

IoT for Smart Cities Part A: services

Andrea Zanella

SIGnals processing & NETworking research group

PhD School in Brain Mind and Computer Science - UNIPD

Outline

Part A: introduction

- Who am l?
- Smart City Services
- Technical requirements
- Part B: technologies
 - Cellular
 - Short range
 - Long-range low power

Part C: pilots and trials

- Padova Smart City
- Smart Santander

Let's start with... my self-introduction!

SIGNET people

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Main research areas...

Plus more exotic stuff...

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Recent Research Projects

Others

European

- □ 2010-2013: "IoTa" (sensor networks)
- 2010-2014: "SWAP" (sensor networks)
- 2010-2013: "Medieval" (cellular networks)
- 2010-2012: "SaPHYre" (cellular networks)
- 2010-2013: "CLAM" (underwater networks)
- 2010-2013: IIT NAUTILUS (underwater networks)
- 2008-2010: "Aragorn" (cognitive networks)
- □ 2009-2010: "NEWCOM++" (ad hoc networks)
- □ 2007-2010: "SENSEI" (sensor networks)

- 2010-2014: EDA RACUN (underwater networks)
- 2010-2012: ONR (underwater channel modeling)
- 2010-2011: JHU/APL (underwater MAC protocols)
- 2010-2011: VideoTec (wireless sensor networks)
- 2011-2012: Patavina Technologies (wireless sensor networks)
- 2009-2011: ARO@UCSD (cognitive networking)
- 2010-2013: NSF@UCSD (underwater localization and networking)

Collaborations

Industrial

- Qualcomm
- NTT DoCoMo
- Lucent Bell Labs
- ST Microelectronics
- NATO Undersea Research Centre
- IBM Zurich research Lab
- Ericsson Research
- Telecom Italia Labs
- Alcatel CIT
- European Space Agency

Academic

- Massachusetts Institute of Technology (MIT)
- Stanford University
- Univ. of South California (USC)
- University of Illinois Urbana Champaign
- Univ. of California San Diego (UCSD)
- Univ. of California Los Angeles (UCLA)
- Inria Sophia Antipolis (Francia)
- Pennsylvania State University
- New Jersey Institute of Technology
- Centre Tecnològic de Telecomunicacions de Catalunya (CTTC – Barcellona)
- German Airospace Center (DLR)
- Scripps Institution of Oceanography (at UCSD)
- Woods Hole Oceanographic Institution (Massachusetts)
- National University of Singapore

Leonardo Badia - <u>badia@dei.unipd.it</u>
 Michele Rossi- <u>rossi@dei.unipd.it</u>
 Andrea Zanella - <u>zanella@dei.unipd.it</u>
 Michele Zorzi - <u>zorzi@dei.unipd.it</u>

Internet of Things

The Internet (of Things)

... is already made of things. (If that's not the case then we have a serious case of mass hysteria:-) For this reason, we prefer not to refer to a so-called "Internet of Things," nor to use the IoT acronym. Where it is necessary to distinguish our imperfect expectation of the future from the current Internet, we instead speak about the Internet with many more things but otherwise we just talk about the Internet."

Kutscher and Farrel, "Towards an Information-Centric Internet with more Things", Informational Internet-Draft draft-kutcschericn-wmt-00, February 2011.

Motivation

What

Providing Internet connection to potentially ANYTHING

- When
 - □~1995 → WSN
 - □ ~2000 → IoT

 $\square \sim 2020 \rightarrow$ hundred of BILLIONS of devices connected

□ Why

A (still largely unforeseen) plethora of new services
 Smart Cities, Smart Grids, Smart everything!

huge, Huge, HUGE market (again... potentially)

Number of interconnected objects

Steve Hilton, Principal Analyst at Analysys Mason

http://www.analysysmason.com/Research/Content/Reports/RRE02_M2M_devices_forecast/

What's a machine

- Any device (or software) that can perform automated tasks, e.g., smartphones, refrigerator, sensors, etc.
- Devices that can
 - take autonomous decisions based on information received from other devices
 - in a mostly unsupervised manner
 - act much smarter than traditional devices

The Business Perspective

Cisco

The estimated market of \$14.4 Trillion up for grabs in the coming decade

- Intel
 - IoT brought about \$2 billion of the company's \$12.8 billion in revenue in 2013, which equated to 32% growth year over year

Since 2003 IBM spent over \$50 billion on acquisitions and R&D in preparation for a radical shift in IBM's business

"A year from now basically every new phone that's sold will have [Near Field Communication]. It's a two-way, bio-directional RFID communication link that makes this device work as a tag or as a reader.Ó

> Sony Ericsson's VP of systems architecture Håkan Djuphammar,

Sony Ericsson

Enabling technologies: wireless

Wireless Short Range

□ Low power

(ZigBee, Bluetooth)

High powerWiFi

Wireless Long Range

Cellular

GSM

- 🗆 LTE
- 🗆 5G

□ Low power

- LoRa
- □ SigFox
- •••

Enabling technologies: wired

connections

EXAMPLE OF APPLICATIONS

Remote monitoring of health status

- Remote monitoring of health status
- Remote assistance

EEG

- Remote monitoring of health status
- Remote assistance
- Automatic first aid request

- Remote monitoring of health status
- Remote assistance
- Automatic first aid request
 POSITIONING HEARING
 BLOOD PRESSURE
 POTS
 DNA
 TOXINS

LANTS

Indoor navigation

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Self-sustainable forest fire detection system

Sensors powered by trees

Posted by David Pescovitz, October 7, 2008 10:02 AM

MIT researchers are developing a novel power scavenging systes for small wireless sensors that monitor for forest fires. The sensors are powered by the trees themselves. Each sensor's battery is trickle charged with the electricity generated by the imbalance in pH between the tree and the soil.

From the MIT News Office:

The system produces enough electricity to allow the temperature and humidity sensors to wirelessly transmit signals four times a day, or immediately if there's a fire. Each signal hops from one sensor to another, until it reaches an existing weather station that beams the data by satellite to a forestry command center in Boise, Idaho.

Shuguang Zhang, one of the researchers on the project and the associate director of MIT's Center for Biomedical Engineering (CBE).

boinaboina

Smart ambient

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Workplace comfort & health

- Indoor environments
 - □ CO₂ < 600 ppm
 - □ CO₂ >1000 ppm
 - □ CO₂ >2500 ppm

Experimental study: scuola media Coletti Feb/2009

□ CO₂ level

DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

- after 30 min \rightarrow 1950 ppm
- opening the window for 5 min \rightarrow 800 ppm
- outdoor \rightarrow 600 ppm

VANET: Vehicular networks

- Vehicles Transformed into "Computers on the Wheels" or "Networks on the Wheel"
- Vehicular Communication System (VCS):
 - Vehicle to Vehicle (V2V) Communication
 - Vehicle to Infrastructure (V2I) communication
- Advantage and Usage of VCS:
 - Information sharing
 - Co-operative driving
 - Other value added services like Navigation, internet access etc.

VANET services

Propagation of emergency and alert messages

- Uses multi-hop/multi-cast technique
- Intelligent broadcasting
- High bandwidth link with vehicle and roadside equipment
 - Entertainment
 - Internet access
- Multi hop unicast, Geocasting, Mobicasting
 - Gaming
 - Messaging
 - Platooning
 - ••••

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

http://www.horizon2020news.it/argomenti/smart-city

Smart Cities

Smart Cities concept

- Make a better use of public resources
 - Increase quality of services offered to citizens
 - Reduce the operational costs of public administration
 - Improve transparency and reduce the gap between citizens and administrations
 - Stimulate active participation of citizens to management of public affairs

E.g: <u>http://www.decorourbano.org</u>

Stimulate creation of new services

Smart city ecosystem

Roadblocks

Political issues

- Attribution of decision-making power to different stakeholders
- Financial aspects
 - Lack of clear business model
- Technical impairments
 - Non-interoperability of many heterogeneous enabling technologies

SMART CITY SERVICES

Structural Health of buildings

Monitoring of conditions of historical building

- Polluting levels
- Humidity/temperature
- Vibrations
- Tension sensors in the structure
 - Also to check impact of earthquakes

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Waste management

Intelligent waste containers

- Detect level of load
- Check quality of garbage
- Communicate with Internet
- Optimize collector trucks
 - route
 - Reduce costs
 - Improve efficiency
 - Reduce pollution

Air quality monitoring

- □ The 20-20-20 European Union directive targets:
 - 20% reduction of greenhouse gas emissions by 2020
 - 20% cut of energy consumption
 - 20% increase of use of renewable energy sources
- □ Air quality sensors can be use to
 - Check the quality of the air and trigger prompt intervention when needed
 - Provide feedback to citizens about quality of air
 - eg, suggesting healthier paths for running or strolling

Noise monitoring

- Noise is a form of pollution that is quite annoying for citizens
 - Hospitals, residential areas, ...
- Noise sensors can be used to
 - Map the acoustic pollution over the city
 - Improve public security by recognizing alarming sounds
 - House/cars alarms, glass crashes, brawls,...

Traffic monitoring

- Many cities already use traffic monitoring cameras in critical points
- This system may be further empowered by exploiting sensing and localizing capabilities of modern vehicles

https://www.waze.com

Real time accurate traffic monitoring can
 Help citizens better planning their trip to office
 Help administration to discipline traffic

Smart Parking

- □ Finding a parking place: a modern nightmare!
 - \square Waste of time \rightarrow economic loss
 - \square Source of frustration ightarrow health impact
 - Pollution \rightarrow health/environmental impact

Smart Parking

Smart parking (e.g., worldsensing.com)

Place sensors on each parking lot

Smart Parking

Smart parking

- Place sensors on each parking lot
- Place intelligent boards along the streets
- Provide app for smartphones

Smart lighting

- Place sensors on street lamps along the road
- Optimize the light intensity according to
 - Time of the day

DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

- weather conditions
- presence of people
- Automatically find burned bulbs
 - Reduce replacement time
 - Reduce costs
- Provide WiFi access

Smart Grid

- □ Household energy usage accounts for ~50% electric & ~33% energy usage in Italy
 - Extremely important to improve building energy efficiency
- □ In 2005 ENEL starts deploying the first SMART GRID
 - Cost: 2.1 billion euros
 - Saving: 500 milions per year!

- □ USA: Energy Dep. forsee up to 117 billions of dollars saving by 2030
- □ Smart grid can also decrease CO₂ emission of 12% in USA & 15% in India

Fonti: *Ministero dello Sviluppo Economico, 2005

•National Energy Technology Laboratory (2007-08) (PDF). NETL Modern Grid Initiative — Powering Our 21st-Century Economy. United States Department of Energy Office of Electricity Delivery and Energy Reliability. p. 17. Retrieved 2008-12-0

•R.G. Pratt, M.C.W. Kintner-Meyer, P.J. Balducci, T.F. Sanquist, C. Gerkensmeyer, K.P. Schneider, S. Katipamula, T.J. Secrest. The Smart Grid: An Estimation of the Energy and CO2 Benefits. Pacific Northwest National Laboratory Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

•Molly Webb, McKinsey & Company. SMART 2020: Enabling the low carbon economy in the information age. A report by The Climate Group on behalf of the Global eSustainability Initiative (GeSI)

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Service specifications

Service	Network type(s)	Traffic rate	Tolerable delay	Energy source	Feasibility
Structural	802.15.4; WiFi; Eth-	1 pkt every 10 min per	30 min for data; 10 sec-	Mostly battery pow-	1: easy to realize, but seismograph may be
health	ernet	device	onds for alarms.	ered.	difficult to integrate
Waste Man-	WiFi; 3G; 4G	1 pkt every hour per de-	30 min for data	Battery powered or en-	2: possible to realize, but requires smart
agement		vice		ergy harvesters.	garbage containers
Air quality	802.15.4; Bluetooth;	1 pkt every 30 min per	5 min for data	Photovoltaic panels for	1: easy to realize, but greenhouse gas sensors
monitoring	WiFi	device		each device	may not be cost effective
Noise mon-	802.15.4; Ethernet	1 pkt every 10 min per	5 min for data; 10 sec-	Battery powered or en-	2: the sound pattern detection scheme may be
itoring		device	onds for alarms	ergy harvesters.	difficult to implement on constrained devices
Traffic con-	802.15.4; Bluetooth;	1 pkt every 10 min per	5 min for data	Battery powered or en-	3: requires the realization of both Air Quality
gestion	WiFi; Ethernet	device		ergy harvesters.	and Noise Monitoring
City energy	PLC; Ethernet	1 pkt every 10 min per	5 min for data; tighter	Mains powered	2: simple to realize, but requires authorization
consump-		device	requirements for control		from energy operators
tion					
Smart park-	802.15.4; Ethernet	On demand	1 minute	Energy harvester	1: Smart parking systems are already available
ing					on the market and their integration should be
					simple.
Smart light-	802.15.4; WiFi; Eth-	On demand	1 minute	Mains powered	2: does not present major difficulties, but re-
ing	ernet				quires intervention on existing infrastructures.
Automation	802.15.4; WiFi; Eth-	1 pkt every 10 minutes	5 minutes for remote	Mains powered and	2: does not present major difficulties, but re-
and	ernet	for remote monitoring; 1	monitoring, few seconds	battery powered	quires intervention on existing infrastructures.
salubrity		pck every 30" for in-loco	for in-loco control		
of public		control			
buildings					

References

- L. Atzori, A. lera, and G. Morabito, "The internet of things: A survey," Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010
- A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, <u>"Internet of Things for Smart Cities" IEEE Internet of Things Journal,</u> <u>VOL. 1, NO. 1, FEBRUARY 2014, DOI: 10.1109/JIOT.</u> <u>2014.2306328 [Bib]</u> <u>Top-100 most downloaded papers in IEEEXplore from May 2014 to</u> <u>December 2014</u>
- A. Laya, V. I. Bratu, and J. Markendahl, "Who is investing in machine-to-machine communications?" in Proc. 24th Eur. Reg. ITS Conf., Florence, Italy, Oct. 2013, pp. 20–23
- M. Dohler, I. Vilajosana, X. Vilajosana, and J. Llosa, "Smart Cities: An action plan," in Proc. Barcelona Smart Cities Congress, Barcelona, Spain, Dec. 2011, pp. 1–6.

Questions?

© 2012 KeepCalmStudio.com

First Break

We deserve it!

http://www.keepcalmstudio.com/gallery/poster/L90JKS