
exhibits a non-classical probability distribution (though more
similar to the Extreme Value than the Normal), whereas the
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Figure 13: RSS data and channel parameters estimate after
successive refinement steps: offset compensation (upper-left),
calibration (upper-right), time-average (lower-left), channel-
average (lower-right). ROOM scenario.

Normal distribution of Ψ (lognormal in linear scale), typically
assumed in the papers dealing with RSS ranging, is actually
verified only after the last refinement step, i.e., when the RSS
samples are averaged over multiple RF channels.
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Figure 14: Empirical PDF of the RSS error (bar), with
Normal fit (solid) and Extreme Value fit (dashed). ROOM
scenario.

All these results find a theoretical justification in a multi-
cluster channel propagation model, as explained in [96]. In-
deed, we have been able to replicate the empirical distribution
of the RSS samples collected in the ROOM scenario by
simulating a channel model consisting of N = 6 clusters,
each characterized by a uniform random phase, and an
amplitude with mixture distribution, inspired by the Suzuki
fading model [108], which combines a Rice distribution with
Rice factor R = 20, with a random statistical power, having
lognormal distribution with parameters µ = 0 and σ = 2/ξ.
Cluster delays τn were uniformly distributed in the interval
[t0, tmax], with tmax−t0 ' 16 ns, which is quite conservative
in indoor environments [82], [106]. Fig. 15 compares the
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Figure 15: Empirical and theoretical distributions of the RSS
error. ROOM scenario.

CDF of the error term Ψ obtained after time and frequency
averaging of the RSS samples, respectively, both for the
empirical and the simulated data. The good match of the
empirical and theoretical distributions confirms the goodness
of the multicluster propagation model for the considered
environment, and the effectiveness of the multichannel RSS
averaging technique to increase the accuracy of the RSS-
based ranging.

X. RSS RANGING PERFORMANCE

The four refinement steps that can be applied to decrease
the variance of the RSS measurements, namely offset com-
pensation, calibration, time averaging and multichannel aver-
aging, have also a positive effect in terms of ranging accuracy.
In Fig. 16 we report the distance estimates (markers) obtained
from the RSS values collected in the ROOM scenario, after
each refinement step. The solid line represents the reference
ground-truth distance. Note that the scale of the y-axis is
varied in each graph to better appreciate the distribution of
the ranging values. Above each graph we report the mean
and standard deviation of the corresponding relative ranging
error.

Observing the distribution of the RSS-based ranging values
(markers) with respect to the actual distance (straight line),
we can see that very large overestimates of the actual distance
are quite likely to occur. However, each refinement step
brings some improvement to the ranging accuracy, with the
most significant gain given by the RSS calibration and the
multichannel averaging.

To gain further insight on the impact of the different
refinement steps on the ranging accuracy, we applied each of
them in different combinations to the time-averaged RSS data
collected on each testbed. The results are reported in Fig. 17,
where we plot the module of the mean (upper graph) and
the standard deviation (lower graph) of the relative ranging
error, εr, defined by (15). Each bar corresponds to a different
combination of the four refinement steps, as indicated in
the figure’s legend. The acronyms have the structure Xmy,
where X ∈ {E,C} stands for Equalized (E) or Calibrated
(C), m ∈ {1, 2} refers to the number of breakpoints in
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the path-loss model (4), and y ∈ {s,m} indicates whether
the RSS measurements have been considered for a single
RF channel (s) or averaged over multiple RF channels (m).
Therefore, the left-most bar of each group, labelled E1s,
reports the results obtained by considering offset-equalized
RSS data, with one-slope path-loss model (4), and single-
channel RSS harvesting, which is the canonical situation
considered in the largest part of the literature. The right-
most bar (C2m), instead, refers to the results obtained from
the same sets of RSS data, but using all the refinement steps
described in this paper, i.e., RSS offset equalization, RSS
calibration, two-slope path-loss model, and multichannel RSS
averaging. Intermediate bars have been obtained by skipping
one or two of these refinement steps.

We can immediately note that the multichannel RSS av-
eraging is responsible for the most significant performance
improvement in all the scenarios. Once performed multichan-
nel RSS average, the other refinement steps bring negligible
benefit. The only exception is represented by the outdoor
scenario, where each refinement step brings a similar (but
rather limited) improvement of the ranging accuracy, whose
staring value (obtained with raw RSS measurements) is
however much better than for the indoor scenarios.

At a closer look, we see that, when performing multichan-
nel averaging, the RSS calibration is almost irrelevant, if not
counterproductive as in the DESK scenario, probably because
of the presence of the non-injective regions in the power-to-
RSS transduction law R◦(·).

From these results, we can conclude that multichannel
RSS averaging is by far the most effective RSS refinement
technique among those considered, in particular in harsh envi-
ronments. The application of the other refinement techniques,
such as calibration or multi-slope path-loss modeling, may
bring some further performance improvement that, however,
are rather limited.

It is then interesting to study how the RSS-based ranging
performance is affected by the number of channels used
for multichannel RSS averaging. To this end, we report in
Fig. 18 the mean and standard deviation of εr for the different
scenarios when averaging the RSS values over 1, 3, 6 and 16
RF-channels, equally spaced in the 80 MHz of the ISM band.
We can observe that the multichannel averaging significantly
decreases both mεr and σεr in all the scenarios. Moreover,
most of the performance gain is already achieved with as few
as 6 different RF channels, provided that they are sufficiently
spaced apart.

XI. RSS MEASUREMENTS IN OTHER CONDITIONS

The results presented in the previous sections have been
mostly obtained from short-range wireless devices, in indoor
and LOS conditions and with nodes at the same height. Yet,
the methodological considerations that have been drawn upon
such results have a wider scope and generally apply to other
cases, which however, may also have their own peculiarities.
In this section, we discuss some of the specificities that
can be expected when the RSS measurements are collected
in different conditions, included outdoor, non LOS, or with
nodes at different heights.

An outdoor, long range scenario is considered, for exam-
ple, in [109], where the authors present a detailed analysis
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of the statistical distribution of the signal strength in a GSM
cellular system. The measurements have been performed at
different carrier frequencies, when increasing the distance
from the transmitting base station. The study shows that
the shadowing terms, intended as the difference between the
measured signal power and the reference value obtained from
a classical single-slope path loss model, does not follow the
canonical lognormal distribution but is better modeled by
a mixture of long-normal random variables. Therefore, the
MLE of the channel parameters shall be adjusted to account
for such a particular distribution.

Another example is given in Fig. 19, where we report
some data taken from the repository [110]. The experimental
RSS samples were collected in an outdoor scenario, using
WiFi. A WiFi wireless station (Bullet M2) was connected
to a mobile robot, which moved along the trajectory shown
in the upper-left quadrant of Fig. 19. While moving, the
robot continuously sent WiFi packets to a stationary Access
Point, placed at X = −5 m, Y = 25 m, Z = 3.8 m
with respect to the robot’s starting position, which recorded
the RSS of each correctly decoded packet. The upper-right
quadrant of Fig. 19 reports the actual RSS measurements
collected for different distances of the robot from the Access
Point, while the lower-left plot is obtained by applying a
moving-average filter to the original data, with an averaging
window that spans the RSS samples collected on an interval
of approximately 6 cm. Finally, the lower-right plot shows
the (average) RSS measurements obtained when the robot
was covering the middle part of the trajectory (thick black
line in the upper-left plot), thus remaining at a height from
9.1 m to 9.84 m. Each RSS plot also reports the parameters
of the one-slope PLM obtained from (21).

Observing the upper-right curves, we can note that the
variability of the RSS measurements increases noticeably
at a distance of about 20 m, where the transmitter makes
a first loop, thus varying the angle between the transmitter
and receiver antennas. A similarly effect can be noticed at
d ' 90 m, in correspondence of the last loop in the trajectory.

At a closer look, we could observe an average gap of about
5 dB between the RSS values collected in the forward and
backward paths of each loop. This gap, too large to be
ascribed to the path loss, is likely due to the asymmetric
gain of the transmitter antenna, an asymmetry which can
be intrinsic in the antenna design, or caused by coupling
effects with the robot chassis, or a combination of the two
factors. Hence, once again, the antenna radiation pattern has
non negligible effect on the RSS measurements accuracy.

Another factor that can have a major impact on the
quality of the RSS measurements is the distance from the
ground/ceiling of the nodes antenna, since the presence of
obstacles within the first Fresnel zone can result in severe
attenuation/variability of the received signal strength [111].
It is indeed common experience that sensors lying directly on
the ground, or close to it, have very short coverage range [36].
Furthermore, the antenna radiation pattern in the elevation
plane can also have a major impact on the variability of the
RSS measurements. This is particularly important when the
height of the transmitter or receiver antenna changes during
the RSS harvesting campaign, as in the example of Fig. 19.
We can, in fact, notice a sudden drop of the RSS at a distance
of about 80 m, when the robot starts moving downhill.
Neglecting this variation of the height of the transmitter
antenna has a negative effect on the estimation of the channel
parameters, as can be appreciated by comparing the value of
σΨ reported in each of the RSS quadrants of Fig. 19, or the
mean and variance of the relative ranging errors from Fig. 20.

A similar effect is experienced when passing from LOS
to non LOS (NLOS) conditions. As observed in [112], the
RSS in LOS conditions can be several dBs larger than
in NLOS conditions, for the same distance. However, if
LOS/NLOS condition can be correctly identified, then this in-
formation can greatly improve the performance of RSS-based
indoor and outdoor localization [113]. Common approaches
to discriminate LOS and NLOS conditions are based on the
comparison of some key features of the empirical statistical
distribution of the RSS samples, such as the mean and the
standard deviation, the kurtosis (a measure of the peakedness
of the probability density function), the skewness (a measure
of the asymmetry of the probability distribution), the Rice
factor, and so on [112]. These techniques, however, require
a rather accurate estimate of the statistical distribution of the
RSS measurements for the different distances that, in turn,
requires a large number of measurements.

Finally, channel parameters may be non-stationary because
of the nodes mobility or mid-to-long term changes in the
environment [95], [114]. As shown in [93], the uncertainty
in the estimation of the PLM parameters yields a statistical
bias in the estimated distance, with negative effect on the
localization. Still in [93], it is proved that such a bias can
be mitigated, but this requires the anchors to be properly
placed. Another study on RSS-based localization in non-
homogeneous environments is presented in [115], where the
authors propose a two-stage procedure consisting first in the
estimation of the attenuation factors among the anchors and,
then, in the application of a maximum likelihood localization
algorithm to estimate the unknown position of the blind
wireless node.
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Figure 19: Outdoor RSS measurements. Upper-left plot:
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8.1 m up to 9.84 m. Upper-right plot: RSS measurements at
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deviation (lower) for the three cases of Fig. 19.

XII. CONCLUSIONS

In this tutorial paper we have reviewed the most common
approaches to obtain ranging estimates from the measure-
ments of the radio signal power received by a wireless node.
Starting from a thorough analysis of the reference channel
model used to describe the decay of the radio signal with
the travelled distance, we have then considered one by one
the different steps that are generally performed to obtain a
distance estimate from a vector of raw RSS measurements.
Hence, we verified the impact of the different operations
on the accuracy of the channel parameters estimate and the
relative ranging performance.

To wrap up the discussion, we here summarize some
fundamental lessons that can be learned from our study and,
then, discuss some possible research directions, open issues

and challenges.

A. Good practice recommendations
Calibration of RSS readings: The granularity of the

power-to-RSS transduction law is totally negligible. Instead,
non-linearities and offsets in the power-to-RSS functions
may have a severe impact on the accuracy of the RSS
measurements. It is hence recommended to compensate the
RSS offset and, whenever possible, to rectify the transduction
law of the different nodes (in this order).

A way to exactly estimate the RSS offset of a node is
to attach a signal generator to the connector of the external
antenna, and transmit a signal with known power. The
difference between the actual and expected RSS readings is
equal to the RSS offset of the circuit, which can then be
compensated by properly setting an internal register of the
wireless board, or simply subtracting the estimated offset to
all the RSS readings of that node.

A simpler (but slightly less accurate) procedure to esti-
mate the relative offset between two nodes is described in
Sec. VI-C, and consists in exchanging a number of two-
way packets between the nodes and computing the mean
difference between the respective RSS readings. If one node
has zero offset, this process makes it possible to estimate and
compensate the offset of the other node. Otherwise, it can be
used to simply harmonize the offsets of the different nodes
to a common value. Note that the rectification of the RSS
transduction law is meaningful only when the offsets have
been compensated.

Antenna anisotropy: The antenna radiation patterns are
often overlooked, but they can strongly affect the perfor-
mance of the RSS-based ranging. In particular, the radiation
pattern of patch antennas may be quite irregular, with several
dBs of difference depending on the angle. Clearly, such
variations may have a dramatic impact on the accuracy of
the RSS-based ranging.

Practitioners are hence recommended to take into account
the actual radiation patterns of their devices, for example by
orienting the anchor nodes so that the maximum gain lobe is
turned towards the monitored area. Furthermore, the nodes
shall be placed at the same height, to mitigate the vertical
asymmetries of the radiation pattern of the antenna.

If the nodes can be rotated around their axis, it is possi-
ble to collect multiple RSS samples with different relative
orientations of the antennas. Knowing the nominal radiation
pattern of the antenna, it is then possible to estimate the
orientations of the nodes and, then, compensate the dif-
ference of the antenna gains. These procedures, however,
may be unfeasible or very cumbersome in practical settings.
Therefore, the use of (external) isotropic antenna is strongly
recommended.

Short-term fading: The fast fading term that affects the
RSS samples can be smoothed out by averaging a few RSS
samples, say from 10 to 15, sufficiently spaced apart in
time to decorrelate the fast fading coefficients. Increasing the
number of samples over 15 is not much convenient, since the
reduction of the fast-fading noise is very limited and may
not justify the extra energy and time costs incurred in the
collection of the additional RSS samples.

The time average can be performed directly on the values
in dB scale (as typically returned by the RSS register), or
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by first converting the readings in linear scale. The last
approach is preferable because the result is unbiased and
exhibits slightly lower variance.

Path loss model: The estimate of the PLM parameters
also requires some care. First of all, piece-wise PLMs shall
be considered, in particular when the distances are relatively
small (order of meters). However, a two-slope model is
typically sufficient, while models with more than three slopes
are discouraged because of the risk of overfitting. Second,
attention shall be devoted to avoid any bias due to the
sensitivity threshold of the receiver, which may become
relevant at large distances, close to the reception range of
the devices.

Long-term fading: Despite the long-term fading that
affects the RSS samples is often associated to shadowing
phenomena and modeled as a lognormal random variable
(in linear scale), in indoor environment it may be strongly
contributed by the self-interference produced by few clusters
of strong signal reflections. In this case, the statistical distri-
bution is better captured by other models, such as the Extreme
Value distribution (see Appendix A). Using the most proper
statistical model for the long-term fading may help improving
the accuracy of the channel parameters estimate.

The component of the long-term fading coefficients due
to the self-interference can be dramatically reduced by av-
eraging multiple RSS samples collected over different RF
channels. Indeed, the spatial diversity obtained by changing
the carrier frequency is sufficient to partially decorrelate the
phases of the reflected signals, as better explained in [96].
The mean RSS values obtained after multichannel averaging,
furthermore, exhibit a statistical distribution which is closer
to the canonical lognormal model, which means that the error
term in (18) is gaussian and, hence, the MSE estimate given
by (21) actually corresponds to the maximum likelihood
estimate of the channel parameters.

It is therefore highly recommended to average multiple
RSS samples collected on different RF channels, widely
spaced apart. Note that, in this way, we not only mitigate
the long-term fading, but also reduce the fast-fading term,
since the RSS samples will also be distributed in time. The
multichannel RSS averaging is by far the most effective way
to improve the accuracy of RSS-based ranging among those
analyzed in this paper. However, the information contained in
multi-channel RSS samples can be better exploited by using
other, more sophisticated techniques, as those proposed in
[104], [105].

Summing up: We can hence conclude that obtaining an
accurate measurements of the received signal power, or a
good ranging estimate, by using RSS measurements is indeed
a challenging endeavor. However, the awareness of the factors
that affect the accuracy of the RSS measurements can help
to avoid some trivial mistakes. In particular, the calibration
of the RSS circuits to remove the RSS offsets, the use of
isotropic antennas, and the averaging of RSS samples over
different carrier frequencies have been identified as the most
important elements to enhance the accuracy of the RSS-based
ranging.

B. Discussion
Our review of the most common approaches to collect RSS

measurements, and the related pitfalls, may suggest some

new design criteria for wireless devices that can natively
support accurate RSS measurements and/or ranging and new
methodologies to improve the quality of the RSS-based
ranging estimation techniques.

For example, an anisotropic and asymmetric radiation
pattern, which may severely affect the reliability of classical
RSS-based ranging, can be exploited to infer the mutual
orientation of the transmitter and receiver antennas, thus
making it possible to compensate the different antenna gains
and providing an extremely valuable information for node
tracking algorithms. Therefore, the design and testing of
practical and effective algorithms to determine the node’s
orientation are open and interesting research problems.

Another research direction that has not yet been fully
investigated regards the calibration of the nodes’ sensors to
compensate offsets and non-idealities. A possible solution
consists in applying consensus techniques to reach a global
agreement on the settings of the tuneable parameters (e.g.,
RSS offset, time reference, transmit power) among the nodes
in the network. However, these technique are rather costly in
terms of energy consumption, control traffic, and convergence
time. Therefore, further research is needed to find lighter
algorithms/procedures to compensate the unavoidable offsets
of the nodes’ sensors.

From a methodological perspective, a promising approach
consists in departing from the classic PLM to investigate
alternative statistical models for the received signal power,
in order to better account for the environmental variability.
An example is given in [116], where the authors propose a
Bayesian model for the received power, which is represented
as the sum of two random terms, one for the distance-
dependent power attenuation and the other for the fading
component. The statistical distribution of the first random
variable is parametric and, hence, can capture different envi-
ronmental conditions as, for instance, the presence or absence
of LOS. The authors then propose a relatively simple way to
obtain a ranging estimate from the RSS readings by using
Bayesian estimation. The simulation results obtained in a
test scenario show that the proposed approach can outperform
the classical PLM-inversion ranging methods, thus suggesting
that more sophisticated RSS models can help to improve
the accuracy of the received power measurements and of the
RSS-based ranging.

Another interesting approach is proposed in [117], where
a particle filter is used to select the best RSS measurements
and improve the accuracy of RSS-based ranging even in the
presence of mixed LOS/NLOS conditions and for different at-
tenuation factors and fading levels. Furthermore, the ranging
accuracy is improved by considering geometric constraints
that can be obtained using other techniques, such as the
difference time of arrival among the different anchors.

Other still largely unexplored research avenues include
the development and experimental analysis of algorithms
and techniques for efficient and accurate RSS harvesting in
mobile networks, the use of cooperative and opportunistic
techniques to improve the localization accuracy of the differ-
ent nodes [118], [119], and the exploitation of other types of
signal for ranging as, for example, visible light [120].

As a final comment, we observe that the huge and
variegate literature on the subject, and the availability of
a number of commercial products that can provide RSS
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measurements and radio-based ranging and localization ser-
vices, have not yet exhausted the interest of these topics
for the scientific community, an interest that has instead
been renovated by the advent of new technologies, such
as low power wide area network standards (e.g., SigFox,
LoRa, Ingenu) and millimeter waves, new communication
paradigms, as machine-type communication and vehicular
communication, and new application scenarios, as Internet of
Things and Smart Cities [121]. Accurate RSS measurements,
distance estimation, and localization/tracking of the nodes in
the network are, indeed, extremely valuable information to
be used for the optimization of the network management,
e.g., by enabling the design of position-aware scheduling
algorithms in interference-limited systems, or the deployment
of efficient in-network data compression/fusion techniques
based on the spatial correlation of the sensor measurements,
or the improvement of energy efficiency of machine-type
devices by channel-aware scheduling and rate adaptation
algorithms. Therefore, squeezing out information from RSS
measurements will likely remain an attractive research and
engineering challenge for yet some years to come.
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APPENDIX

A. Long-term fading models

In principle, the long-term fading accounts for the space
variability of the received signal power due to the variations
of the number and typology of obstructing surfaces along
the path followed by the radio signal from the transmitter to
the receiver [78], [82]. If the signal path goes through many
obstructing objects of different size and material, the overall
attenuation (in dB scale) can be approximated to a Gaussian
random variable, which gives a lognormal random variable
in linear scale and motivates the name lognormal shadow-
ing commonly used to refer to this model. The lognormal
shadowing has been empirically observed in many scenarios,
in particular when considering global data (measurements
collected over a large area), or even local data (measurements
collected by a couple of nodes in a fixed position) in the case
of obstructed paths [82].

Another possible model for the long-term fading is the
Weibull model [103], according to which Ψ

LN
is characterized

by the PDF

fΨ
LN
(x) =

β

λβ
xβ−1e−(x/λ)β , (25)

where λ > 0 is called scale parameter, and β > 0
shape parameter. Since Ψ

LN
has unit mean, it holds λ =

1/Γ(1 + 1
β ), where Γ(x) =

∫∞
0
e−aax−1da is the Gamma

function. Therefore, the distribution of Ψ
LN

is governed by
the parameter β only. The Weibull distribution is a special
case of the α-µ distribution [79], more commonly known
as Generalized Gamma (or Stacy) distribution [79], and it
interpolates between the exponential distribution (β = 1) and
the Rayleigh distribution (β = 2).

If Ψ
LN

is Weibull distributed, then Ψ has Extreme Value
distribution, whose PDF is given by

fΨ(x) =
1

σ
e
x−µ
σ −e

x−µ
σ , (26)

where µ = ξ ln(µ) = 10 log(λ) and σ = ξ
β . In this case, the

statistical mean of Ψ turns out to be equal to

mΨ = µ− σγ
0

where γ
0

is the Euler-Mascheroni constant. Therefore, the
mean of the shadowing term in dB scale is non-zero even
when Ψ

LN
has unit mean in linear scale.

B. Rician fading model

Let h(t, s) denote the complex equivalent channel impulse
response and let γ(t, s) = |h(t, s)|2 be its squared envelope.
The short-term fading in linear scale, a

LN
(t), can hence be

defined as
a
LN
(t) =

γ(t, s)

γ̄(s)
; (27)

where γ̄(s) is the ergodic time average of the channel gain.
Therefore, a

LN
(t) has unit time average by construction, i.e.,

ma
LN

= E [a
LN
(t)] = 1 .

According to the Rician fading model, we hence have
h(t, s) = X+jY , where X and Y are mutually uncorrelated
normal random processes with mean mX and mY and
equal variance σ2

t [82]. Therefore, the module |h(s, t)| =√
γ(t, s) =

√
X2 + Y 2 is distributed as a Rice random

variable, with Rice Factor RF =
m2
X+m2

Y

2σ2
t

, and overall signal
power γ̄(s) = m2

X + m2
Y + 2σ2

t = 2σ2
t (RF + 1). From (27)

we then have

a
LN
(t) =

(X2 + Y 2)/σ2
t

2(RF + 1)
=

ζ

2(RF + 1)
; (28)

where ζ is a non-central chi-square distributed random
variable with two degrees of freedom and non centrality
parameter ν =

m2
X+m2

Y

σ2
t

= 2RF . The variance of a
LN
(t) is

equal to

σ2
a
LN

=
σ2
ζ

4(RF + 1)2
=

4(2RF + 1)

4(RF + 1)2
=

2RF + 1

(RF + 1)2
.

C. Averaging short-term fading

1) Time averaging in linear scale: Taking the average
of N short-term fading samples in linear scale, sufficiently
spaced apart in time to be uncorrelated, we get

ā
LN
(N) =

1

N

N∑

i=1

a
LN
(ti) ;

which is an Erlang-distributed random variable, with shape
parameter N , and rate parameter λ = 1. Converting the result
in dB scale we obtain

ā(N) = 10 log(ā
LN
(N)) = ξ ln(ā

LN
(N)) ; (29)

where ξ = 10 log(e). The statistical mean and variance of
(29) turn out to be equal to

mā(N) = ξ(PoliG0(N)− ln(N)) ;

σ2
ā(N) = ξ2PoliG1(N) ;

(30)
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respectively. In (30), PoliGm(k) represents the polygamma
function of order m that, in our case, is given by the (m+1)st
derivative of the logarithm of the factorial k!.

2) Time averaging in dB scale: Averaging N samples in
dB scale we get

a(N) =
1

N

n∑

i=1

a(ti) ; (31)

where a(ti) is distributed as ā(1) in (29). The mean and
variance of a(N) are

m
a(N)

= mā
dB

1
= −ξγ ;

σ2
a(N)

=
σ2
ā
dB

1

N
= ξ2 π

2

6N
;

(32)

where γ is the Euler-Mascheroni constant. We can then
observe that averaging the value in dB scale yields a con-
stant, negative bias, which can be easily compensated for or
included in the deterministic term K of the PLM (6), while
the variance of the average decreases linearly with N .

D. Finding the critical distance d◦

Let Pok(x) be the successful packet reception probability
when the received signal power (in dB scale) is x. Then, the
PDF of Ψ̊ can be expressed as the conditional PDF of Ψ,
given that the packet is successfully decoded, i.e.,

fΨ̊(a) =
fΨ(a)Pok(D(d) + a)∫∞

−∞ fΨ(v)Pok(D(d) + v)dv
. (33)

To simplify the analysis we approximate Pok(x) as the unit-
step function H (x− Γthr), so that a packet is successfully
decoded only when the received signal power is above a
certain threshold Γthr. In this case, (33) becomes

fΨ̊(a) =
fΨ(a)

1− FΨ(Γthr −D(d))
, a ≥ 0 , (34)

where FΨ(·) denotes the Cumulative Distribution Function
(CDF) of the random variable Ψ. When the denominator of
(34) gets close to one, the PDF of Ψ̊ tends to that of Ψ, which
is distance-independent. Therefore, given a positive ε � 1,
we can find the maximum distance d◦ within which Ψ̊ has
approximately the same distribution as Ψ, i.e.,

d◦ = arg max
d
{FΨ(Γthr −D(d)) ≤ ε} . (35)

Unfortunately, the term D(d) in (35) intertwines the estimate
of d◦ with that of the channel parameters, so that it is
necessary to solve (35) in a recursive manner: we first
set d◦ = ∞ and estimate the PLM parameters under the
assumption that the consider shadowing model is valid. Then,
we evaluate (35) to obtain a new value of d◦, using the just
estimated channel parameters, and verify a posteriori whether
all the RSS samples used in the estimate where collected
at distances less than d◦. If not, the procedure is repeated
by considering only the RSS values collected at distances
di ≤ d◦, until the condition is satisfied.
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