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Outline 
¨  Cognition-based networks 

¤ Evolution of cognitive communications & networks 

¤ New holistic concept of cognition-based networks 

¤ Use of machine learning tools toward this vision 

¨  Examples of application 
¤ QoE-driven video streaming control 

¤ Context-aware handover optimization 

SIGNET - University of  Padova 



Motivation 
¨  Communication systems are more and more 

complex 
¤ Cognitive (white spaces) transmissions 
¤ Self-organizing networks 
¤ HetNets 
 

¨  All of these are specific cases of a more general 
approach based on learning and context-awareness 
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Cognition applied to wireless 
¨  Applying cognition is a way to deal with the complexity and challenges 

of future systems 

¨  Mitola (2000) and Haykin (2005) actually gave a very general 
definition of the cognitive paradigm  
¤  Intelligent observation, learning, decision-making 

¨  Currently, we have only scratched the surface 
¤ Cognitive networking in a broad sense remains an exciting and largely 

unexplored research field  
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Evolution of the cognitive paradigm 

¨  Cognitive radios 
¤  frequency-agile devices for opportunistic access  

¨  Cognitive radio networks 
¤  networks of CRs 

¨  Cognitive networks 
¤  the cognitive approach applied to networking layers and end-to-end 

¨  Cognition-based networks 
¤  drawing from the most recent results in cognitive science 
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The cognition cycle (simplified) 

Sense 

Learn Act 
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True for humans, true for networks 

¨ Sense: nowadays devices are crammed with transducers / 
sensing apparatuses 
¤ needs efficient data handling 

¨ Learn: optimization algorithms can be run at each node 
individually 
¤ needs (i) efficient algos (ii) harmonization 

¨ Act: network modifies the environment 
¤ requires convergence of multiple devices 
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Supervised vs unsupervised learning 

¨ Supervised learning requires a training set and/or explicit 
feedback about outcomes 

¨ Unsupervised has no prior knowledge 
¤ Reveals features that are not predefined, leading to the 

development of a data-driven worldview  

SIGNET - University of  Padova 



Unsupervised learning 

¨ The way we learn without prior information 

¨ Cognitive stimuli are processed 
¤ We build a view of the world based on data 
¤ Generative model: probabilistic view of the world 
¤ Background for all our cognitive activities 

¨ The worldview provided will be an extremely valuable starting 
point for goal-specific learning 
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Cognition-based Network 

¨ Each node of the network:  
¤ exploits local information to achieve its goal  
¤ shares (part of) it with its neighbors  

¨ Self-adaptation to the environment to achieve network wide 
goals 

¨ Cognition applied to the entire network (not just at the PHY 
and MAC layers) 
¤ Both vertically and horizontally 
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Restricted Boltzmann Machine (RBM) 

¨ Training objective: minimize contrastive 
divergence (Kullback-Liebler) between input 
data and (top-down) reconstruction of the data 
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Hierarchical processing 
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A key feature of  cortical computation 



Deep learning  

¨  Bottom-up: 
¤  Higher layer neurons “activate” when 

input presents some specific features 
¤  Higher layer provides an abstract 

representation of input features 

¨  Top-down:  
¤  Activating hidden layer neurons according 

to their weight and propagating back 
toward inputs we can generate signals 
with similar features of training signal 
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Properties of Unsupervised learning 

¨ Generative property 
¤ Can be readily used to make predictions about the upcoming input 

information based on the recent history of the system 
¤ it is possible to estimate missing or noisy input terms, and detect 

anomalies or unexpected patterns in the input signal.  
¨ Feature extraction 

¤ The internal representations extracted by unsupervised learning are 
generally more informative than those obtained with supervised 
training 
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Properties of Unsupervised learning 

¨ Compact data representation 
¤ Internal representation provides a particular type of coding strategy 

¨ Synergy with reinforcement learning 
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Examples of application 

¨  Content-based video management 
¤ Learn video features and apply this knowledge to some useful 

networking task 
¨  Context-dependent handover in HetNets 

¤ Learn environmental features and make context-based handover 
decisions accordingly 

¨  Prediction of Mobile Devices Discharging Time  
¤ Learn the usage pattern and predict the battery charge duration of a 

smartphone 
¨  ... 

SIGNET - University of  Padova 



Deep Learning for Video 
Streaming Characterization  



Multimedia traffic growth 
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source: 
Cisco report (2014) 



Challenges 

¨ Mobile video streaming is very demanding: 
¤ High bitrates 

n Compressed HD videos still requires 2-10 Mbit/s 
¤ Low delay  

n Less than 10 ms for interactive videos, less than 250 ms for real-time 
streaming 

¤ Stable links 
n Link fluctuations are counteracted by a (small) playout buffer à if the buffer 

empties then the play freezes! 
¤ Content-dependent requirements 

n Quality-rate characteristic depends on the video content 
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DASH - Dynamic Adaptive Streaming 

HTTP Standard Server 
Client-side Adaptation Engine 

The client chooses the proper segments 
Maximize Quality of Experience (QoE) e.g. 
avoid rebuffering... 

High 
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Video segments Quality 
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Our approach 
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Analysis 

¨ We consider a test set of 38 video clips, all encoded in an H.
264-AVC format 

¨ All the videos are encoded with a 16-frame structure (1 I-
frame, 15 P-frames) and compressed with 18 different 
quantization strategies 
¤ Transmit rate [bit/s] of video v at compression level c: rv(c)  
¤ Rate Scaling Factor (RSF): rv(c)=log(rv(c)/rv(1)) 
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QoE characterization 

¨ Depending on the content, the perceived quality of a given 
compression level changes 

¨ There are several metrics to measure quality of a video 
signal 

¨ Here, video quality is expressed in terms of Structural 
Similarity (SSIM) 
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Structural Similarity (SSIM) 

¨ SSIM measures the closeness of square sets of pixels, and is 
computed as 

¤ Measures image degradation in terms of perceived structural 
information change 

¤ Represents quality as seen by the human eye 
24 
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Remarks 

¨ All the videos exhibit similar trends 
¤ monotonic descent 
¤ a steep “fall” after a threshold 

¨ However, there are quantitative differences 
¤ different perceived end quality 
¤ different resource requirements 

¨ These characteristics are roughly consistent within the same 
(homogeneous) video 
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SSIM polynomial approximation 

¨ We introduce a polynomial approximation to express SSIM 
behavior  
¤ This provides a compact representation for use in VAC and RM 

¨ A 4-degree polynomial provides a quite accurate 
approximation of the SSIM vs RSF curve 
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Possible video applications 

¨ Knowledge of these characteristics of the video may be 
useful for  
¤ (i) QoE-aware admission/congestion control 
¤ (ii) determining popular content 
¤ (iii) inferring user behavioral characteristics 
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Proposed approach 

¨  Input to the RBM: frame size only 
¤ This is done for a whole GoP (isolated) 
¤ The RBM “learns” by creating certain patterns in the hidden layer 
¤ This enables a sparser representation of the input in the hidden 

layer 
¨ After that, we apply a linear classifier for recognition / 

classification / SSIM estimation 
¤ Note: we must train a different linear classifier for each case, while 

the RBM is trained just once for all 
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SSIM-based Video Classification 
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Setting the learning machine 

¨ Dataset is split: Training Set - Test Set 
¨  Input of the RBM (visible layer): 32 units 

¤ for each of the 16 frames, size of the uncompressed version 
and of the version compressed at intermediate rate 9 

¨ Hidden layer set (empirically) to 70 units 
¨ The result is compared to just using the raw data as the input 

of the classifier 
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Preliminary results 
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Learning via RBM: accuracy 

¨ Root Mean Square Error (RMSE) between 
exact SSIM and polynomial approximation 
with estimated coefficients 
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Exact vs. estimated SSIM 
curves for two random videos  
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CognitiveVideo Admission Control 
& Resource Management 

¨ Videos multiplexed into a shared link of capacity R 
¨ Resource Manager (RM): detects changes and triggers 

optimization to adapt video rates to maximize QoE utility 
function 

¨ Video Admission Controller (VAC): determines whether a 
new video request can be accepted without decreasing QoE 
of any video below a threshold F*  
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Cognitive VAC 

¨ At each new video flow request, VAC invokes RM to get the 
“best” resource allocation according to a specified policy 

¨ RM returns the resource that can be assigned to each video 
¨ VAC computes the SSIM of each video with the best 

compression level, compatible with the allotted resources 
¤ If estimated SSIM of all active videos is above the quality threshold 

the video request is accepted 
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Cognitive RM 

¨ The optimization problem addressed by RM is as follows 
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Utility function 

Rate allocation 
vector 

Channel rate SSIM videos’  
characteristics 
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allotted to video “v” 



Cognitive RM algorithms 
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Resource share to be allotted: 
 

RF: 

 
SF:                                                                           

 
where 

 

Possible utility functions 
 

Rate fairness (RF) 

 
SSIM fairness (SF) 
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Simulation setup 

¨ Poisson video requests (0.66 req./s)  
¨ average offered load of 11 videos 
¨ Aggregate max rate of G = 161 Mbit/s 
¨ F* = 0.95 SSIM value to reach MOS 4  
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Cognitive video admission control 
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Rate-based resource allocation 

Cognitive QoE-based 
resource allocation 

Link rate over aggregate full-quality video rate  



Effect of SSIM approximation 
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SF RBM-n: SF algorithm, with n-
degree polyn. approx. of  SSIM 
curve obtained by RBM 
approach 



Quality outage probability 

¨ Because of SSIM approximation errors, videos may 
occasionally be accepted even if quality threshold is not met 

¨ Tradeoff on SSIM polynomial approximation: the fewer the 
coefficients, the coarser the approximation, but the better the 
RBM coefficient estimate 

¨ Question: is it better to have a well-estimated low degree or a 
coarsely estimated high-degree polynomial? 
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Quality outage probability 

¨ n=2 is too small, n=3 or 4 give very similar results: n=3 is the 
best choice in this case 
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QoE-aware proxy vs legacy 
video clients 
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Deep Reinforcement Learning 
for DASH Video Streaming 



Reinforcement Learning 
At each step t the agent: 

Receives state  
Receives reward  
Executes action  

The environment: 
Receives action  

Emits state  
Emits reward  

ENVIRONMENT 

AGENT ACTION 

STATE 

REWARD 

  Policy      is a behavior function selecting actions given states 

  Q-value function                  is expected long-term reward from state    and 
action a  under policy π 

 



Bellman equation 
¨  Value iteration algorithm 

¨  Optimal value function 

¨  Objective function (minimized by Gradient Descent algorithms) 

Can be approximated by a 
deep neural network? 

Network weights 



Deep Q-Learning 

¨ Find optimal policy from experience: 
¤ Initially try with random policies 
¤ Reinforce actions that yield better rewards 
¤ Progressively move form exploration to exploitation  
 
 

¨ Deep Q-learning 
¤ approximate action-value function Q(s,q) through a neural network 
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System architecture 

¨ Experience Replay 
¤ Learn from past experience 
¤ Greater data efficiency 
¤ Less correlated training data 

¨ Target Network 
¤ More stable training 
¤ Break correlation between target function and Q-network 



DASH-DQN 

State 

Buffer size 
Video segment complexity 
Channel capacity vector 
Previous quality 

Quality of Experience (QoE) 

Structural SIMilarity (SSIM) index 

8 Segment Qualities (Possible Actions) 

Freezing time 



Deep Q-Network (DQN) 

DQN . . . Multi-layer 
Perceptron with 1 
hidden layer: MLP1  

Multi-layer 
Perceptron with 2 
hidden layer: MLP2  

Long-Short Term  
Memory: LSTM 



Simulation 

¨ Video model: 5 complexities, exponential scene duration 
¨ Capacity model 

¤ Markov - 500 pre-training videos 
¤ Real - 40 training videos + 100 test videos 
¤ NS3 - 40 training videos + 100 test videos 

¨ Comparison 
¤ Rate-based 
¤ FESTIVE 
¤ Q-Learning 



Exploration/training/test 

SIGNET - University of  Padova 

Based on synthetic  
Channel and video traces 



Convergence time 
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Buffer 
¨  D-Dash fully exploits the 

buffer to survive 
connection fluctuations 
while keeping constant 
video quality 

¨  Legacy DASH clients try to 
keep buffer level constant, 
adapting video quality 
(worse QoE) 



Comparison 
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Synthetic traces 

Real traces 



Conclusions 

¨ Optimizing resource allocation for video transmission is 
challenging  
¤ many numerical parameters involved 
¤ subjective QoE issues 
¤ high signaling exchange 

¨ Learning-based approaches are useful to 
¤ obtain a compact representation 
¤ extrapolate the most significant data 
¤ Provide a framework with no need for prior models 
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Handover process 

¨  In cellular telephone systems, the term handover refers to 
the process of keeping a mobile active user connected to the 
BS that offers the strongest radio signal 
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Traditional Cellular network 
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Heterogeneous Networks 
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Standard 3GPP Handover Procedure 
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Long TTT  Handover Failure  
Short TTT  Ping-Pong  



Objective 

¨ Develop context-aware cognitive handover strategies to 
maximize the performance of each single mobile user and of 
the system as a whole in a HetNets scenario 
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Steps 

①  Develop a theoretical model that describes the evolution of 
the UE state along its trajectory by means of a non 
homogeneous Markov Chain 

②  Express the average UE performance as a function of the 
context parameters 

③  Derive a context-aware HO policy (CAHP) that selects the 
best HO strategy for a UE approaching a femtocell 

④  Develop cognitive mechanisms to infer context parameters 
[still in progress] 
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System Model 

¨ 1 Master (M-BS) and 1 Femto Base Stations (F-BS), placed 
at distance dMF 

¨ Femtocell coverage area as a circle of radius R 
¨ UE constant speed 
¨ Straight path of length L 
¨ Uniform incidence angle w 
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Propagation & handover models 
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¨  RSRP from the h-BS: 
¨  where 

             : h-BS transmit power 
            : Pathloss gain 
            : Fast-fading channel gain 

¨  Handover model 
         : Time-To-Trigger  
        : Time for Handover signaling and BS switching 
         : SINR threshold to trigger handover 



Average UE capacity 
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where 

Sampling at time Tc > channel coherence time à independent fading samples à 
average Shannon capacity experienced by UE along the trajectory is 

Average SINR: 



UE’s state: non homogeneous Markov 
Chain 
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          : connected to the M-BS 
           
           : connected to the F-BS 
           
           : switching from M-BS to F-
BS 
            
           : switching from F-BS to M-
BS 



Solving the MC 
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Transition probabilities Transition matrix 

State probability vector 

UE state probabilities 

with 



Accounting for cell load  

¨ HO policy maximizes UE’s estimated average capacity 
neglecting cells traffic load 

¨ Assuming pilot signals include indication about cell traffic 
load, we define the  load-scaled average capacity of UE in 
state S as 
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Load-aware HO policy  

¨ Keep standard SINR-based HO mechanism 
¨ Set Cell Individual Offset λS such that relative performance 

gain is constant: 
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Simulation parameters 

SIGNET - University of  Padova 

Parameter  Value 

M-BS/F-BS Transmit Power 46 dBm/24 dBm 

Distance between BSs 500 m 

Macro/Femto Pathloss exponent 4.5/2.5 

Fading Rayleigh distribution 

Handover execution time 200 ms 

SINR threshold 0 dB 



Algorithms 

¨ CAHP: Context-Aware Handover Policy:  
¤ For a certain scenario, and according to the UE speed, it either 

selects the value of the Time-To-Trigger that gives the maximum 
average capacity or avoids the HO procedure 

¨ FIX: Fixed Time-To-Trigger Policy: 
¤ A static value T of TTT is used 

n 100 ms, 256 ms, 512 ms 
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Optimal TTT values 
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Optimal T values obtained 
for different speeds and 
scenarios according to 
CAHP approach 



Analytical average capacity 
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Average capacity with different HO 
policies 
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Average capacity 
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Average capacity 
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Conclusions 

¨  In heterogeneous cellular scenarios, a context-aware 
Handover policy is beneficial for UEs with respect to 
conventional Handover management techniques 

¨ Our optimal context-dependent Handover criterion is based 
on a solid mathematical analysis and validated by means of 
simulations 

¨ Future work: 
¤ SINR threshold parameter optimization  
¤ More complex scenarios (multiple BSs and UEs) 
¤ Machine-learning context estimator 
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Future work: Neural Networks  

¨ Parameter estimation: 
¤ UE speed v 
¤ Pathloss exponents 
¤ Transmit power  
¤ Distance M-BS - F-BS 

¨ Prediction: 
¤ Handover? Yes/No 
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Conclusions 
¨  We have discussed the concept of cognition-based 

networking: 
¤ Holistic approach (network-wide, end-to-end, cross-layer) 
¤ Using the most advanced understanding drawn from 

cognitive science 
¤ Machine learning a key ingredient 

¨  Most of the current approaches are too limited and 
do not address the essence of cognition 

¨  Initial examples show the potential gains 
¨  Although we have been hearing about cognitive radio 

and networks for years, now it’s time to do it 
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A new venue for cognet research 

¨  COMSOC has just started a new journal 
¨  IEEE Transactions on Cognitive Communications and 

Networks 
¤ Started as a JSAC series by Y.C. Liang 
¤ Now greatly expanded in scope 

¨  I am Associate Editor, and my colleagues Prof. 
Michele Zorzi is the EiC of TCCN 

¨  Senior advisors: Simon Haykin and Joe Mitola 
¨  We have started accepting submissions Jan 21, 2015 
¨  Inaugural issue Sep. 2015 
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