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Abstract—Progress in communication technologies has fostered
the development of advanced, interactive applications that re-
quire multi-sensor data transmission with low latency and high
reliability. Since these requirements are not guaranteed by cur-
rent application-agnostic transport protocols, these applications
mostly rely on customized, application-level scheduling and flow
control mechanisms, which lack generality and transparency,
making it difficult to jointly control the information flows of
different applications. In this work, we propose a unified frame-
work to support the transmission of correlated data flows. We
assume that the applications are able to describe the correlation
among their data streams and the related service requirements
in terms of a Value of Information (VoI) matrix. Hence, we
propose QUIC-EST, a transmission scheme that combines the
congestion control and multi-stream features of the recently
proposed QUIC transport protocol with a proper scheduling
algorithm to maximize the VoI at the receiver. To illustrate the
idea, we propose the analysis of two relevant use cases, namely
inter-vehicular and haptic communications, and demonstrate
through simulations how the proposed approach can significantly
outperform current transport schemes.

Index Terms—QUIC, latency, reliability, multi-sensory,
Vehicle-to-Everything (V2X), Tactile Internet (TI).

I. INTRODUCTION

The next generations of cellular networks (5G and beyond)
are expected to support new, challenging interactive applica-
tions that, besides the freedom of movement given by wireless
connectivity, generally require the timely and synchronized
delivery of a multitude of sensor data and commands to
guarantee interactivity and control effectiveness [1].

For example, haptic communication allows users to interact
with remote environments using haptic sensors and actuators
that exchange kinesthetic and tactile information. In the case
of closed-loop bilateral teleoperation systems, kinesthetic data
is time-sensitive. Although stability control mechanisms can
be employed to compensate for end-to-end delays that can
perturb the stability of such systems, this approach may
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deteriorate the transparency of the service, i.e., the feeling
of interactivity and, hence, the quality of telepresence [2].
A more transparent way to decrease the end-to-end delay,
instead, consists in reducing the sensor data to be transmitted
according to human perception models, but at the cost of
a less accurate reconstruction of the signal at the receiver
[3]. Somehow similarly, connected vehicles can exchange
data generated by on-board sensors via Vehicle-to-Everything
(V2X) communications, in order to collaboratively build a
richer context awareness and coordinate driving decisions.
However, disseminating the sensors’ observations is expected
to increase data traffic in vehicular networks by multiple
orders of magnitude, thus potentially leading to congestion, so
that proper data transmission schemes are needed [4]. Other
applications that generate streams of correlated data are, e.g.,
remote control of swarms of mobile robots, tele-monitoring of
industrial processes, immersive interactive virtual reality.

In order to operate effectively, these applications need flow
control strategies to avoid delays and packet losses caused
by congestion, as well as recovery mechanisms to protect
particularly valuable data. The most common transmission
protocols, namely, the Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP), offer complementary
services that, however, are not adequate for the purpose. By
using TCP, applications can delegate congestion control and
packet retransmissions to the transport layer, which provides
a simple and well-tested interface with standardized behavior.
However, most congestion control mechanisms can create sig-
nificant latency issues. tThe TCP in-order delivery constraint
can cause the head-of-line blocking problem when all the
data streams are multiplexed into the same TCP connection.
Indeed, if a packet from any of the sensors is lost, successive
packets from all other sensors are buffered at the receiver
and released to the application only after that the previously
lost packet is successfully recovered. Conversely, UDP offers
full flexibility to the applications, but leaves the burden of
managing congestion and retransmissions to them.

In order to overcome the issues of these protocols, here we
propose QUIC-Enabled Scheduling and Transmission (QUIC-
EST). QUIC is a recently developed transport protocol that
allows data to be sent in parallel and logically independent
streams, thus avoiding the head-of-line blocking problem
among different streams. This reduces unnecessary delays in
the reception of the data, particularly when the number of
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Fig. 1: The head-of-line blocking problem and the stream-based solution.

independent data flows is large. QUIC-EST combines the
features of QUIC with a multi-stream scheduling scheme
that biases data transmissions as a function of the Value of
Information (VoI) provided by the application. Here, the VoI
is considered as a scalar value quantifying the utility of the
data for the receiver [5]. The VoI takes into consideration
the potential correlation of the information flows in time and
across different sensors, as well as their intrinsic value. To
better illustrate the proposed methodology, we apply it to two
relevant use cases, namely autonomous driving and haptic
communication, and we show that our approach guarantees
better utility compared to traditional transport schemes.

The rest of the paper is organized as follows. Sec. II presents
the original QUIC protocol and explains our adaptations.
Sec. III describes the proposed VoI-based scheduler. Sec. IV
presents the two use cases used to exemplify the potential of
the proposed approach. In Sec. V we evaluate the performance
of the VoI-based scheduler in such use cases. Finally, Sec. VI
concludes the paper.

II. ADAPTING QUIC FOR TIME-SENSITIVE
MULTI-SENSORY APPLICATIONS

The QUIC protocol [6] was designed by Google to solve
some of the latency issues that TCP typically causes with Inter-
net traffic. Indeed, TCP offers a single in-order byte-streaming
service, leaving the task of separating application-level objects
to the application itself. To guarantee in-order delivery, TCP
blocks the delivery to the upper layer of any data that has
been received out of order, even if logically independent of the
lost/delayed packet. QUIC addresses this head-of-line blocking
problem by adopting a solution previously implemented by the
older Stream Control Transmission Protocol (SCTP) [7], i.e.,
defining separate streams of data within the same connection.
Each stream is treated by the protocol as a logically separate
data flow with in-order reliable delivery, independent of the
other streams. Fig. 1 shows an example of how QUIC handles
multiple streams: while the loss of the blue packet also blocks
the orange and green packets in TCP, the logical separation
between the streams allows QUIC to deliver the data.

QUIC was designed for Web traffic consisting of a po-
tentially large number of logically independent objects to
be delivered with the lowest possible latency. However, its
features are also suitable to support interactive multi-sensory

applications that need to transmit data from multiple sensors,
potentially with low delay, to preserve the user’s Quality of
Experience (QoE). Nonetheless, unlike Web traffic, sensing
data traffic is typically redundant, so that applications do not
usually require to receive all the data. This makes the head-of-
line blocking issue even more pressing, since the undelivered
data might not even be necessary for successful operation. We
hence propose the QUIC-EST scheme as a way of adapting
QUIC to the multi-sensory application requirements.

In QUIC-EST, each sensory reading can be considered as
a separate object. As sensors produce several readings per
second, we propose to use not just a different stream for each
sensor, but a different stream for each object. Whenever all
packets sent into a stream are acknowledged, the stream can
be reused for a new object. On the contrary, if a stream gets
blocked by a packet loss and the data become stale, the sender
will transmit a RESET_STREAM control frame (which is not
bound by in-order delivery constraints) to tell the receiver
to discard any existing out-of-order data received from that
stream and start again, as suggested in [8].

III. VALUE OF INFORMATION-BASED SCHEDULING

While the use of streams allows QUIC to transmit data from
different sensors independently, the capacity of the connection
might not be sufficient to deliver the data from all sensors
within the required time. In this case, the choice of which
sensor data should be transmitted and in which order becomes
a central problem. Since the QUIC protocol does not specify
any scheduler, we propose to implement a priority-based
mechanism.

We then define a scheduling algorithm that aims at maximiz-
ing the effective VoI at the receiver, while avoiding congestion
in the connection. To this end, the algorithm needs to be fed
with four types of information, namely: (i) the (estimated)
available capacity of the connection, (ii) the size of the data,
(iii) the intrinsic VoI of the data, and (iv) the correlation
between the data generated by different sensors (which impacts
the effective VoI of the transmitted data). We assume that
these input variables are passed to the scheduler using specific
interfaces, whose definition is out of the scope of this work.
In the following, we provide a more formal description of the
variables, and describe their meaning and use.

Let N be the number of objects generated in a batch by
an application. Hence, the scheduler is provided with the
following inputs.

• The available capacity C along the path, defined as the
product of the bottleneck capacity and the minimum
round trip time (RTT). These values are estimated di-
rectly by the recent bottleneck bandwidth and round-trip
propagation time (BBR) congestion control algorithm [9],
and can be obtained indirectly when using other latency-
aware mechanisms such as the classic Vegas algorithm
(which, however, tends to underestimate the capacity in
volatile scenarios). In our implementation, we consider
the estimate provided by BBR, but note that QUIC
natively supports both Vegas and BBR.

• The size vector s ∈ NN , which contains the sizes of the
objects, in bits. This information is used to check that



the amount of data scheduled for transmission does not
exceed the connection capacity C, to avoid congestion.

• The weight vector v ∈ [0; 1]N , which contains the
intrinsic value of the objects, i.e., the VoI when con-
sidering only that source. The intrinsic VoI can depend
on a number of factors, such as the position of the
sensor (e.g., front sensors in an autonomous vehicle are
generally more informative than side sensors for driving
decisions, or the finger sensors in a haptic application
are more informative than wrist sensors), and the current
state of the process (e.g., the presence of an object in
a camera’s Field of View (FoV), or the detection of a
sudden gesture in haptic applications). The intrinsic VoI
can also depend on the time correlation of the sampling
process. If the process is slow-varying, consecutive read-
ings from the same sensor can be highly correlated and,
hence, easily predictable by the receiver. Although the
relation between the time since the last update from a
sensor and the correlation with the new reading is highly
application-dependent, it is often assumed to follow an
exponential decrease [5]. Some control applications have
inbuilt compensation mechanisms for delay, which do
not require new measurements until a certain time has
passed, so the correlation for these cases can be modeled
as a step function. A sigmoid function can then be used
to model an imperfect compensation mechanism with a
gentler degradation curve. Given the specificities of the
different applications, we assume that the intrinsic VoI
is determined by the application itself, and passed to the
scheduling algorithm in the form of the weight vector. In
the next section we will provide examples of how these
values can be computed in the two considered use cases.

• The cross-sensor correlation matrix W ∈ [0; 1]N×N ,
which contains the correlation between objects. Indeed,
if the application relies on multiple sensors, there is
often a significant amount of redundancy in their in-
formation. For example, multiple cameras might have
partially overlapping FoVs, or scalar sensors might be
measuring correlated quantities. Therefore, the intrinsic
VoI of some data may need to be discounted to account
for the cross-sensor correlation, because the effective VoI
of two correlated measurements can be lower than the
sum of the VoIs of the two individual measurements.

The scheduling problem consists in selecting the sensor mea-
surements that provide the maximum VoI at the receiver, while
respecting the capacity constraint, i.e., having a total size that
is lower than the bandwidth-delay product of the connection.
Computing the VoI for all possible scheduling patterns is
a combinatorial problem, which soom becomes unfeasible.
However, if we limit the analysis to couples of objects, i.e., we
do not consider the effects of triplets of correlated objects, this
is an instance of the Quadratic Knapsack Problem (QKP) [10],
which is NP-hard, but for which there are efficient heuristic
solutions.

Fig. 2 shows the basic structure of the proposed scheduling
framework: multiple sensors write data with a given VoI to a
QUIC socket, and the application supplies the cross-sensor
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Fig. 2: Basic components of the framework and main data exchanges. In the
figure, the data from sensors 1 and 5 is discarded, while the data from sensors
2, 3, and 4 is sent in that order.

correlation matrix W. The available capacity is read from
the BBR estimate, and the scheduler finds the optimal set of
objects that can be delivered before the next sensor update,
sending them through the connection as fast as congestion
control allows. If the connection is lossy or time-varying,
scheduling decisions can be revised based on what was already
sent, recomputing the solution to the problem.

To the best of our knowledge, transport layer scheduling
of multi-sensory data is an open research problem, which
requires the study of the application and sensor features and
the estimation of end-to-end capacity dynamics. QUIC-EST
forgets the problem by considering correlated measurements in
time and across multiple sensors and using congestion control
to estimate the path capacity. The scheduling framework is rel-
atively simple, but it can support a wide range of applications,
guaranteeing reliability and maximizing the delivered VoI.

IV. USE-CASE SCENARIOS FOR QUIC-EST

The methodology we propose can be applied to any type
of application that generates correlated data streams, whose
relative importance can be represented in the form of a VoI
matrix. In the following, we give two examples of such
applications, namely, autonomous driving (Sec. IV-A) and
haptic communication (Sec. IV-B).

In our scheduler, data transmission is discriminated based
on the VoI provided by the application layer, which depends on
the intrinsic characteristics of the different sensors and on the
time correlation of consecutive observations. We remark that
determining the VoI is not the main focus of this contribution.
For the sake of completeness, however, we consider a simple
and intuitive definition of the VoI, based on expert knowledge
about the relative importance of the different information
sources and of their temporal obsolescence. The same empiri-
cal approach is used to determine the cross-sensor correlation
matrix, which evaluates the degree of correlation among the
different sensors. Clearly, more sophisticated strategies may
yield different values for the VoI and the correlation matrix
that, once fed into QUIC-EST, may result in different trans-
mission strategies. Nonetheless, the values considered in this
study are reasonable and apt to illustrate the rationale of the
proposed scheme.



A. QUIC-EST for Autonomous Driving

Size vector. The size vector depends on the type of automo-
tive sensor that is considered, the rate at which observations
are made, and their resolution. For example, Light Detection
and Ranging (LIDAR) sensors can generate data flows with
a rate from about 50 kbps to 30 Mbps, depending on the
sensor resolution. Similarly, the data rate for camera images
ranges from 10 Mbps to 500 Mbps, depending on the image
resolution [11], even though compression can reduce the image
size by several orders of magnitude. In this work, we consider
N = 5 sensors: two cameras on the vehicles’ top left (lft) and
top right (rgt) corners, one on the front (f ) and one on the
rear side (r), and one LIDAR on the rooftop of the car (L).
The sizes of the sensor observations are calculated based on
the nuScenes dataset [12], which contains a full autonomous
vehicle sensor suite, assuming a 1 Byte pixel encoding and
JPG compression for the camera images: we consider a size
for the front/rear cameras of 180 KB, for the lateral cameras
of 140 KB, and for the LIDAR of 1300 KB, as depicted in
Fig. 3 (left).

Intrinsic VoI. We reasonably expect that the LIDAR would
be more valuable compared to automotive cameras because it
can provide a three-dimensional (rather than bi-dimensional)
representation of the environment, and can work efficiently in
different weather/time conditions. Also, we assume that the
importance of the images taken by the cameras depends on
the characteristics of the environment in which the vehicles
move (e.g., in the highway scenario lateral cameras will likely
make background observations with little marginal informa-
tion, while frontal/rear cameras might provide more valuable
information). Based on these assumptions, we empirically
define the correlation vector v ∈ [0, 1]N as shown in Fig. 3
(left). Moreover, following the method suggested in [5], we
account for the temporal obsolescence of the information by
means of an exponential function that depends on the relative
age of information, i.e., the time between the generation and
reception of the information, with a temporal decay parameter
that is proportional to the delay sensitivity of the observation,
i.e., the temporal horizon over which that piece of information
is considered valuable.

Cross-sensor correlation. We assume that the correlation
between images taken by different cameras is proportional to
the overlapping of their FoVs. Therefore, the rear camera’s
images are uncorrelated with those of any other camera. The
images taken by lateral cameras are slightly cross-correlated,
while higher correlation can be assumed between the frontal
and lateral cameras. On the other hand, the LIDAR sensor
operates through 360-degree rotations and its observations can
be highly correlated/redundant with those of the cameras. The
correlation matrix is hence structured as displayed in Fig. 3
(left).

B. QUIC-EST for Haptic Communication

Size vector. In this scenario, the size vector should depend
on the number of sensors and actuators integrated on the haptic
devices. The CyberGrasp [13] device combines a haptic glove
that can sense orientation and movement of the hand and

an exoskeleton with five kinesthetic actuators for providing
force feedback to the user. Since each haptic glove has 22
movement sensors, considering two hands we have in total
N = 44 sources of sensor data. Each sensor transmits one
floating-point value (i.e., typically 32 bits using the IEEE 754
standard) with a 1 kHz sampling rate, resulting in a 1.4 Mbps
total data rate, as represented in Fig. 3 (right).

Intrinsic VoI. In order to determine the VoI of each data
sample generated by the haptic device’s sensors, we rely on
the psycho-physical aspects of human perception. More specif-
ically, we can use Weber’s law of Just Noticeable Difference
(JND), as in the deadband transmission algorithm in [14],
which can be applied in position, velocity and force data.
The VoI is then given by the difference between the last
transmitted sample from that sensor and the current value,
which can be easily computed by the sending application and
given to the scheduler. Sensors have the same inherent VoI,
but the actual value of the information depends on how novel
it is with respect to the one currently available to the receiver.
This definition implicitly includes the time correlation between
samples, as the difference between consecutive samples will
usually be small, but then grow with time consistently with
the age of the data.

Cross-sensor correlation. In the haptic communication case,
the flexibility of a robotic hand makes the relation between
different sensors strongly dependent on their position. If the
hand is grasping an object, the correlation between sensors
will be different from when it is at rest. Consequently, we
cannot give a constant cross-sensor correlation matrix based
on the sensors’ positions, like we did in the vehicular case.
Ideally, the application should be able to compute the instan-
taneous correlation between sensors in real time and pass the
correlation vector to the scheduler. As a simpler (and likely
suboptimal) alternative, here we consider the measurements to
be independent.

V. PERFORMANCE EVALUATION

In this section, we present a performance evaluation of
QUIC-EST, comparing it with other scheduling algorithms
in the two scenarios presented in Sec. IV, with extremely
different features. While realistic, the assumptions about the
two scenarios are arbitrary, and their purpose is to illustrate
the methodology from a qualitative perspective, rather than
giving a complete quantitative assessment of the scheme. The
autonomous vehicle in the first scenario transmits only 10
frames per second but with a maximum rate of 155.2 Mbps; on
the other hand, haptic communication has a maximum rate of
just 1.4 Mbps, but its sampling frequency is 100 times higher,
i.e., 1 kHz. Furthermore, while the haptic communication
scenario has 44 different sensors that need to be scheduled,
the autonomous driving scenario only has 5.

In both scenarios, we study the average VoI as a function
of the available (constant) connection capacity. We consider
three other schedulers:

• First In First Out (FIFO). This is the default QUIC
scheduler, which transmits pieces of data in the same
order they were received from the application. It limits



Fig. 3: Scheduling input parameters for the autonomous driving (left) and haptic communication (right) scenarios.

transmission to the achievable send rate, discarding any
objects that would exceed the connection’s capacity. We
consider this as a baseline, as its behavior is similar to
TCP, without the head-of-line blocking.

• VoI-based. This scheduler considers the VoI as the deci-
sion factor for transmitting objects that fit the transmis-
sion capacity. It is an instance of the classic knapsack
problem, as it does not consider cross-sensor correlation
or even temporal correlation between values, but only the
intrinsic value of each sensor.

• Cross-sensor VoI. This scheduler considers cross-sensor
correlation, but neglects the temporal correlation. It is
equivalent to the optimal scheduler if subsequent mea-
surements from the same sensor are independent, and to
the VoI-based scheduler if the measurements are indepen-
dent between different sensors as well.

• QUIC-EST. The scheduler considers VoI as well as time
and cross-sensor correlation. The scheduling is obtained
by using existing solvers for the QKP. This scheduler
gives the best performance if we consider the full appli-
cation model.

The performance analysis is based on MATLAB simulations,
and the code has been made publicly available.1

In Fig. 4 we report the normalized VoI achieved by the
different schedulers when varying the connection capacities in
the autonomous driving scenario. The normalized VoI value is
defined as the ratio between the average VoI achieved by each
scheduler for a certain channel capacity over the VoI obtained
with infinite capacity (which is the same for all the considered
schedulers). As expected, the performance grows with the
channel capacity for all schedulers, but cross-sensor VoI and

1https://github.com/Anay191/Scheduling Policies QUIC
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QUIC-EST, which account for the cross-sensor correlation,
exhibit a clear advantage over the others. As Fig. 5 shows, this
stark difference is due to the frequency at which the schedulers
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pick LIDAR frames, which are large and highly correlated with
data from the cameras. When the channel capacity is limited,
the schedulers that consider cross-correlation among the sensor
data flows will limit the number of transmitted LIDAR frames,
which are highly correlated, thus leaving more space from
camera frames that, with the considered setting, have a higher
joint value.

For the haptic communication scenario, we consider the VoI
as a logistic function of the difference between the current
sample and the last transmitted one. We used realistic haptic
traffic model parameters from [15] and cautiously selected
a JND value of 5% of the dynamic range of the sensors.
Accordingly, we simulate each sensor as an independent
Gauss-Markov process, setting σ = 2.15% of the dynamic
range to fit the empirical model from the paper. The VoI is
then given by a logistic function with center x0 = 1.65σ
and sharpness k = 10. These values ensure that all sensor
measurements that differ for more than the JND are prioritized,
while the remaining data are sent only in case of residual
capacity. As mentioned, in the haptic communication scenario
we neglect the cross-sensor correlation, and all sensors have
the same intrinsic VoI, so that the FIFO, VoI-based, and cross-
sensor VoI schedulers are all equivalent.

Fig. 6 shows the normalized QoE, defined as the overall
fraction of time sensors are under the JND threshold, when
varying the channel capacity. We can observe that the QUIC-
EST scheme can achieve almost perfect QoE even at less than
a third of the capacity needed to send all packets. In this case,
the time correlation is critical: the schedulers that do not use a
JND-based value, indeed, achieve a lower performance. To be
noted that the availability of cross-sensor correlation estimates
could further improve the QUIC-EST performance, decreasing
the amount of transmission resources needed to support the
application.

VI. CONCLUSIONS

In this paper, we have presented QUIC-EST, a flexible
transmission scheme obtained by combining the emerging
QUIC protocol and a VoI-based scheduling strategy and meant
for multi-sensory applications with time-sensitive data. We
showed that this scheme can be adapted to widely different
applications with good results, using autonomous driving and
haptic communication as our Future Internet use cases.

At the moment, the design of general transport frameworks
for multiple parallel streams of correlated data is still an
open research area, whose importance is rising with the
popularity of this kind of applications. The combination of
such new transport protocols with network slicing techniques
is another research avenue of great interest, given the potential
to provide applications with reliability guarantees, which can
be fundamental for safety-critical services.
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