
Applied Machine Learning:
Examples in the ICT domain

Prof. Andrea Zanella

zanella@dei.unipd.it
¤ office: +39 049 8277770

fax : +39 049 8277699
¤ email: zanella@dei.unipd.it
¤ web : http://www.dei.unipd.it/~zanella

http://dei.unipd.it
http://dei.unipd.it
http://www.dei.unipd.it/~zanella

SIGNET people

2

Main research areas…

3

Next generation mobile & IoT

Underwater communications Human data analytics

Energy harvesting

and some more exotic stuff…

4

Outline (tentative)

¨ Introduction to reinforcement learning
¨ Deep Q-learning for mobile multimedia

streaming applications
¨ MultiArmed bandit for HetNet configuration
¨ Other examples of ML applications to ICT
¨ Conclusions

What does “learning” actually mean
for machines?

6

Machine “learning”

“A computer program is said to learn
from experience E with respect to
some class of tasks T and
performance measure P, if its
performance at tasks in T, as
measured by P, improves with
experience E”*

* Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York. 99

Human Learning
vs

Machine Learning

How do (small) humans learn?

9

Imitative Learning

¨ Small kids (toddlers) first learn by imitation

¤ “The most striking findings were that toddlers
were able to learn a new action from observing
completely unfamiliar strangers who did not
address them and were far less likely to imitate
an unfamiliar model who directly interacted with
them.” [1]

10

[1] Priya M. Shimpi, Nameera Akhtar, Chris Moore,”Toddlers’ imitative learning in interactive and
observational contexts: The role of age and familiarity of the model,” Journal of Experimental Child
Psychology, Volume 116, Issue 2, 2013, https://doi.org/10.1016/j.jecp.2013.06.008

https://doi.org/10.1016/j.jecp.2013.06.008

Is there anything similar in ML?

11

Imitation learning in machines

¨ Manual training of industry robots

¤Robotic arms can be manually moved by an
operator to learn how to perform a repetitive task,
which they then replicate autonomously

¤More a new form of programming than actual
machine “learning”

Transfer learning

¨ Transfer Learning is closer to our idea of
Imitative Learning
¤ It consists in transferring knowledge gained by an

ML algorithm while solving one problem to a
different but related problem
n Eg, knowledge learned by an algo that detects cars in

pictures can be transferred to an algo that recognizes
trucks

¤Makes it possible to greatly speed up learning of
other ML algorithms in new problems

Is that sufficient?

14

Learning by experience

Of course not!

¨ Children also need to make their own
experience in order to learn

¨ Experience learning is based on
¤Exploring (e.g., by playing)
¤Experimenting (by trial and errors)
¤Asking questions (to cut ties)

15

Exploring through “play”

16

Picture taken from: https://www.whitbyschool.org/passionforlearning/how-do-children-learn-through-play

Is there anything similar in ML?

Play à Pre-training

¨ The ML equivalent of children plays could be
the pre-training of ML algorithm by using
hyper-simplified models of the target
problem

¨ This practice is particularly beneficial for ML
algorithms that require massive datasets for
training

17

The theory theory

¨ Cognitive development is like theory
revision in science [2]

¨ Children construct intuitive theories of the
world and alter and revise them as the result
of new evidence

18

[2] Gopnik A, Wellman HM. Reconstructing constructivism: causal models, Bayesian learning
mechanisms, and the theory theory. Psychol Bull. 2012;138(6):1085–1108. doi:10.1037/a0028044

Statistical information

¨ Children gradually change the probability of
multiple hypotheses rather than simply
rejecting or accepting a single hypothesis

¨ Evidence leads children to gradually revise
their initial hypotheses and slowly replace
them with more probable hypotheses

19

Experimenting (trial & errors)

20

¨ A simple (?) experimental test…

Is there anything similar in ML?

21

Sure: Reinforcement Learning!

Reinforcement Learning

Problems involving an agent interacting with an environment,
which provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, regression, object detection,
semantic segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

2-d density estimation
2-d density images left and right
are CC0 public domain

1-d density estimation

Lecture 14 - 2
4

https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Reinforcement Learning

¨ What makes reinforcement learning different
from other machine learning paradigms?

¨ There is no supervisor, only a reward signal
¨ Feedback can be delayed

¤Time really matters (sequential, non i.i.d data)
¨ Agent’s actions affect the environment

¤subsequent data received by the algorithm

25

Examples

¨ Chess Play
¤Master players choose the next move based on

immediate return and planning, i.e., anticipation
of possible replies and counterreplies

¨ Cleaning robot
¤Decide whether to further explore the space for

more trash to collect or start trying to find its way
back to the recharging station

¨ Other daily life examples?

26

Cart-Pole Problem

May 23, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart: +1 or -1
Reward: 1 at each time step if the pole is upright

Training: the episode ends when the pole is more than
15 degrees from vertical, or the cart moves more than
2.4 units from the center

Lecture 14 -
This image is CC0 public domain

https://creativecommons.org/publicdomain/zero/1.0/deed.en

Let’s see how it works…

28
https://towardsdatascience.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288

Robot Locomotion

May 23, 2017Fei-Fei Li & Justin Johnson & Serena Yeung 29

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright + forward movement

Lecture 14 -

Recap
¨ The state of a system (environment) can be modified

by some control signals (actions) undertaken by
controllers (agents)

¨ An action performed in a certain state takes the system
in a new state and yields a (positive or negative) reward

¨ The RL algorithm tries to choose the best action for
each system state in order to maximize the “long-term
average reward”

30

32

The theoretical foundations:
Markov Decision Processes

Processes

¨ A “process” is a mathematical function that
describes the evolution of some entity

¨ Usually represented as a multidimensional
function of one parameter (time): s(t)

¨ Examples
¤ the variation of a room temperature over time
¤ the level of water in a lake at August 1st of every

year
¤ the number of people queueing at ski lift facility
¤ the signal attenuation of a wireless link

Stochastic processes

¨ A stochastic process is a mathematical model
that describes a process that can take random
values

¨ More formally, a collection of random variables
that is indexed by some mathematical set

¨ Examples
¤ the growth of a bacterial population over time
¤ the amplitude of an electric current fluctuating due to

thermal noise
¤ the number of people infected by a virus every day…

More formally…

¨ A stochastic processes is then a set S of
“random functions” of type {S(t,v), t∈T},
where T is the index set (typically, time or
space), v is a sample of a probability space
(which embeds the randomicity of the
process) and S(t,v) is one specific function
(realization) that the process take with given
probability P(v)
¤Generally, the process is only indicated as {St}

36

Classification of stochastic
processes

¨ A process is said to be
¤discrete time if the index set is numerable:

T={t0,t1,…}
¤ Integer values if the random functions take

values in a numerable set S, i.e., a set whose
elements can be associated to (a subset of) the
set of integer numbers: St∈S={0,±1,±2…}

¨ Examples?

37

Markov process

¨ Markovian processes are a family of
“memoryless” stochastic processes

¨ “Memoryless” means that the past “history” of
the process up to the current time does not
affect the future evolution of the process

¨ The last observed state of the process is the
only one that matters

38

Markov property in a nutshell

39

“ The future is independent of the past
given the present”

More formally

∀𝑡, ∀ 𝑠!"#, 𝑠! , 𝑠!$#, … , 𝑠% ∈ 𝑆
it	holds

¨ Examples?	

40

Future Present Past

ℙ 𝑺𝒕"𝟏 = 𝒔𝒕"𝟏&𝑆$ = 𝑠$ = Ρ𝒔𝐭 ,𝒔𝐭"𝟏
Transition
probabilities

ℙ 𝑺𝒕"𝟏 = 𝒔𝒕"𝟏&𝑆$ = 𝑠$, 𝑆$'(= 𝑠$'(… , 𝑆) = 𝑠) =

Example

¨ A Markov process is fully described by its
current state and Transition Probability
matrix ℙ

¨ Example: queue at ski lift facility

41
Image from: https://thenounproject.com/term/ski-lift/8803/

𝑺𝒕"𝟏= 𝑺𝒕 + 𝒗𝒕 − 𝒅𝒕
𝑺𝒌 People in queue at time slot k
𝒗𝒌 𝐍𝐞𝐰 𝐬𝐤𝐢𝐞𝐫𝐬 𝐪𝐮𝐞𝐮𝐢𝐧𝐠 𝐝𝐮𝐫𝐢𝐧𝐠 𝐬𝐥𝐨𝐭 𝐤
𝒅𝒌 𝐒𝐤𝐢𝐞𝐫𝐬 𝐭𝐚𝐤𝐢𝐧𝐠 𝐭𝐡𝐞 𝐬𝐤𝐢𝐥𝐢𝐟𝐭 𝐚𝐭 𝐬𝐥𝐨𝐭 𝐤 = 𝟎 𝐢𝐟

𝑺𝒌= 𝟎, 𝐚𝐧𝐝 𝟏 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞}

Transition diagram

42

0 1 2 3 10

𝐏[𝒗𝒌 = 𝟎] =1/2 𝐏[𝒗𝒌 = 𝟏] =1/4 , 𝐏[𝒗𝒌 = 𝟐] =1/4

States of the process

Transition probabilities

Time slot

Q
u

e
u

e
d

 p
e

o
p

le

Episodes

¨ The sequence of actual state values taken by
the process in a series of time instants is
named a realization of the process, or an
episode

¨ Example:
Note:
the two episodes
have different
probabilities of
occurrence

43

Markov or not Markov?

44

Are these processes
Markovian?

https://trends.google.it

https://trends.google.it/

The importance of being
earnest…

¨ It largely depends on:
¤The way we define the “state” of the process
¤The tolerance we accept on our Markovian

assumption
¨ Examples

¤𝒀𝒕: temperature in room at time t à strong
autocorrelation over time interval T à not
Markovian

¤The process 𝑺𝒕 = 𝒀𝒕, 𝒀𝒕"𝜹, 𝒀𝒕"𝟐𝜹, …𝒀𝒕"𝒎𝜹 with
md>T is “almost” Markovian

45

Summing up

¨ State definition is crucial
¨ State should be “rich” to provide a self-

contained description of the system
¨ State should be “thin” to keep the number of

possible values limited
¨ The choice of a proper state vector is hence

critical for the proper training of a learning
algorithm

46

MARKOV REWARD
PROCESS

47

Markov reward process

¨ A Markov reward process is a Markov
process that returns a certain “reward” for
each state

¨ If the state transition depends on a certain
action a, then 𝑅! = R 𝑠, 𝑎 ~P * |𝑠, 𝑎 where
P * |𝑠, 𝑎 is the probability distribution
of 𝑅! given the state s and the action a, i.e.,

P 𝑟|𝑠, 𝑎 = ℙ 𝑅! = 𝑟|𝑆! = 𝑠, 𝐴! = 𝑎

48

Example of rewards

49

0 1 2 3 10

Reward: 1 if ski lift disk is taken, 0 otherwise

0
0

0

1

1 1

1

Example of rewards (cont)

50

0 1 2 3 10

Reward: -1 x (number of queued skiers at end of slot)

0
-1

-2

1

0 -1

-2

Example of rewards (cont)

51

0 1 2 3 10

Reward: -1 x (variation of queued skiers)

0
-1

-2

0

1 1

-1

Markov decision process

¨ A Markov Decision Process (MDP) is a
Markov reward process where state
transitions and rewards depend on the
actions taken by a controller

52

Policy

¨ For any given state s the controller can
choose an action At in a set A(s)={an} of
admissible actions, called Action Space

¨ A policy at time t is the probability
distribution of actions for each state
¤𝜋& |𝑎 𝑠 = ℙ 𝐴& = 𝑎|𝑆& = 𝑠 is the probability that

the controller picks action 𝑎 ∈ 𝐴 𝑠 when the
system is in state s:

¨ Each action yields an immediate reward
Rt+1 and takes the system to a new state St+1

53

Policy (cont)

¨ Given any state and actions s and a, the probability
of each possible pair of next state and reward, s’
and r, is denote

¨ The expected reward from state-action pair (s,a) is

¨ The state transition probability is

54

P 𝑠’, 𝑟|𝑠, 𝑎 = ℙ 𝑆&'(= 𝑠’, 𝑅&'(= 𝑟|𝑆& = 𝑠, 𝐴& = 𝑎

𝑟 𝑠, 𝑎 = 𝔼 𝑅&'(|𝑆& = 𝑠, 𝐴& = 𝑎 =;
)

𝑟;
*’

𝑃 𝑠’, 𝑟|𝑠, 𝑎

𝑝 𝑠’|𝑠, 𝑎 = ℙ 𝑆&'(= 𝑠’|𝑆& = 𝑠, 𝐴& = 𝑎 =;
)

𝑃 𝑠’, 𝑟|𝑠, 𝑎

POLICY, VALUE FUNCTION,
Q-VALUE

55

Policy and utility

¨ The policy affects the evolution of the system
state

¨ Given a policy p, and a starting state s we
get a sequence of actionà stateà reward
¤𝑠, = 𝑠, 𝑎,~𝜋 |? 𝑠 → 𝑠(,𝑟(~𝑃 |?,? 𝑠,, 𝑎,
¤𝑎(~𝜋 |? 𝑠(→ 𝑠.,𝑟.~𝑃 |?,? 𝑠(, 𝑎(…
¤𝑎&~𝜋 |? 𝑠& → 𝑠&'(, 𝑟&'(~𝑃 ?,? |𝑠& , 𝑎& , …

¨ The accumulation of the rewards over time is
a measure of the policy utility

56

How good is a state?

¨ The V-function for a given policy p is the
average reward from any state s onward:

57

𝑉𝝅 𝑠 = 𝔼 12
"#$

%

𝛾"𝑅"&' 𝑠$ = 𝑠, 𝝅

Discount factor (g<1) à future rewards
have lower and lower weight

Average over statistical
distribution of next states
& rewards

How good is a (state,action)
pair?

¨ The Q-value (or action-value) function for
a given policy p is a measure of the utility of
a state-action pair:

¨ It is the expected long-term return starting
from state s, taking action a, and thereafter
following policy p

58

𝑄(𝑠, 𝑎 = 𝔼 12
"#$

%

𝛾"𝑅"&' 𝑠$ = 𝑠, 𝑎$ = 𝑎, 𝝅

First action is given

Bellman Equation

¨ The V-function can be expressed in a
recursive manner

59

𝑉𝝅 𝑠 = 𝔼 12
"#$

%

𝛾"𝑅"&' 𝑠$ = 𝑠, 𝝅

𝑉𝝅 𝑠 = 𝔼 1𝑅' + 𝛾2
)#$

%

𝛾)𝑅)&* 𝑠$ = 𝑠, 𝝅

𝑉𝝅 𝑠 =2
+

𝜋 𝑎|𝑠 2
,’,/

𝑝 𝑠’, 𝑟|𝑠, 𝑎 𝑟 + 𝛾𝑉𝝅 𝑠’

Recap (cont)

¨ An MDP is defined by the tuple: (𝑆, 𝐴, 𝑅, ℙ, 𝛾)
¤𝑆: set of possible states
¤𝐴: set of possible actions
¤𝑅: distribution of reward given (state, action) pair
¤ℙ: transition probability i.e. distribution over next

state given (state, action) pair
¤ g: discount factor

¨ A policy is the probability distribution of
actions given state
¤p(a|s) = Pr[At=a|St=s]

May 23, 2017 Fei-Fei Li & Justin Johnson & Serena
Yeung 60

Recap

¨ Each action yields an immediate reward
¨ For a given policy p,

¤The value Vp(s) of a state s is the aggregate
long-term reward which will be accumulated
from that state onwards

¤The Q-value Qp(s,a) of a state-action pair (s,a) is
the aggregate long-term reward from state s,
given that the next action is a

61

62

63

Recycling Robot (RR)

Example

Ex RR: problem statement

¨ Consider a mobile robot that collects cans for
recycling

¨ The robot is battery-power and the battery
can be in two states: high or low

¨ The robot can perform three different actions:
¤Search for cans
¤Wait for someone to bring it a can
¤Recharge its battery from the dock station

64

Ex RR: problem statement(cont)
¨ The probability to collect a can in a certain time

interval is
¤ rsearch when searching
¤ rwait < rsearch when waiting
¤ 0 when recharging or out of battery

¨ When moving, the battery level changes
¤ from high to high with probability: a
¤ from high to low with probability: 1- a
¤ from low to low with probability: b
¤ from low to empty with probability: 1-b

¨ After recharging, the battery goes back to high
65

Ex RR: MDP model
¨ State: ?

¤ Battery level: S={high, low}
¨ Action set?

¤ A(high) = {search, wait}
¤ A(low) = {search, wait, recharge}

¨ Rewards?
¤ R(high,search) = rsearch
¤ R(high,wait) = rwait
¤ R(low,search) = b rsearch +(1- b)(-3)
¤ R(low,wait) = rwait
¤ R(low,recharge) = 0

66

Ex RR: transition graph

67

“Reinforcement Learning: An Introduction” Second edition, in progress, Richard S. Sutton and
Andrew G. Barto 2014, 2015
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

Iterative Policy Evaluation

¨ Given a policy, the function V(s) can be obtained
by solving the Bellman Ford equations, or
through Iterative Policy Evaluation:
¤ Start from arbitrary (but reasonable) V(s)
¤ Apply recursively the Bellman equation to update the

V(s) value for each s or (s,a) pair:

𝑉!"# 𝑠 =$
$

𝜋 𝑎|𝑠 $
%’,(

𝑃(𝑠’, 𝑟|𝑎, 𝑠) 𝑟 + 𝛾 𝑉! 𝑠’

¤ Repeat until convergence
n More practically, when max

<∈>
|𝑉?@A 𝑠 − 𝑉? 𝑠 | < 𝜀

68

69

Sensing Strategy (SS)

Example

Ex SS: problem statement

¨ A sensor node needs to report its
measurements to a control station

¨ The sensor can work in two conditions:
Normal (N) or Alarm (A)
¤ transitions occur as for a Gilbert model

N A

PNA

PNN
PAA

PAN

Ex SS: problem statement(cont)
¨ At each slot, the node can either Transmit a

packet or remain Idle
¨ During “Alarm” periods, packets have high

priority and should be delivered with max
probability

¨ High priority transmission drains k=1 or k=2
quanta of energy from the battery of the node,
with probability 2/3 and 1/3, resp,
¤ If the battery charge is lower than k, the tx fails

¨ Normal packet transmission takes 1 quantum of
energy

Ex SS: problem statement(cont)

¨ Each Idle slot recharges the battery by one
quantum of energy
¤The battery has a maximum capacity of 4 quanta

of energy
¨ If the battery depletes, it cannot be recharged

and the node stops working forever

Ex SS: problem statement(cont)

¨ The sensor node knows its operational
conditions and battery level

¨ Find the transmission policy that maximizes
the number of transmitted packets and the
probability that high priority

73

Ex SS: MDP model

¨ Take a few minutes to model the problem into
an MDP framework

¨ Which elements do you need to define?
¤System state (Markovian?)
¤Action space
¤State transition probabilities
¤Reward
¤Value function

¨ What do you need to find?
¤Policy

74

Ex SS: try by yourself

75

Ex SS: Solution

¨ System state:
¤St=(operation mode, battery level) or St=0 if

battery is empty (absorbing state)
¨ State space:

¤S={0, (N,1), (A,1),…,(N,4),(A,4)}
¨ Actions: {tx,idle}
¨ Action space in the different states

¤St=(0) à A(St)={idle}
¤St= (*,q) à A(St)={tx,idle}

76

Ex SS: transition graph

77

0

(N,1) (N,2) (N,3) (N,4)

(A,1) (A,2) (A,3) (A,4)

idletx idletx idletx idletx

idletx idletx idletx idletx

1,0

1,1/2

1/3,1
PAN(2/3),1

PAA(2/3),1

Ex SS: policy

¨ Possible policy: 𝜋 |𝑎 𝑠
¤ 𝜋 𝑖𝑑𝑙𝑒, 0 = 1
¤ 𝜋 |𝑡𝑥 (𝐴, 4) = 1
¤ 𝜋 |𝑡𝑥 (𝐴, 3) = 1
¤ 𝜋 |𝑡𝑥 (𝐴, 2) = 1
¤ 𝜋 |𝑡𝑥 (𝐴, 1) = 0
¤ 𝜋 |𝑡𝑥 (𝑁, 4) = 1
¤ 𝜋 |𝑡𝑥 (𝑁, 3) = 0.6
¤ 𝜋 |𝑡𝑥 (𝑁, 2) = 0
¤ 𝜋 |𝑡𝑥 (𝑁, 1) = 0

78

Which action is
particularly critical?

Ex SS: value function
¨ V(0) = 0
¨ V(N,1) = 0 + V(N,2)PNN + V(A,2) PNA
¨ V(N,2) = 0 + V(N,3)PNN + V(A,3) PNA
¨ V(N,3) = 0.6+ 0.6(V(N,2)PNN+ V(A,2)PNA) +

0.4(V(N,4)PNN+ V(A,4)PNA)
¨ V(N,4) = 1+ V(N,3)PNN+ V(A,3)PNA
¨ V(A,1)=0 + V(N,2)PAN + V(A,2) PAA
¨ V(A,2) =1 + 2/3(V(N,1)PAN + V(A,1) PAA)+1/3V(0)
¨ V(A,3) =1 + 2/3(V(N,2)PAN + V(A,2) PAA) +

1/3(V(N,1)PAN + V(A,1) PAA)
¨ V(A,4) =1 + 2/3(V(N,2)PAN + V(A,2) PAA) +

1/3(V(N,3)PAN + V(A,3) PAA)

79

80

Rate Adaptation (RA)
problem

Example

Ex RA: problem statement
¨ A wireless node (TX)

transmits packets to a
receiver (RX)

¨ Received power Prx
depends on channel
gain from TX to RX

¨ A random number n of
nodes transmit in the
background, creating
interference power Pi

¨ The Signal-to-
Interference-Ratio (SIR)
is given by Aggregate

interference

TX1 Prx

RX

Noise power
(negligible)

Γ" 𝑔" =
𝑔P#$
𝐼 + 𝑁%

≈
P&$
𝐼

Interference
Pi

Pi
PiPi

Ex RA: problem statement(cont)

¨ Transmission rate
can be chosen in a
set C={c1,…,cm}

¨ higher c à
¤higher Γ∗ 𝑐 , i.e., SIR

required for correct
reception

¤ lower transmission
time t=L/c à lower
interference I

82

𝛤! [dB]

bitrate

Γ∗ 𝑐

Ex RA: problem statement(cont)

¨ Problem: find the transmit rate c that
maximizes the success probability
¤w(t): # of pcks sent up to time t
¤u(t): # of pcks received by RX up to time t

83

𝑈 = lim
&→4

𝑢 𝑡
𝑤 𝑡

Ex RA: MDP model

¨ Assume the channel gain g can be modelled
as a Markov process with probability
transition matrix ℙ = P0,1

¨ Consider a quantized dB-scale

84

g0 g1 g2 g3

P0,0

gk

P0,1

P1,1

P1,2

P1,0 P2,1

Ex RA: MDP model (cont)

¨ The problem can be defined as an MDP
¨ For each node

¤State at time t: channel gain g
¤Action space in state g: data rates {c1,c2,…,cm}
¤Reward given by (g,c): 1 if the SINR is above the

reception threshold for c, 0 otherwise

85

Ex RA: MDP model (cont)
¨ Given a certain policy 𝜋 |𝑐 𝑔 we have
¨ Reward:

𝑅#'(= 𝜒 Γ 𝑔 =
𝑔P#$
𝑁% + 𝐼

> Γ∗ 𝑐 = .1, 𝑖𝑓 Γ 𝑔 > Γ∗ 𝑐
0, 𝑖𝑓 Γ 𝑔 ≤ Γ∗ 𝑐

¨ Note:
¤ the aggregate interference I depends on the number of

transmissions that overlap with the target one
¤ This number is proportional to the packet transmission time at

bitrate c: L/c
¤ 𝑅B is hence random, but given (g,c) the probability distribution

P(-|g,c) is fixed (but maybe unknown)

86

Ex RA: transition graph?

87

OPTIMAL POLICY

88

The optimal policy p*

¨ The optimal policy p* maximizes the average
value function of all states

¨ An approach to find the optimal policy is to
express the Q-values in a recursive manner

89

𝜋∗ = argmax
(

𝔼, 𝑉𝝅 𝑠

Dynamic programming

Bellman Optimality Equation

¨ Given the optimal policy p* we have

¨ from which

𝑉∗ 𝑠 = 𝔼5 𝑄∗ 𝑠, 𝑎 = ;
5∈7 *

𝜋∗ 𝑎|𝑠 𝑄∗ 𝑠, 𝑎

𝑄∗ 𝑠, 𝑎 = 𝔼 𝑅& + 𝛾;
*’

ℙ 𝑠’|𝑠, 𝑎 𝑉∗ 𝑠’

= 𝔼 𝑅& + 𝛾;
*’

;
5’

𝜋 𝑎’|𝑠’ 𝑃 𝑠’|𝑠, 𝑎 𝑄∗ 𝑠’ , 𝑎’

Bellman Optimality Equation

¨ But since p* is optimal, then p*(a’|s’)=1 if and
only if a’ is the optimal action from s’

¨ We hence have

¨ which is the Bellman optimality equation
¨ Similarly, we get

91

𝑄∗ 𝑠, 𝑎 = 𝔼8∗ 𝑟 + 𝛾max5’ 𝑄
∗ 𝑠’, 𝑎’ |𝑠, 𝑎

𝑉∗ 𝑠 = max
5∈7 *

𝔼 𝑅&'(+ 𝛾𝑉∗ 𝑠’ |𝑠, 𝑎

Optimal policy given Q-values

¨ If the optimal Q-values {Q*(s,a)} are known
for each (s,a) pair, then the optimal policy p*
corresponds to taking for each state s the
action as that maximizes Q*(s,a):

92

𝜋∗: ∀𝑠, 𝜋∗ 𝑎,|𝑠 = 1 iff 𝑎, = argmax
+
𝑄∗ 𝑠, 𝑎

Policy Improvement

¨ The optimal functions V*(s) and Q*(s,a) can
be obtained by solving the Bellman
Optimality equations, or through Iterative
Policy Improvement:
¤Start from arbitrary (but reasonable) policy
¤Apply recursively the Bellman Optimality equation

to update the V-function:
𝑉0&' 𝑠 = ∑,’,/ 𝑃(𝑠’, 𝑟|𝑎, 𝑠) 𝑟 + 𝛾 𝑉(! 𝑠’
¤Update 𝜋9 = argmax∑*’,) 𝑃(𝑠’, 𝑟|𝑎, 𝑠) 𝑟 + 𝛾 𝑉8" 𝑠’
¤Repeat until convergence

93

Policy Iteration

¨ Policy iteration: concatenate Policy
Evaluation and Policy Improvement methods
to progressively approach the optimal policy

𝜋$ → 𝑉$ ⇒ 𝜋' → 𝑉' ⇒ ⋯ ⇒ 𝜋∗ → 𝑉∗

¨ If max
,∈4

|𝑉)&' 𝑠 − 𝑉) 𝑠 | < 𝜀 → 𝜋) ≈ 𝜋∗

94

Policy iteration algorithm

95

96

97

Let’s try with the Recycling
Robot problem

Example RR (cont)

Es RR: optimal policy

¨ States: h=high, l=low,
¨ Actions: s=search, w=wait, re=recharge
¨ Bellman optimality equation

“Reinforcement Learning: An Introduction” Second edition, in progress, Richard S. Sutton and Andrew G. Barto 2014, 2015

99

Let’s try with the Rate
Adaptation (RA) problem

Example RA (cont)

Ex RA (cont)

¨ Immediate reward:

r~R(𝑔, 𝑐) = A1, Γ(𝑔) > Γ∗ 𝑐
0, Γ(𝑔) ≤ Γ∗ 𝑐

¨ Q-value:
𝑄# 𝑔, 𝑐 = 𝔼 R 𝑔, 𝑐 + 𝛾 ∑$’&'"

'# ℙ |𝑔’ 𝑔, 𝑐 𝑉# 𝑔’

= Pr Γ(𝑔) > Γ∗ 𝑐 + 𝛾 𝔼 O
$’&'"

'#

ℙ |𝑔’ 𝑔, 𝑐 𝑉# 𝑔’

¨ V-function:

𝑉* 𝑔 = 𝔼+ 𝑄* 𝑔, 𝑐 = ∑+! 𝜋 𝑐,|𝑔 𝑄* 𝑔, 𝑐,

100

Random because of interference

Ex RA (cont)

¨ Note: the next state (channel gain) does not
depend on the chosen action (bitrate) à
¤ℙ |𝑔’ 𝑔, 𝑐 = ℙ |𝑔’ 𝑔 = 𝑃P,P’

¨ In this case, the future rewards do not
depend on the current action

¨ The Bellman equation yields
¤𝑄∗ 𝑔, 𝑐 = U𝑅 𝑔, 𝑐 +𝛾𝔼P’~ℙ Q|P max

R’
𝑄∗ 𝑔’ , 𝑐’

101

Ex RA (cont)

¨ Since the right-most term does not depend
on the current action c, we have that
¤max

R
𝑄∗ 𝑔, 𝑐 = max

R
V𝑅 𝑔, 𝑐

¨ with
O𝑅 𝑔, 𝑐 = Pr Γ(𝑔) > Γ∗ 𝑐 = Pr 𝑛 <

𝑔P"5
P6Γ∗ 𝑐

¨ where n is the number of transmissions that
interfere with the target one

102

Ex RA (cont)

¨ Assuming n is Poisson with parameter lL/c
we get

¨ O𝑅 𝑔, 𝑐 = ∑)#$

"#$%
#&'∗)

*+
)

,

)!
𝑒8

*+
)

¨ Plotting O𝑅 𝑔, 𝑐 vs c for different g we find the
optimal action of each state

103

Ex RA (cont)

104

Ex RA b

¨ What if we want to maximize the average
throughput?
¤w(t): # of pcks transmitted by TX up to time t
¤u(t): # of pcks received by RX up to time t

105

𝑈 = lim
&→4

𝑢(𝑡)
∑9S(
T & 1/𝑐(𝑡)

Ex RA b (cont)

¨ Immediate reward:

r~R(𝑔, 𝑐) = V
𝑐, Γ(𝑔) > Γ∗ 𝑐
0, Γ(𝑔) ≤ Γ∗ 𝑐

106

Ex RA b (cont)

107

Piece of cake... Or not?

¨ Do you see any problem?
¨ Must compute Q(s,a) for every state-action pair

¤ If state is e.g. current game state pixels, computationally
infeasible to compute for entire state space!

¨ Not scalable!

¨ Furthermore, transition probabilities p(s’,r|s,a)
must be known beforehand

109

Curse of dimensionality!

Solution: Reinforcement
Learning

¨ If P(s’,r|s,a) is known à Markov Decision
Process (MDP)

¨ If it is not à Reinforcement learning (RL)
¨ Reinforcement learning:

¤Model-based: Learn a model of P(s’,r|s,a) and
then solve as MDP

¤Model-free: Learn directly the policy

110

Generalized Policy Iteration

¨ Solution methods for both MDP and model-
free RL

¨ Basic idea:
¤Policy Evaluation: emulate the system evolution

for a few steps always using policy behavior
¤Control: update control policy at each step based

on Q values
¤Periodically, set behavior policy to control policy

111

Generalized Policy Iteration

¨ Generalized Policy Iteration
¤Policy Evaluation
¤Control

112

On-Policy & off-policy

¨ On-policy method
¤behavior and control policies are always the

same
¨ Off-policy method

¤behavior policy is used for a certain number of
steps and only periodically replaced with current
control policy

¤Off-policy algorithms have an advantage: they
can take more risks during exploration, since
mistakes will not propagate to control policy

113

Policy evaluation

¨ Action-value function: backup diagram

114

“Reinforcement Learning: An Introduction” Second edition, in progress, Richard S. Sutton and
Andrew G. Barto 2014, 2015
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

Policy evaluation

115

Credits to Osvaldo Simeone

Model based

Model free
(sample based)

Policy evaluation
¨ Exploration in breadth generally requires the availability

of a model
¤ For each state à compute average value by considering

probability of next state and reward

¨ Model-free methods estimate policy and probabilities
¨ Based on

¤ Temporal-Difference (online) à Q(st, at)≈ rt +γQ(st+1, at+1)

¨ and/or
¤ Monte Carlo (offline) à Q(st, at)≈ rt +γrt+1 +γ2rt+2 + ...

116

Generalized Policy Iteration

¨ Generalized Policy Iteration
¤Policy Evaluation
¤Control

117

Exploration vs exploitation

¨ Exploitation: make the most out of what you
know
¤Take actions that maximize return based on

current knowledge of Q-values and Value function
¨ Exploration: check other strategies to see

whether you can do any better
¤Take actions that are not immediately optimal, but

can improve estimate of the long-term returns

118

Control policies

¨ There are several well-known control policies
¨ The most common are ε-greedy and softmax
¨ In both cases, there is some randomness to

explore the state and action spaces

Softmax policy

Selects the actions based on their
relative Q-values

𝜋9 𝑎|𝑠 =
𝑒U"(*,5)

∑5’ 𝑒U"(*,5’)

Curse of dimensionality

¨ Do you see any problem?
¨ Must compute Q(s,a) for every state-action pair

¤ If state is e.g. current game state pixels, computationally
infeasible to compute for entire state space!

¨ Not scalable!

¨ Furthermore, transition probabilities p(s’,r|s,a)
must be known beforehand

120

Curse of dimensionality!

Q-Learning

¨ Q-learning: use a neural network to
approximate the action-value function

𝑄∗(𝑠, 𝑎) ≈ 𝑄(𝑠, 𝑎, Θ)

¨ If the function approximator is a deep neural
network à deep q-learning!

121

Q-Learning

¨ The neural network should find an approximation of
the Q-function that satisfies the Bellman equation

¨ Forwards pass
¤ Loss Function: 𝐿- 𝜃- = 𝔼.,0 (𝑦- − 𝑄 𝑠, 𝑎; 𝜃-)1

¤ With 𝑦- = 𝔼 𝑟 + 𝛾max
0’

𝑄 𝑠’, 𝑎’; 𝜃-3(|𝑠, 𝑎

¨ Backward pass
¤ Gradient update (wrt to Q-function parameters θ):
∇($𝐿) 𝜃) = 𝔼*,,,*’ 𝑟 + 𝛾max,’ 𝑄 𝑠’, 𝑎’; 𝜃)-. − 𝑄 𝑠, 𝑎; 𝜃) ∇($𝑄 𝑠, 𝑎; 𝜃)

122

𝑄∗ 𝑠, 𝑎 = 𝔼*∗ 𝑟 + 𝛾max0’ 𝑄
∗ 𝑠’, 𝑎’ |𝑠, 𝑎

The exploration profile
¨ Exploration is crucial in the

initial phases: the agent
needs to find out as much as
it can from the environment

¨ If the agent is too greedy in
the first episodes, it can get
stuck in a local maximum

¨ A pre-training phase using a
simplified environment can
help if the real one is
unavailable or
computationally heavy (or if
good performance is needed
from the start)

124

Hierarchical Deep
Reinforcement Learning

Main reference

¨ “Reinforcement Learning: An Introduction”
Second edition, in progress, Richard S.
Sutton and Andrew G. Barto 2014, 2015,
https://web.stanford.edu/class/psych209/Rea
dings/SuttonBartoIPRLBook2ndEd.pdf

125

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

