Applied Machine Learning:

Examples in the ICT domain

Prof. Andrea Zanella

zanella@dei.unipd.it
o office: +39 049 8277770

fax :+39 049 8277699 O
o email: zanella@dei.unipd.it — DIPARTIVEENTO
o web : http://www.dei.unipd.it/~zanella — DIINGEGNERIA

— DELLINFORMAZIONE

http://dei.unipd.it
http://dei.unipd.it
http://www.dei.unipd.it/~zanella

SIGNET people

Main research areas...

\ Energy harvesting

\ / Input Hidden Output \
NSD — 0‘]0
) PEO(NSD) ——n Cﬂﬂ

PEO(NSD) — Q(
AVS — v
P (AVS) — U
. Ldin. | PAS(AVS) — 0,17
wnderwater communications J \ Human data analytics /

Outline (tentative)

o Introduction to reinforcement learning

o Deep Q-learning for mobile multimedia
streaming applications

o MultiArmed bandit for HetNet configuration
o Other examples of ML applications to ICT
o Conclusions

= DIPARTIMENTO
— DI INGEGNERIA

— DELLINFORMAZIONE

What does “learning” actually mean
for machines?

Machine “learning”

“A computer program is said to learn
from experience E with respect to
some class of tasks T and
performance measure P, if its
performance at tasks in T, as

measured by P, improves with
experience E™

* Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York. 99

= DIPARTIMENTO
— DI INGEGNERIA

— DELLINFORMAZIONE

Human Learning
VS
Machine Learning

Q How do (small) humans learn?

Imitative Learning

o Small kids (toddlers) first learn by imitation

o “The most striking findings were that toddlers
were able to learn a new action from observing
completely unfamiliar strangers who did not
address them and were far less likely to imitate

an unfamiliar model who directly interacted with
them.” [1]

https://doi.org/10.1016/j.jecp.2013.06.008

= DIPARTIMENTO
— DI INGEGNERIA

— DELLINFORMAZIONE

Is there anything similar in ML?

Imitation learning in machines

o Manual training of industry robots

o Robotic arms can be manually moved by an
operator to learn how to perform a repetitive task,
which they then replicate autonomously

o More a new form of programming than actual
machine “learning”

Transfer learning

o Transfer Learning is closer to our idea of
Imitative Learning

o It consists in transferring knowledge gained by an
ML algorithm while solving one problem to a
different but related problem

= Eg, knowledge learned by an algo that detects cars in
pictures can be transferred to an algo that recognizes
trucks

o Makes it possible to greatly speed up learning of
other ML algorithms in new problems

= DIPARTIMENTO
— DI INGEGNERIA

— DELLINFORMAZIONE

|s that sufficient?e

Learning by experience

Of course not!

o Children also need to make their own
experience in order to learn

0 Experience learning is based on
o Exploring (e.g., by playing)
o Experimenting (by trial and errors)
o Asking questions (to cut ties)

Is there anything similar in ML?

Play = Pre-training

o The ML equivalent of children plays could be
the pre-training of ML algorithm by using
hyper-simplified models of the target
problem

o This practice is particularly beneficial for ML
algorithms that require massive datasets for
training

The theory theory

0 Cognitive development is like theory
revision in science [2]

o Children construct intuitive theories of the
world and alter and revise them as the result
of new evidence

[2] Gopnik A, Wellman HM. Reconstructing constructivism: causal models, Bayesian learning
mechanisms, and the theory theory. Psychol Bull. 2012;138(6):1085-1108. do0i:10.1037/a0028044

Statistical information

o Children gradually change the probability of
multiple hypotheses rather than simply
rejecting or accepting a single hypothesis

o Evidence leads children to gradually revise
their initial hypotheses and slowly replace
them with more probable hypotheses

Experimenting (trial & errors)

o A simple (?) experimental test...

= DIPARTIMENTO
— DI INGEGNERIA

— DELLINFORMAZIONE

Is there anything similar in ML?

Sure: Reinforcement Learning!

‘

Problems involving an agent interacting with an environment,
which provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward

Supervised Learning

Data: (X, y)
X is data, v is label

Goal: Learn a functionto map x 2y

Classification

Examples: Classification, regression, object detection,
semantic segmentation, image captioning, etc.

This image is CCO public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

2-d density estimation

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

2-d density images left and right
are CCO public domain

https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Reinforcement Learning

o What makes reinforcement learning different
from other machine learning paradigms?

o There is no supervisor, only a reward signal

0 Feedback can be delayed
o Time really matters (sequential, non i.i.d data)

o Agent’'s actions affect the environment
o subsequent data received by the algorithm

Examples

o Chess Play

o Master players choose the next move based on
immediate return and planning, i.e., anticipation
of possible replies and counterreplies

o Cleaning robot

o Decide whether to further explore the space for
more trash to collect or start trying to find its way
back to the recharging station

o Other daily life examples?

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart: +1 or -1
Reward: 1 at each time step if the pole is upright

Training: the episode ends when the pole is more than
15 degrees from vertical, or the cart moves more than
2.4 units from the center

This image is CCO public domain

https://creativecommons.org/publicdomain/zero/1.0/deed.en

Let’s see how it works...

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright + forward movement

o The state of a system (environment) can be modified
by some control signals (actions) undertaken by
controllers (agents)

o An action performed in a certain state takes the system
iIn a new state and yields a (positive or negative) reward

"1 A |

state

gent|

reward
R,

-—

R
5., | Environment]4—

-+

action
A,

o The RL algorithm tries to choose the best action for
each system state in order to maximize the “long-term

average reward’

= DIPARTIMENTO
— DI INGEGNERIA
—— DELLINFORMAZIONE

= DIPARTIMENTO
— DI INGEGNERIA

— DELLINFORMAZIONE

The theoretical foundations:
Markov Decision Processes

Processes

o A “process’ Is a mathematical function that
describes the evolution of some entity

o Usually represented as a multidimensional
function of one parameter (time): s(t)

o Examples
o the variation of a room temperature over time

othe level of water in a lake at August 15t of every
year

othe number of people queueing at ski lift facility
o the signal attenuation of a wireless link

Stochastic processes

0 A stochastic process is a mathematical model
that describes a process that can take random
values

o More formally, a collection of random variables
that is indexed by some mathematical set

o Examples
o the growth of a bacterial population over time

o the amplitude of an electric current fluctuating due to
thermal noise

o the number of people infected by a virus every day...

More formally...

o A stochastic processes is then a set S of
“random functions” of type {S(t,»), teT},
where T is the index set (typically, time or
space), m Is a sample of a probability space
(which embeds the randomicity of the
process) and S(t,®) is one specific function
(realization) that the process take with given
probability P(wm)

o Generally, the process is only indicated as {S}

Classification of stochastic

DIroCeSSEeS

o A process is said to be
o discrete time if the index set is numerable:
T={t,.1,...}
o Integer values if the random functions take
values in a numerable set S, i.e., a set whose

elements can be associated to (a subset of) the
set of integer numbers: S5;,eS={0,£1,x2...}

o Examples?

Markov process

o Markovian processes are a family of
“memoryless” stochastic processes

o “Memoryless™ means that the past “history” of
the process up to the current time does not
affect the future evolution of the process

o The last observed state of the process is the
only one that matters

“The future is independent of the past
given the present”

More formally

Vt,V{St+1,St, Sg—1, ..., Sg} € S
it holds

Future Present Past
r A N\ K_Hr A
[P)_St+1 — St+1 St — St; S_L—]—-:—St"l_' '_SO—‘: SOT=
P[S,., = s,..|S. =s,]={P ", Transition
Mk =t t] ‘\St’st“ .~ probabilities

~

~ -
S ————

0 Examples?

o A Markov process is fully described by its
current state and Transition Probability
matrix P

o Example: queue at ski lift facility

.q/
o , %
‘ 7 N
// N —

/
S:+1=S¢ + v, — d;

S, People in queue at time slot k

Jsiieg@ wiueT v boteerd V), New skiers queuing during slot k

e d; Skiers taking the skilift at slotk = 0 if
Sx= 0,and 1 otherwise}

O

O
=2
o
\-’n

Transition diagram

Episodes

o The sequence of actual state values taken by
the process in a series of time instants is
named a realization of the process, or an
episode

= 20 L i
0 Example: § NIRRT
Note: o 15 5
] 314 Episode 1
the two episodes " 200 ——Episods 2
o 10 [10 10

8 \8

have different
probabilities of
occurrence

6
4
2 2
0

i 2 3 4 5 6 7 8 9 10 11
Time slot

Markov or not Markov?

https://ltrends.google.it

® Machine Learning ® deep learning reinforcement lear... :
. I - + Add comparison
Search term Search term Search term

Worldwide ~ 2004 - present ¥ All categories v Web Search

> <

Interest over time

| ¢

Are these processes
Markovian?

I- - gle

https://trends.google.it/

The importance of being

earnest...

o It largely depends on:

o The way we define the “state” of the process
o The tolerance we accept on our Markovian
assumption

o Examples

oY ,: temperature in room at time t - strong
autocorrelation over time interval T 2 not
Markovian

O The prOCeSS St — [Yt, Yt_é‘, Yt—26’ nnn Yt—mS] Wlth
mo>T is “almost” Markovian

Summing up

0 State definition is crucial

o State should be “rich” to provide a self-
contained description of the system

o State should be “thin” to keep the number of
possible values limited

o The choice of a proper state vector is hence
critical for the proper training of a learning
algorithm

= DIPARTIMENTO
— DI INGEGNERIA
— DELLINFORMAZIONE

° MARKOV REWARD
PROCESS

-

Markov reward process

o A Markov reward process is a Markov
process that returns a certain “reward” for
each state

o If the state transition depends on a certain
action a, then R, = R(s,a)~P(: |s,a)where
P(-|s,a) is the probability distribution
of R; given the state s and the action g, i.e.,

P(r|s,a) = PR, =r|S; =5s,A; = a]

Example of rewards

Markov decision process

o A Markov Decision Process (MDP) is a
Markov reward process where state
transitions and rewards depend on the
actions taken by a controller

o For any given state s the controller can
choose an action A;in a set A(s)={a,} of
admissible actions, called Action Space

o A policy at time t is the probability
distribution of actions for each state
o, (als) = P|A; = a|S, = s | is the probability that
the controller picks action a € A(s) when the
system is in state s:
o Each action yields an immediate reward
R., and takes the system to a new state S,,,

Policy (cont)

o Given any state and actions s and a, the probability
of each possible pair of next state and reward, s’
and r, is denote

P(s’,rls,a) = P[Si11 =5, Reyq = 7S = 5,4, = al

o The expected reward from state-action pair (s,a) is
r(s,a) = E|R;1{|S; = s,A; = a] 2 ZP(S r|s,a)

o The state transition probability is
p(S,lS, a) — IP)[St+1 — S’|St — S’At — (l] — EP(S,,T'lS, Cl)

= DIPARTIMENTO

= ELLNORIAIONE
o POLICY, VALUE FUNCTION,
) ® Q'VALUE

-

Policy and utility

o The policy affects the evolution of the system
state

o Given a policy &, and a starting state s we
get a sequence of action—> state-> reward
0sg =s,a9~7m(:|s) - 51,7"1"’P(‘;‘|50» ap)

Oa,~m(:[s1) = s 1,~P(,|sy,a7) ..
0a~1(-|Se) = Ser1, Te41~P (o |Se g, -

o The accumulation of the rewards over time is
a measure of the policy uftility

How good is a state?

o The V-function for a given policy = is the
average reward from any state s onward:

/ N\

VT(s) = V'th+1 So =S,

Average over statistical
distribution of next states
& rewards

— e =

Discount factor (y<1) - future rewards
have lower and lower weight

How good is a (state,action)

0qire
o The Q-value (or action-value) function for

a given policy w is a measure of the utility of
a state-action pair:

00
Qn(S,HCE) = [E EthHl So =S,y = Q, T
t=0

First action is given
o It is the expected long-term return starting
from state s, taking action a, and thereafter

following policy «

Bellman Equation

o The V-function can be expressed in a
recursive manner

VT(s) = E ZthHl So =S, T
=0

V®(s) =E|R, + Vz VRis2[S0 = s, T
k=0

Vi(s) =) w(als)) p(s,rls, @)l +yV(s)

a

Recap (cont)

o An MDP is defined by the tuple: (S,A,R, P, y)
o0 S: set of possible states
o A: set of possible actions
o R: distribution of reward given (state, action) pair

o IP: transition probability i.e. distribution over next
state given (state, action) pair

ovy: discount factor

o A policy is the probability distribution of
actions given state
on(als) = Prl[A=a|S;=s]

o Each action yields an immediate reward

o For a given policy T,

o The value V™(s) of a state s is the aggregate
long-term reward which will be accumulated
from that state onwards

o The Q-value Q*(s,a) of a state-action pair (s,a) is
the aggregate long-term reward from state s,
given that the next action is a

= DIPARTIMENTO
— DI INGEGNERIA
—— DELLINFORMAZIONE

Recycling Robot (RR)

= DIPARTIMENTO
— DI INGEGNERIA
—— DELLINFORMAZIONE

Ex RR: problem statement

o Consider a mobile robot that collects cans for
recycling

o The robot is battery-power and the battery
can be in two states: high or low

o The robot can perform three different actions:
o Search for cans
o Wait for someone to bring it a can
o Recharge its battery from the dock station

Q Ex RR: problem statement(cont)

o The probability to collect a can in a certain time
interval is
O l.earch When searching
O Myait < lsearch When waiting
o 0 when recharging or out of battery

o When moving, the battery level changes
o from high to high with probability: o
o from high to low with probability: 1- o
o from low to low with probability: 3
o from low to empty with probability: 1-3
o After recharging, the battery goes back to high

Ex RR: MDP model

o State: ?
o Battery level: S={high, low}
o Action set?
o A(high) = {search, wait}
o A(low) = {search, wait, recharge}
o Rewards?
o R(high,search) = reoarcn
(high,wait) = ry
(ow,search) = B l'search +(1' B)('S)
o R(low,wait) = r 4
(low,recharge) = 0

Ex RR: transition graph

1, Twait 1—6 s -3
ﬁ, T'search

1,0 recharge

search

1, Tyait
a’ 7isearch l—a 2 }I‘Sea.rch

Figure 3.3: Transition graph for the recycling robot example.

“Reinforcement Learning: An Introduction” Second edition, in progress, Richard S. Sutton and
Andrew G. Barto 2014, 2015
https://web.stanford.edu/class/psych209/Readings/SuttonBartolPRLBook2ndEd.pdf

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

lterative Policy Evaluation

o Given a policy, the function V(s) can be obtained
by solving the Bellman Ford equations, or
through lterative Policy Evaluation:

o Start from arbitrary (but reasonable) V(s)

o Apply recursively the Bellman equation to update the
V(s) value for each s or (s,a) pair:

Visa(s) =) m(als)) P(srla,s) [+ Vi(s)]

a

o Repeat until convergence
= More practically, when max Vii1(s) = Vi(s)| <e
S

Sensing Strategy (SS)

= DIPARTIMENTO
— DI INGEGNERIA
—— DELLINFORMAZIONE

Ex SS: problem statement

0 A sensor node needs to report its
measurements to a control station

o The sensor can work in two conditions:
Normal (N) or Alarm (A)

otransitions occur as for a Gilbert model

IDNA

Ex SS: problem statement(cont)

0 At each slot, the node can either Transmit a
packet or remain ldle

o During “Alarm” periods, packets have high
priority and should be delivered with max
probability

o High priority transmission drains k=1 or k=2

quanta of energy from the battery of the node,
with probability 2/3 and 1/3, resp,

o If the battery charge is lower than k, the tx fails

o Normal packet transmission takes 1 quantum of
energy

Ex SS: problem statement(cont)

o Each Idle slot recharges the battery by one
guantum of energy
o The battery has a maximum capacity of 4 quanta
of energy
o If the battery depletes, it cannot be recharged
and the node stops working forever

Ex SS: problem statement(cont)

o The sensor node knows its operational
conditions and battery level

o Find the transmission policy that maximizes
the number of transmitted packets and the
probability that high priority

Ex SS: MDP model

o Take a few minutes to model the problem into
an MDP framework
o Which elements do you need to define?
o System state (Markovian?)
o Action space
o State transition probabilities
o Reward
o Value function

o What do you need to find?
o Policy

Ex SS: try by yourself

Ex SS: Solution

0 System state:

o S~=(operation mode, battery level) or S&=0 if
battery is empty (absorbing state)

o State space:
0S={0, (N,1), (A,1),...,(N,4),(A,4)}

o Actions: {tx,idle}

o Action space in the different states
1S=(0) > A(S)={idle}
aS= (%,9) > A(S)={tx,idle}

Ex SS: policy

o Possible policy: m(als)
omn(idle,0) =1

on(tx|(4,4)) =1 . o
on(tx|(4,3)) =1 Which action is

[on(tx|(4,2)) =1] particularly critical?

on(tx|(4,1)) =0
on(tx|(N,4)) =1
on(tx|(N,3)) = 0.6
on(tx|(N,2)) =0
or(tx|(N,1)) =0

Ex SS: value function

O L
N—"
1|
o

1) =

O oo o P
==
<CJOI\)—\

2) =

< << <Ko << <K

>>>Z

O O O O

RN
\
W

P

V(N,
4) =

=
>

[

—
~—
w

,3) =’

0+ V(N,2)Pun + V(A,2) Pya
=0+ V(N, 3)PNN + V(A 3) Pna

2 0.6+ 0.6(V(N,2)Pyn
N,4)Py+ V(A4) PNAT

4) =1+ V(N,3)P vt V(A,3)Pya
,1)=0 + V(N,2)P5n + V(A,2) Paa

+ V(A2)Pya) +

+ 2/3(V(N,1)Pyy + V(A,1) Paa)+1/3V(0)

+ 2/3(V(N,2)Pany + V(A,2) Paa) +
)Pan + V(A1) Paa)

+ 2/3(V(N,2)Pan + V(A,2) Ppp) +

(V(N 3)Pan + V(A,3) Paa)

Rate Adaptation (RA)
problem

= DIPARTIMENTO
— DI INGEGNERIA
—— DELLINFORMAZIONE

o A wireless node (TX)
transmits packets to a
receiver (RX)

o Received power P,
depends on channel
gain from TX to RX

1

o A random number n of B :
nodes transmit in the / RX
background, creating |
interference power P, i i

o The Signal-to-
Interference-Ratio (SIR)
IS given by

Aggregate . - 9Py _ Prx |
interference](g]) _I +N/ ~ T Noise power

iy A 0 (I\/{negligible)

problem statement(cont)

o Transmission rate
can bechosenina o —

T —~ l / QPSK ——
Set C={C1 yu s ,Cm} '\ﬁ 1§Q§M N

107 - ! ! NG40AM = _

) 2BGQAM e

I:l higher C bitl’alte 1024BAM =
1072 - ‘ . | , N

ohigher T*(¢), i.e., SIRE

required for correct % "'t=7-=-- ===y
reception Sl A\
olower transmission ANRYANANE
time t=L/c > lower "~ YRR YR YERY
interference | el | ° { ; 1; 15!, |
= I’ [dB]

" (c)

Ex RA: problem statement(cont)

0 Problem: find the transmit rate c that
maximizes the success probability
o w(t): # of pcks sent up to time t
o u(t): # of pcks received by RX up to time t

u(t)

= lim ——
U t1—>r£10 W(t)

Ex RA: MDP model

o Assume the channel gain g can be modelled
as a Markov process with probability
transition matrix P = |P, ;|

o Consider a quantized dB-scale

Ex RA: MDP model (cont)

o The problem can be defined as an MDP

o For each node
o State at time t. channel gain g
o Action space in state g: data rates {c,,c,,...,c.}

o Reward given by (g,c): 1 if the SINR is above the
reception threshold for ¢, O otherwise

Ex RA: MDP model (cont)

o Given a certain policy n(c|g) we have
o Reward:

_ _ gby,) 1, if T(g) >T7(c)
Reer = X{F(g) N+l " (C)} - {o, if T(g) <T*(c)

o Note:

o the aggregate interference [depends on the number of
transmissions that overlap with the target one

o This number is proportional to the packet transmission time at
bitrate c: L/c

o R, is hence random, but given (g,c) the probability distribution
P(-|g,c) is fixed (but maybe unknown)

Ex RA: transition graph?

= DIPARTIMENTO
— DI INGEGNERIA
— DELLINFORMAZIONE

OPTIMAL POLICY

The optimal policy *

o The optimal policy ©* maximizes the average
value function of all states

n* =argmaxE.[V™(s)]
Il

o An approach to find the optimal policy is to
express the Q-values in a recursive manner

-

Dynamic programming

Bellman Optimality Equation

o Given the optimal policy ©* we have

V() = EalQ (5,0 =) m'(al$)Q’(s,a)

_ acA(s)
o from which

Q*(s,a) =E|R; + yz P(s’|s,a)V*(s")

=[E|R; + yz Z n(a’|s’) P(s'|s,a)Q*(s’,a’)

Bellman Optimality Equation

o But since =¥ is optimal, then n*(a’|s’)=1 if and
only if a’ is the optimal action from s’
o We hence have

o which is the Bellman optimality equation
o Similarly, we get

V*(s) = max E|R;;1 + yV*(s’)|s, a]
a€eA(s)

Optimal policy given Q-values

o If the optimal Q-values {Q*(s,a)} are known
for each (s,a) pair, then the optimal policy =*
corresponds to taking for each state s the
action a, that maximizes Q*(s,a):

n*:Vs,n*(as|ls) = 1iffa, = argmax Q*(s,a)
a

Policy Improvement

o The optimal functions V*(s) and Q*(s,a) can
be obtained by solving the Bellman
Optimality equations, or through /terative
Policy Improvement:

o Start from arbitrary (but reasonable) policy

o Apply recursively the Bellman Optimality equation
to update the V-function:

Vier ()= 2o P(s,7la,s) [r + vV, (s)]
oUpdate ; = argmax). . P(s',7r|a, s) [‘I‘ Ty Vni(S')]
o Repeat until convergence

Policy Iteration

o Policy iteration: concatenate Policy
Evaluation and Policy Improvement methods
to progressively approach the optimal policy

g > Voo>m» V> -1 >V

o If max Vir1(8) =V, ()| <e->m =1
SE

Policy iteration algorithm

1. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A+0
For each s € §:
v+ V(s)
V(s) ¢ S, p(s's7ls,7() [r + V()]
A + max(A, v — V(s)])
until A < @ (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € 8:
a + m(s)
m(s) < argmax,) ., . p(s',7|s,a) [P +V ()]
If a # m(s), then policy-stable + false
If policy-stable, then stop and return V and m; else go to 2

= DIPARTIMENTO
— DI INGEGNERIA
—— DELLINFORMAZIONE

Example RR (cont)

Let’s try with the Recycling
RObO'l' prOblem = DIPARTIMENTO

= DI INGEGNERIA
— DELLINFORMAZIONE

Es RR: optimal policy

o States: h=high, I=low,
o Actions: s=search, w=wait, re=recharge
o Bellman optimality equation

N | p(hlh,s)[r(h,s,h) + yv.(h)] + p(1|h, s[r (1)],
o.(h) = Inax{ (h|h, w)[r(h,w,h) + yv,(h)] + p(1|h w)[r(h, (1)]
__Joars+yv.()] + (1 -] rs—}—,z
- m‘”‘{ 1[re + Y. (h]+0[rw+m

[T TIO) (1— <1>1, }
e+

Brs —3(1 — B) +v[(1 — B)vs(h) + Bv.(1)]
v,(1) = max{ 7y + yv.(l), .
Vs (h)

“Reinforcement Learning: An Introduction” Second edition, in progress, Richard S. Sutton and Andrew G. Barto 2014, 2015

Example RA (cont)

Let’s try with the Rate
Adaptation (RA) problem e

= DIPARTIMENTO
— DI INGEGNERIA
—— DELLINFORMAZIONE

Ex RA (cont)

Random because of interference

o Immediate reward: =~ —

(1, [r()> (@)
~Rg.€) = {o, [(g) < T (c)

o Q-value:
Q™(9,¢) = E[R(g,0) + ¥ Z5,, P(g'l9, V()]

gk
= Pi{l(9) > (] +VE|) P(glg,cV™(g)
| 9'=80

o V-function:

V™(g) = E;[Q"(g,)] = X¢, m(cnlg)Q™ (g, cn)

Ex RA (cont)

o0 Note: the next state (channel gain) does not
depend on the chosen action (bitrate) -

oP(g’'lg,c) =P(g’|lg) = Py 4
o In this case, the future rewards do not
depend on the current action

o The Bellman equation yields
0Q*(g,¢) = R(g, ¢ I+YEyp(ig) [maxQ*(g',)]

Ex RA (cont)

o Since the right-most term does not depend
on the current action ¢, we have that

o max 0*(g,c) = mCaXT?(g, c)
o with
R(g,c) = Pr[I'(g) > T*(c)] = Pr [n < 9%t
' PT*(c)
o where n is the number of transmissions that
interfere with the target one

Ex RA (cont)

0 Assuming n is Poisson with parameter AL/c

we get
9Pex | ramnK
L’IF*(C) (T) e—ATL

0R(g,0) =%, L, 5

o Plotting R(g, ¢) vs c for different g we find the
optimal action of each state

Ex RA (cont)

300 u | | , .] |

N
(&)
o
T
|

200 .

150]

100 i}

Optimal transmit rate (¢;) wrt PDR

il s ——

-20 -156 -10 -5 0 5 10 15 20
Channel gain g [dB]

o What if we want to maximize the average
throughput?
o w(t): # of pcks transmitted by TX up to time t
o u(t): # of pcks received by RX up to time t

U= lim “t)
oy 1/c(t)

=1

Ex RA b (cont)

olmmediate reward:

¢, T(9)>T*(c)
0, T'(g) =T"(c)

r~R(g,c) = ;

Ex RA b (cont)

1200

1000 - an0000nb60N006D

800

Optimal transmit rate (¢;)

o;:—'"r;*"IJ’”UTW T

Channel gain g [dB]

Piece of cake... Or not?

o Do you see any problem?

o Must compute Q(s,a) for every state-action pair

o If state is e.g. current game state pixels, computationally
infeasible to compute for entire state space!

0 Not scalable!

Curse of dimensionality!
- B

o Furthermore, transition probabilities p(s’,r|s,a)
must be known beforehand

_ /

Solution: Reinforcement

Learninc

o If P(s',r[s,a) is known - Markov Decision
Process (MDP)

o If it is not - Reinforcement learning (RL)

o Reinforcement learning:

o Model-based: Learn a model of P(s',r|s,a) and
then solve as MDP

o Model-free: Learn directly the policy

Generalized Policy Iteration

o Solution methods for both MDP and model-
free RL

0 Basic idea:

o Policy Evaluation: emulate the system evolution
for a few steps always using policy behavior

o Control: update control policy at each step based
on Q values

o Periodically, set behavior policy to control policy

Generalized Policy Iteration

0 Generalized Policy Iteration

o Policy Evaluation
o Control

On-Policy & off-policy

o On-policy method

o behavior and control policies are always the
same

o Off-policy method

o behavior policy is used for a certain number of
steps and only periodically replaced with current
control policy

o Off-policy algorithms have an advantage: they
can take more risks during exploration, since
mistakes will not propagate to control policy

Policy evaluation

o Action-value function: backup diagram

(a) > (b)

Figure 3.4: Backup diagrams for (a) v, and (b) g¢.

“Reinforcement Learning: An Introduction” Second edition, in progress, Richard S. Sutton and
Andrew G. Barto 2014, 2015
https://web.stanford.edu/class/psych209/Readings/SuttonBartolPRLBook2ndEd.pdf

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

Policy evaluation

programming

~
Sea
-
~~_~-
—--_____

full \
backups

redits to Osvaldo Simeong

-
-
-
-
-

-~ sample

—

Temporal-
difference

1
4

PRd

-
-

--------------------------------- Model free
(sample based)

~
~
-
......

-

- _ -
shallow bOOtStrapplng, A deep
backups backups

@ oo

TD())

Policy evaluation

0 Exploration in breadth generally requires the availability
of a model

0 For each state > compute average value by considering
probability of next state and reward

0 Model-free methods estimate policy and probabilities
0 Based on
o Temporal-Difference (online) =2 Q(st, at) = rt+ YQ(st+1, at+1)

0 and/or
o Monte Carlo (offline) = Q(st, at) = re+Yres1+ Vorts2 +...

Generalized Policy Iteration

0 Generalized Policy Iteration

o Policy Evaluation
o Control

Exploration vs exploitation

o Exploitation: make the most out of what you
Know
o Take actions that maximize return based on
current knowledge of Q-values and Value function
o Exploration: check other strategies to see
whether you can do any better

o Take actions that are not immediately optimal, but
can improve estimate of the long-term returns

Control policies

o There are several well-known control policies
o The most common are g-greedy and softmax

o In both cases, there is some randomness to
explore the state and action spaces

Epsilon-Greedy Policy Softmax policy

most likely selects the greedy action Selects the actions based on their
relative Q-values

0_1 eis®)
bility ¢ with probability 1 — €, T[l (a|S) - Za, eQi(S,a’)

randomly select ar select the greedy action

Curse of dimensionality

o Do you see any problem?

o Must compute Q(s,a) for every state-action pair

o If state is e.g. current game state pixels, computationally
infeasible to compute for entire state space!

0 Not scalable!

[Curse of dimensionality! }

o Furthermore, transition probabillities p(s’,r|s,a)
must be known beforehand

Q-Learning

o Q-learning: use a neural network to
approximate the action-value function

Q"(s,a) = Q(s,a,0)

o If the function approximator is a deep neural
network - deep g-learning!

Q-Learning

o The neural network should find an approximation of
the Q-function that satisfies the Bellman equation

Q*(s,a) = E [‘r +y max Q*(s’,a’) |s, a]
o Forwards pass
o Loss Function: L;(0;) = Eg . [(v; — Q(s, a; 6;))*]
o Withy; = E [r +y max Q(s’,a’;0;_1) |s, a]
o Backward pass
o Gradient update (wrt to Q-function parameters 0):

Vo,Li(6) = Egas [r +ymaxQ(s',a;6:1) — Q(s,a;6)] V6,005, ¢ 6)

o Exploration is crucial in the
initial phases: the agent

needs to find out as much as ¢
it can from the environment |,

0.7

If the agent is too greedy in

0.6

the first episodes, it can get

stuck in a local maximum 05

w

0.4

A pre-training phase usinga o3

simplified environment can 0

help if the real one is

unavailable or o1
computationally heavy (or if 00

good performance is needed °
from the start)

\ PRETRAIN

TRAIN

//

\/ .

TEST

\

NG \
100 200 300 400 500 600

Iteration ¢

10

Hierarchical Deep

Reinforcement Learnino

Global rewards

Global DRL

Global action space

Local

strateg
} | Local reward 1 [

syndul [eo0|

Local

strategy.
} | Local reward j r

Av|nN |eqo|o

124

Main reference

0 “Reinforcement Learning: An Introduction”
Second edition, in progress, Richard S.
Sutton and Andrew G. Barto 2014, 2015,
https://web.stanford.edu/class/psych209/Rea
dings/SuttonBartolPRLBook2ndEd.pdf

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

