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SIGNET people
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Main research areas…
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Next generation mobile & IoT

Underwater communications Human data analytics

Energy harvesting



and some more exotic stuff…
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Outline (tentative)

¨ Introduction to reinforcement learning
¨ Deep Q-learning for mobile multimedia 

streaming applications
¨ MultiArmed bandit for HetNet configuration
¨ Other examples of ML applications to ICT
¨ Conclusions



What does “learning” actually mean 
for machines? 
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Machine “learning”

“A computer program is said to learn 
from experience E with respect to 
some class of tasks T and 
performance measure P, if its 
performance at tasks in T, as 
measured by P, improves with 
experience E”*

* Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York. 99



Human Learning 
vs 

Machine Learning



How do (small) humans learn? 
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Imitative Learning

¨ Small kids (toddlers) first learn by imitation

¤ “The most striking findings were that toddlers 
were able to learn a new action from observing 
completely unfamiliar strangers who did not 
address them and were far less likely to imitate 
an unfamiliar model who directly interacted with 
them.” [1]
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[1] Priya M. Shimpi, Nameera Akhtar, Chris Moore,”Toddlers’ imitative learning in interactive and 
observational contexts: The role of age and familiarity of the model,” Journal of Experimental Child 
Psychology, Volume 116, Issue 2,  2013, https://doi.org/10.1016/j.jecp.2013.06.008

https://doi.org/10.1016/j.jecp.2013.06.008


Is there anything similar in ML?
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Imitation learning in machines

¨ Manual training of industry robots 

¤Robotic arms can be manually moved by an 
operator to learn how to perform a repetitive task, 
which they then replicate autonomously

¤More a new form of programming than actual 
machine “learning”



Transfer learning

¨ Transfer Learning is closer to our idea of 
Imitative Learning
¤ It consists in transferring knowledge gained by an 

ML algorithm while solving one problem to a 
different but related problem
n Eg, knowledge learned by an algo that detects cars in 

pictures can be transferred to an algo that recognizes 
trucks

¤Makes it possible to greatly speed up learning of 
other ML algorithms in new problems



Is that sufficient? 
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Learning by experience

Of course not! 

¨ Children also need to make their own 
experience in order to learn 

¨ Experience learning is based on 
¤Exploring (e.g., by playing)
¤Experimenting (by trial and errors)
¤Asking questions (to cut ties)

15



Exploring through “play”
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Picture taken from: https://www.whitbyschool.org/passionforlearning/how-do-children-learn-through-play

Is there anything similar in ML?



Play à Pre-training

¨ The ML equivalent of children plays could be 
the pre-training of ML algorithm by using 
hyper-simplified models of the target 
problem

¨ This practice is particularly beneficial for ML 
algorithms that require massive datasets for 
training

17



The theory theory

¨ Cognitive development is like theory 
revision in science [2]

¨ Children construct intuitive theories of the 
world and alter and revise them as the result 
of new evidence

18

[2] Gopnik A, Wellman HM. Reconstructing constructivism: causal models, Bayesian learning 
mechanisms, and the theory theory. Psychol Bull. 2012;138(6):1085–1108. doi:10.1037/a0028044



Statistical information

¨ Children gradually change the probability of 
multiple hypotheses rather than simply 
rejecting or accepting a single hypothesis

¨ Evidence leads children to gradually revise 
their initial hypotheses and slowly replace 
them with more probable hypotheses

19



Experimenting (trial & errors)

20

¨ A simple (?) experimental test… 



Is there anything similar in ML?
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Sure: Reinforcement Learning!



Reinforcement Learning

Problems involving an agent interacting with an environment,  
which provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward



Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification,  regression, object detection,  
semantic segmentation, image  captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying  
hidden structure of the data

Examples: Clustering,  
dimensionality reduction, feature  
learning, density estimation, etc.

2-d density estimation
2-d density images left and right 
are CC0 public domain

1-d density estimation

Lecture 14 - 2
4

https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Reinforcement Learning 

¨ What makes reinforcement learning different 
from other machine learning paradigms? 

¨ There is no supervisor, only a reward signal
¨ Feedback can be delayed

¤Time really matters (sequential, non i.i.d data)
¨ Agent’s actions affect the environment

¤subsequent data received by the algorithm

25



Examples

¨ Chess Play
¤Master players choose the next move based on 

immediate return and planning, i.e., anticipation 
of possible replies and counterreplies

¨ Cleaning robot
¤Decide whether to further explore the space for 

more trash to collect or start trying to find its way 
back to the recharging station

¨ Other daily life examples? 

26



Cart-Pole Problem

May 23, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart: +1 or -1
Reward: 1 at each time step if the pole is upright

Training: the episode ends when the pole is more than 
15 degrees from vertical, or the cart moves more than 
2.4 units from the center

Lecture 14 -
This image is CC0 public domain

https://creativecommons.org/publicdomain/zero/1.0/deed.en


Let’s see how it works…

28
https://towardsdatascience.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288



Robot Locomotion

May 23, 2017Fei-Fei Li & Justin Johnson & Serena Yeung 29

Objective: Make the robot move forward

State: Angle and position of the joints  
Action: Torques applied on joints  
Reward: 1 at each time step upright +  forward movement

Lecture 14 -



Recap
¨ The state of a system (environment) can be modified 

by some control signals (actions) undertaken by  
controllers (agents)

¨ An action performed in a certain state takes the system 
in a new state and yields a (positive or negative) reward

¨ The RL algorithm tries to choose the best action for 
each system state in order to maximize the “long-term 
average reward”

30
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The theoretical foundations: 
Markov Decision Processes 



Processes

¨ A “process” is a mathematical function that 
describes the evolution of some entity

¨ Usually represented as a multidimensional 
function of one parameter (time): s(t) 

¨ Examples
¤ the variation of a room temperature over time 
¤ the level of water in a lake at August 1st of every 

year
¤ the number of people queueing at ski lift facility
¤ the signal attenuation of a wireless link 



Stochastic processes

¨ A stochastic process is a mathematical model 
that describes a process that can take random 
values

¨ More formally, a collection of random variables 
that is indexed by some mathematical set

¨ Examples
¤ the growth of a bacterial population over time
¤ the amplitude of an electric current fluctuating due to 

thermal noise
¤ the number of people infected by a virus every day…



More formally…

¨ A stochastic processes is then a set S of 
“random functions” of type {S(t,v), t∈T}, 
where T is the index set (typically, time or 
space), v is a sample of a probability space 
(which embeds the randomicity of the 
process) and S(t,v) is one specific function 
(realization) that the process take with given 
probability P(v)
¤Generally, the process is only indicated as {St}

36



Classification of stochastic 
processes

¨ A process is said to be
¤discrete time if the index set is numerable: 

T={t0,t1,…}
¤ Integer values if the random functions take 

values in a numerable set S, i.e., a set whose 
elements can be associated to (a subset of) the 
set of integer numbers: St∈S={0,±1,±2…}

¨ Examples? 

37



Markov process

¨ Markovian processes are a family of 
“memoryless” stochastic processes

¨ “Memoryless” means that the past “history” of 
the process up to the current time does not 
affect the future evolution of the process

¨ The last observed state of the process is the 
only one that matters

38



Markov property in a nutshell

39

“ The future is independent of the past 
given the present”



More formally

∀𝑡, ∀ 𝑠!"#, 𝑠! , 𝑠!$#, … , 𝑠% ∈ 𝑆
it	holds

¨ Examples?	

40

Future Present Past

ℙ 𝑺𝒕"𝟏 = 𝒔𝒕"𝟏&𝑆$ = 𝑠$ = Ρ𝒔𝐭 ,𝒔𝐭"𝟏
Transition 
probabilities

ℙ 𝑺𝒕"𝟏 = 𝒔𝒕"𝟏&𝑆$ = 𝑠$ , 𝑆$'( = 𝑠$'(… , 𝑆) = 𝑠) =



Example

¨ A Markov process is fully described by its 
current state and Transition Probability 
matrix ℙ

¨ Example: queue at ski lift facility 

41
Image from: https://thenounproject.com/term/ski-lift/8803/

𝑺𝒕"𝟏= 𝑺𝒕 + 𝒗𝒕 − 𝒅𝒕
𝑺𝒌 People in queue at time slot k
𝒗𝒌 𝐍𝐞𝐰 𝐬𝐤𝐢𝐞𝐫𝐬 𝐪𝐮𝐞𝐮𝐢𝐧𝐠 𝐝𝐮𝐫𝐢𝐧𝐠 𝐬𝐥𝐨𝐭 𝐤
𝒅𝒌 𝐒𝐤𝐢𝐞𝐫𝐬 𝐭𝐚𝐤𝐢𝐧𝐠 𝐭𝐡𝐞 𝐬𝐤𝐢𝐥𝐢𝐟𝐭 𝐚𝐭 𝐬𝐥𝐨𝐭 𝐤 = 𝟎 𝐢𝐟

𝑺𝒌= 𝟎, 𝐚𝐧𝐝 𝟏 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞}



Transition diagram
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0 1 2 3 10

𝐏[𝒗𝒌 = 𝟎] =1/2 𝐏[𝒗𝒌 = 𝟏] =1/4 , 𝐏[𝒗𝒌 = 𝟐] =1/4

States of  the process

Transition probabilities



Time slot

Q
u

e
u

e
d

 p
e

o
p

le

Episodes

¨ The sequence of actual state values taken by 
the process in a series of time instants is 
named a realization of the process, or an 
episode

¨ Example:
Note: 
the two episodes 
have different 
probabilities of 
occurrence

43



Markov or not Markov?

44

Are these processes 
Markovian? 

https://trends.google.it

https://trends.google.it/


The importance of being 
earnest…

¨ It largely depends on:
¤The way we define the “state” of the process
¤The tolerance we accept on our Markovian 

assumption 
¨ Examples

¤𝒀𝒕: temperature in room at time t à strong 
autocorrelation over time interval T à not 
Markovian

¤The process 𝑺𝒕 = 𝒀𝒕, 𝒀𝒕"𝜹, 𝒀𝒕"𝟐𝜹, …𝒀𝒕"𝒎𝜹 with 
md>T is “almost” Markovian

45



Summing up

¨ State definition is crucial
¨ State should be “rich” to provide a self-

contained description of the system
¨ State should be “thin” to keep the number of 

possible values limited
¨ The choice of a proper state vector is hence 

critical for the proper training of a learning 
algorithm

46



MARKOV REWARD 
PROCESS

47



Markov reward process

¨ A Markov reward process is a Markov 
process that returns a certain “reward” for 
each state

¨ If the state transition depends on a certain 
action a, then 𝑅! = R 𝑠, 𝑎 ~P * |𝑠, 𝑎 where 
P * |𝑠, 𝑎 is the probability distribution 
of 𝑅! given the state s and the action a, i.e., 

P 𝑟|𝑠, 𝑎 = ℙ 𝑅! = 𝑟|𝑆! = 𝑠, 𝐴! = 𝑎

48



Example of rewards

49

0 1 2 3 10

Reward: 1 if  ski lift disk is taken, 0 otherwise

0
0

0

1

1 1

1



Example of rewards (cont)
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0 1 2 3 10

Reward: -1 x (number of  queued skiers at end of  slot)

0
-1

-2

1

0 -1

-2



Example of rewards (cont)
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0 1 2 3 10

Reward: -1 x (variation of  queued skiers)

0
-1

-2

0

1 1

-1



Markov decision process

¨ A Markov Decision Process (MDP) is a 
Markov reward process where state 
transitions and rewards depend on the 
actions taken by a controller

52



Policy

¨ For any given state s the controller can 
choose  an action At in a set A(s)={an} of 
admissible actions, called Action Space

¨ A policy at time t is the probability 
distribution of actions for each state
¤𝜋& |𝑎 𝑠 = ℙ 𝐴& = 𝑎|𝑆& = 𝑠 is the probability that  

the controller picks action 𝑎 ∈ 𝐴 𝑠 when the 
system is in state s:

¨ Each action yields an immediate reward 
Rt+1 and takes the system to a new state St+1

53



Policy (cont)

¨ Given any state and actions s and a, the probability 
of each possible pair of next state and reward, s’
and r, is denote

¨ The expected reward from state-action pair (s,a) is

¨ The state transition probability is

54

P 𝑠’, 𝑟|𝑠, 𝑎 = ℙ 𝑆&'( = 𝑠’, 𝑅&'( = 𝑟|𝑆& = 𝑠, 𝐴& = 𝑎

𝑟 𝑠, 𝑎 = 𝔼 𝑅&'(|𝑆& = 𝑠, 𝐴& = 𝑎 =;
)

𝑟;
*’

𝑃 𝑠’, 𝑟|𝑠, 𝑎

𝑝 𝑠’|𝑠, 𝑎 = ℙ 𝑆&'( = 𝑠’|𝑆& = 𝑠, 𝐴& = 𝑎 =;
)

𝑃 𝑠’, 𝑟|𝑠, 𝑎



POLICY, VALUE FUNCTION, 
Q-VALUE

55



Policy and utility

¨ The policy affects the evolution of the system 
state

¨ Given a policy p, and a starting state s we 
get a sequence of actionà stateà reward 
¤𝑠, = 𝑠, 𝑎,~𝜋 |? 𝑠 → 𝑠(,𝑟(~𝑃 |?,? 𝑠,, 𝑎,
¤𝑎(~𝜋 |? 𝑠( → 𝑠.,𝑟.~𝑃 |?,? 𝑠(, 𝑎( …
¤𝑎&~𝜋 |? 𝑠& → 𝑠&'(, 𝑟&'(~𝑃 ?,? |𝑠& , 𝑎& , …

¨ The accumulation of the rewards over time is 
a measure of the policy utility

56



How good is a state?

¨ The V-function for a given policy p is the 
average reward from any state s onward:

57

𝑉𝝅 𝑠 = 𝔼 12
"#$

%

𝛾"𝑅"&' 𝑠$ = 𝑠, 𝝅

Discount factor (g<1) à future rewards 
have lower and lower weight 

Average over statistical 
distribution of  next states 
& rewards



How good is a (state,action) 
pair?

¨ The Q-value (or action-value) function for 
a given policy p is a measure of the utility of 
a state-action pair: 

¨ It is the expected long-term return starting 
from state s, taking action a, and thereafter 
following policy p

58

𝑄( 𝑠, 𝑎 = 𝔼 12
"#$

%

𝛾"𝑅"&' 𝑠$ = 𝑠, 𝑎$ = 𝑎, 𝝅

First action is given



Bellman Equation

¨ The V-function can be expressed in a 
recursive manner

59

𝑉𝝅 𝑠 = 𝔼 12
"#$

%

𝛾"𝑅"&' 𝑠$ = 𝑠, 𝝅

𝑉𝝅 𝑠 = 𝔼 1𝑅' + 𝛾2
)#$

%

𝛾)𝑅)&* 𝑠$ = 𝑠, 𝝅

𝑉𝝅 𝑠 =2
+

𝜋 𝑎|𝑠 2
,’,/

𝑝 𝑠’, 𝑟|𝑠, 𝑎 𝑟 + 𝛾𝑉𝝅 𝑠’



Recap (cont)

¨ An MDP is defined by the tuple: (𝑆, 𝐴, 𝑅, ℙ, 𝛾)
¤𝑆: set of possible states
¤𝐴: set of possible actions
¤𝑅: distribution of reward given (state, action) pair
¤ℙ: transition probability i.e. distribution over next 

state given (state, action) pair
¤ g: discount factor

¨ A policy is the probability distribution of 
actions given  state
¤p(a|s) = Pr[At=a|St=s]

May 23, 2017 Fei-Fei Li & Justin Johnson & Serena 
Yeung 60



Recap 

¨ Each action yields an immediate reward
¨ For a given policy p, 

¤The value Vp(s) of a state s is the aggregate 
long-term reward which will be accumulated 
from that state onwards 

¤The Q-value Qp(s,a) of a state-action pair (s,a) is 
the aggregate long-term reward from state s, 
given that the next action is a

61
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Recycling Robot (RR)

Example



Ex RR: problem statement

¨ Consider a mobile robot that collects cans for 
recycling

¨ The robot is battery-power and the battery 
can be in two states: high or low

¨ The robot can perform three different actions: 
¤Search for cans
¤Wait for someone to bring it a can
¤Recharge its battery from the dock station

64



Ex RR: problem statement(cont)
¨ The probability to collect a can in a certain time 

interval is
¤ rsearch when searching
¤ rwait < rsearch when waiting
¤ 0 when recharging or out of battery

¨ When moving, the battery level changes
¤ from high to high with probability: a
¤ from high to low with probability: 1- a
¤ from low to low with probability: b
¤ from low to empty with probability: 1-b

¨ After recharging, the battery goes back to high
65



Ex RR: MDP model
¨ State: ? 

¤ Battery level: S={high, low}
¨ Action set? 

¤ A(high) = {search, wait}
¤ A(low) = {search, wait, recharge}

¨ Rewards?
¤ R(high,search) = rsearch
¤ R(high,wait) = rwait
¤ R(low,search) = b rsearch +(1- b)(-3)
¤ R(low,wait) = rwait
¤ R(low,recharge) = 0

66



Ex RR: transition graph

67

“Reinforcement Learning: An Introduction” Second edition, in progress, Richard S. Sutton and 
Andrew G. Barto 2014, 2015
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf


Iterative Policy Evaluation

¨ Given a policy, the function V(s) can be obtained 
by solving the Bellman Ford equations, or 
through Iterative Policy Evaluation:
¤ Start from arbitrary (but reasonable) V(s)
¤ Apply recursively the Bellman equation to update the 

V(s) value for each s or (s,a) pair:

𝑉!"# 𝑠 =$
$

𝜋 𝑎|𝑠 $
%’,(

𝑃(𝑠’, 𝑟|𝑎, 𝑠) 𝑟 + 𝛾 𝑉! 𝑠’

¤ Repeat until convergence 
n More practically, when max

<∈>
|𝑉?@A 𝑠 − 𝑉? 𝑠 | < 𝜀

68
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Sensing Strategy (SS)

Example



Ex SS: problem statement

¨ A sensor node needs to report its 
measurements to a control station

¨ The sensor can work in two conditions: 
Normal (N) or Alarm (A)
¤ transitions occur as for a Gilbert model

N A

PNA

PNN
PAA

PAN



Ex SS: problem statement(cont)
¨ At each slot, the node can either Transmit a 

packet or remain Idle
¨ During “Alarm” periods, packets have high 

priority and should be delivered with max 
probability

¨ High priority transmission drains k=1 or k=2 
quanta of energy from the battery of the node, 
with probability 2/3 and 1/3, resp,
¤ If the battery charge is lower than k, the tx fails

¨ Normal packet transmission takes 1 quantum of 
energy



Ex SS: problem statement(cont)

¨ Each Idle slot recharges the battery by one 
quantum of energy
¤The battery has a maximum capacity of 4 quanta 

of energy
¨ If the battery depletes, it cannot be recharged 

and the node stops working forever



Ex SS: problem statement(cont)

¨ The sensor node knows its operational 
conditions and battery level

¨ Find the transmission policy that maximizes 
the number of transmitted packets and the 
probability that high priority

73



Ex SS: MDP model

¨ Take a few minutes to model the problem into 
an MDP framework

¨ Which elements do you need to define? 
¤System state (Markovian?)
¤Action space
¤State transition probabilities
¤Reward
¤Value function

¨ What do you need to find?
¤Policy 

74



Ex SS: try by yourself

75



Ex SS: Solution 

¨ System state: 
¤St=(operation mode, battery level) or St=0 if 

battery is empty (absorbing state)
¨ State space:

¤S={0, (N,1), (A,1),…,(N,4),(A,4)}
¨ Actions: {tx,idle}
¨ Action space in the different states 

¤St=(0) à A(St)={idle}
¤St= (*,q) à A(St)={tx,idle}

76



Ex SS: transition graph

77

0

(N,1) (N,2) (N,3) (N,4)

(A,1) (A,2) (A,3) (A,4)

idletx idletx idletx idletx

idletx idletx idletx idletx

1,0

1,1/2

1/3,1
PAN(2/3),1

PAA(2/3),1



Ex SS: policy

¨ Possible policy: 𝜋 |𝑎 𝑠
¤ 𝜋 𝑖𝑑𝑙𝑒, 0 = 1
¤ 𝜋 |𝑡𝑥 (𝐴, 4) = 1
¤ 𝜋 |𝑡𝑥 (𝐴, 3) = 1
¤ 𝜋 |𝑡𝑥 (𝐴, 2) = 1
¤ 𝜋 |𝑡𝑥 (𝐴, 1) = 0
¤ 𝜋 |𝑡𝑥 (𝑁, 4) = 1
¤ 𝜋 |𝑡𝑥 (𝑁, 3) = 0.6
¤ 𝜋 |𝑡𝑥 (𝑁, 2) = 0
¤ 𝜋 |𝑡𝑥 (𝑁, 1) = 0

78

Which action is 
particularly critical?



Ex SS: value function
¨ V(0) = 0
¨ V(N,1) = 0 + V(N,2)PNN + V(A,2) PNA
¨ V(N,2) = 0 + V(N,3)PNN + V(A,3) PNA
¨ V(N,3) = 0.6+ 0.6(V(N,2)PNN+ V(A,2)PNA) + 

0.4(V(N,4)PNN+ V(A,4)PNA)
¨ V(N,4) = 1+ V(N,3)PNN+ V(A,3)PNA
¨ V(A,1)=0 + V(N,2)PAN + V(A,2) PAA
¨ V(A,2) =1 + 2/3(V(N,1)PAN + V(A,1) PAA)+1/3V(0)
¨ V(A,3) =1 + 2/3(V(N,2)PAN + V(A,2) PAA) + 

1/3(V(N,1)PAN + V(A,1) PAA)
¨ V(A,4) =1 + 2/3(V(N,2)PAN + V(A,2) PAA) + 

1/3(V(N,3)PAN + V(A,3) PAA)

79
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Rate Adaptation (RA) 
problem

Example



Ex RA: problem statement
¨ A wireless node (TX) 

transmits packets to a 
receiver (RX)

¨ Received power Prx
depends on channel 
gain from TX to RX

¨ A random number n of 
nodes transmit in the 
background, creating 
interference power Pi

¨ The Signal-to-
Interference-Ratio (SIR) 
is given by Aggregate 

interference

TX1 Prx

RX

Noise power
(negligible)

Γ" 𝑔" =
𝑔P#$
𝐼 + 𝑁%

≈
P&$
𝐼

Interference
Pi

Pi
PiPi



Ex RA: problem statement(cont)

¨ Transmission rate 
can be chosen in a 
set C={c1,…,cm}

¨ higher c à
¤higher Γ∗ 𝑐 , i.e., SIR 

required for correct 
reception

¤ lower transmission 
time t=L/c à lower 
interference I

82

𝛤! [dB]
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Ex RA: problem statement(cont)

¨ Problem: find the transmit rate c that 
maximizes the success probability
¤w(t): # of pcks sent up to time t 
¤u(t): # of pcks received by RX up to time t   
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𝑈 = lim
&→4

𝑢 𝑡
𝑤 𝑡



Ex RA: MDP model

¨ Assume the channel gain g can be modelled 
as a Markov process with probability 
transition matrix ℙ = P0,1

¨ Consider a quantized dB-scale 
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Ex RA: MDP model (cont)

¨ The problem can be defined as an MDP
¨ For each node

¤State at time t: channel gain g
¤Action space in state g: data rates {c1,c2,…,cm}
¤Reward given by (g,c): 1 if the SINR is above the 

reception threshold for c, 0 otherwise
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Ex RA: MDP model (cont)
¨ Given a certain policy 𝜋 |𝑐 𝑔 we have
¨ Reward: 

𝑅#'( = 𝜒 Γ 𝑔 =
𝑔P#$
𝑁% + 𝐼

> Γ∗ 𝑐 = .1, 𝑖𝑓 Γ 𝑔 > Γ∗ 𝑐
0, 𝑖𝑓 Γ 𝑔 ≤ Γ∗ 𝑐

¨ Note: 
¤ the aggregate interference I depends on the number of 

transmissions that overlap with the target one
¤ This number is proportional to the packet transmission time at 

bitrate c: L/c
¤ 𝑅B is hence random, but given (g,c) the probability distribution 

P(-|g,c) is fixed (but maybe unknown)
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Ex RA: transition graph?

87



OPTIMAL POLICY

88



The optimal policy p*

¨ The optimal policy p* maximizes the average 
value function of all states

¨ An approach to find the optimal policy is to 
express the Q-values in a recursive manner
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𝜋∗ = argmax
(

𝔼, 𝑉𝝅 𝑠

Dynamic programming



Bellman Optimality Equation

¨ Given the optimal policy p* we have

¨ from which

𝑉∗ 𝑠 = 𝔼5 𝑄∗ 𝑠, 𝑎 = ;
5∈7 *

𝜋∗ 𝑎|𝑠 𝑄∗ 𝑠, 𝑎

𝑄∗ 𝑠, 𝑎 = 𝔼 𝑅& + 𝛾;
*’

ℙ 𝑠’|𝑠, 𝑎 𝑉∗ 𝑠’

= 𝔼 𝑅& + 𝛾;
*’

;
5’

𝜋 𝑎’|𝑠’ 𝑃 𝑠’|𝑠, 𝑎 𝑄∗ 𝑠’ , 𝑎’



Bellman Optimality Equation

¨ But since p* is optimal, then p*(a’|s’)=1 if and 
only if a’ is the optimal action from s’

¨ We hence have

¨ which is the Bellman optimality equation
¨ Similarly, we get
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𝑄∗ 𝑠, 𝑎 = 𝔼8∗ 𝑟 + 𝛾max5’ 𝑄
∗ 𝑠’, 𝑎’ |𝑠, 𝑎

𝑉∗ 𝑠 = max
5∈7 *

𝔼 𝑅&'( + 𝛾𝑉∗ 𝑠’ |𝑠, 𝑎



Optimal policy given Q-values

¨ If the optimal Q-values {Q*(s,a)} are known 
for each (s,a) pair, then the optimal policy p* 
corresponds to taking for each state s the 
action as that maximizes Q*(s,a):
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𝜋∗: ∀𝑠, 𝜋∗ 𝑎,|𝑠 = 1 iff 𝑎, = argmax
+
𝑄∗ 𝑠, 𝑎



Policy Improvement

¨ The optimal functions V*(s) and Q*(s,a) can 
be obtained by solving the Bellman 
Optimality equations, or through Iterative 
Policy Improvement:
¤Start from arbitrary (but reasonable) policy
¤Apply recursively the Bellman Optimality equation 

to update the V-function:
𝑉0&' 𝑠 = ∑,’,/ 𝑃(𝑠’, 𝑟|𝑎, 𝑠) 𝑟 + 𝛾 𝑉(! 𝑠’
¤Update 𝜋9 = argmax∑*’,) 𝑃(𝑠’, 𝑟|𝑎, 𝑠) 𝑟 + 𝛾 𝑉8" 𝑠’
¤Repeat until convergence 
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Policy Iteration

¨ Policy iteration: concatenate Policy 
Evaluation and Policy Improvement methods 
to progressively approach the optimal policy

𝜋$ → 𝑉$ ⇒ 𝜋' → 𝑉' ⇒ ⋯ ⇒ 𝜋∗ → 𝑉∗

¨ If max
,∈4

|𝑉)&' 𝑠 − 𝑉) 𝑠 | < 𝜀 → 𝜋) ≈ 𝜋∗

94



Policy iteration algorithm
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Let’s try with the Recycling 
Robot problem

Example RR (cont) 



Es RR: optimal policy

¨ States: h=high, l=low, 
¨ Actions: s=search, w=wait, re=recharge
¨ Bellman optimality equation

“Reinforcement Learning: An Introduction” Second edition, in progress, Richard S. Sutton and Andrew G. Barto 2014, 2015
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Let’s try with the Rate 
Adaptation (RA) problem

Example RA (cont) 



Ex RA (cont)

¨ Immediate reward: 

r~R(𝑔, 𝑐) = A1, Γ(𝑔) > Γ∗ 𝑐
0, Γ(𝑔) ≤ Γ∗ 𝑐

¨ Q-value: 
𝑄# 𝑔, 𝑐 = 𝔼 R 𝑔, 𝑐 + 𝛾 ∑$’&'"

'# ℙ |𝑔’ 𝑔, 𝑐 𝑉# 𝑔’

= Pr Γ(𝑔) > Γ∗ 𝑐 + 𝛾 𝔼 O
$’&'"

'#

ℙ |𝑔’ 𝑔, 𝑐 𝑉# 𝑔’

¨ V-function:

𝑉* 𝑔 = 𝔼+ 𝑄* 𝑔, 𝑐 = ∑+! 𝜋 𝑐,|𝑔 𝑄* 𝑔, 𝑐,
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Random because of  interference



Ex RA (cont)

¨ Note: the next state (channel gain) does not 
depend on the chosen action (bitrate) à
¤ℙ |𝑔’ 𝑔, 𝑐 = ℙ |𝑔’ 𝑔 = 𝑃P,P’

¨ In this case, the future rewards do not 
depend on the current action

¨ The Bellman equation yields
¤𝑄∗ 𝑔, 𝑐 = U𝑅 𝑔, 𝑐 +𝛾𝔼P’~ℙ Q|P max

R’
𝑄∗ 𝑔’ , 𝑐’
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Ex RA (cont)

¨ Since the right-most term does not depend 
on the current action c, we have that
¤max

R
𝑄∗ 𝑔, 𝑐 = max

R
V𝑅 𝑔, 𝑐

¨ with
O𝑅 𝑔, 𝑐 = Pr Γ(𝑔) > Γ∗ 𝑐 = Pr 𝑛 <

𝑔P"5
P6Γ∗ 𝑐

¨ where n is the number of transmissions that 
interfere with the target one
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Ex RA (cont)

¨ Assuming n is Poisson with parameter lL/c 
we get

¨ O𝑅 𝑔, 𝑐 = ∑)#$

"#$%
#&'∗ )

*+
)

,

)!
𝑒8

*+
)

¨ Plotting O𝑅 𝑔, 𝑐 vs c for different g we find the 
optimal action of each state
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Ex RA (cont)
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Ex RA b

¨ What if we want to maximize the average 
throughput? 
¤w(t): # of pcks transmitted by TX up to time t   
¤u(t): # of pcks received by RX up to time t   
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𝑈 = lim
&→4

𝑢(𝑡)
∑9S(
T & 1/𝑐(𝑡)



Ex RA b (cont)

¨ Immediate reward: 

r~R(𝑔, 𝑐) = V
𝑐, Γ(𝑔) > Γ∗ 𝑐
0, Γ(𝑔) ≤ Γ∗ 𝑐
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Ex RA b (cont)
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Piece of cake... Or not?

¨ Do you see any problem?
¨ Must compute Q(s,a) for every state-action pair

¤ If state is e.g. current game state  pixels, computationally 
infeasible to compute for entire state space!

¨ Not scalable!

¨ Furthermore, transition probabilities p(s’,r|s,a) 
must be known beforehand

109

Curse of  dimensionality!



Solution: Reinforcement 
Learning

¨ If P(s’,r|s,a) is known à Markov Decision 
Process (MDP)

¨ If it is not à Reinforcement learning (RL) 
¨ Reinforcement learning:

¤Model-based: Learn a model of P(s’,r|s,a) and 
then solve as MDP

¤Model-free: Learn directly the policy

110



Generalized Policy Iteration

¨ Solution methods for both MDP and model-
free RL

¨ Basic idea:
¤Policy Evaluation: emulate the system evolution 

for a few steps always using policy behavior 
¤Control: update control policy at each step based 

on Q values
¤Periodically, set behavior policy to control policy
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Generalized Policy Iteration

¨ Generalized Policy Iteration
¤Policy Evaluation
¤Control
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On-Policy & off-policy

¨ On-policy method
¤behavior and control policies are always the 

same 
¨ Off-policy method

¤behavior policy is used for a certain number of 
steps and only periodically replaced with current 
control policy

¤Off-policy algorithms have an advantage: they 
can take more risks during exploration, since 
mistakes will not propagate to control policy
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Policy evaluation

¨ Action-value function: backup diagram

114

“Reinforcement Learning: An Introduction” Second edition, in progress, Richard S. Sutton and 
Andrew G. Barto 2014, 2015
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf


Policy evaluation
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Credits to Osvaldo Simeone

Model based

Model free 
(sample based)



Policy evaluation
¨ Exploration in breadth generally requires the availability 

of a model
¤ For each state à compute average value by considering 

probability of next state and reward

¨ Model-free methods estimate policy and probabilities
¨ Based on 

¤ Temporal-Difference (online) à Q(st, at )≈ rt +γQ(st+1, at+1)

¨ and/or 
¤ Monte Carlo (offline) à Q(st, at )≈ rt +γrt+1 +γ2rt+2 + ...

116



Generalized Policy Iteration

¨ Generalized Policy Iteration
¤Policy Evaluation
¤Control
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Exploration vs exploitation

¨ Exploitation: make the most out of what you 
know
¤Take actions that maximize return based on 

current knowledge of Q-values and Value function
¨ Exploration: check other strategies to see 

whether you can do any better
¤Take actions that are not immediately optimal, but 

can improve estimate of the long-term returns
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Control policies

¨ There are several well-known control policies
¨ The most common are ε-greedy and softmax
¨ In both cases, there is some randomness to 

explore the state and action spaces

Softmax policy

Selects the actions based on their 
relative Q-values

𝜋9 𝑎|𝑠 =
𝑒U"(*,5)

∑5’ 𝑒U"(*,5’)



Curse of dimensionality

¨ Do you see any problem?
¨ Must compute Q(s,a) for every state-action pair

¤ If state is e.g. current game state  pixels, computationally 
infeasible to compute for entire state space!

¨ Not scalable!

¨ Furthermore, transition probabilities p(s’,r|s,a) 
must be known beforehand
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Curse of  dimensionality!



Q-Learning

¨ Q-learning: use a neural network to 
approximate the action-value function

𝑄∗(𝑠, 𝑎) ≈ 𝑄(𝑠, 𝑎, Θ)

¨ If the function approximator is a deep neural 
network à deep q-learning!
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Q-Learning

¨ The neural network should find an approximation of 
the Q-function that satisfies the Bellman equation

¨ Forwards pass
¤ Loss Function: 𝐿- 𝜃- = 𝔼.,0 (𝑦- − 𝑄 𝑠, 𝑎; 𝜃- )1

¤ With 𝑦- = 𝔼 𝑟 + 𝛾max
0’

𝑄 𝑠’, 𝑎’; 𝜃-3( |𝑠, 𝑎

¨ Backward pass
¤ Gradient update (wrt to Q-function parameters θ):
∇($𝐿) 𝜃) = 𝔼*,,,*’ 𝑟 + 𝛾max,’ 𝑄 𝑠’, 𝑎’; 𝜃)-. − 𝑄 𝑠, 𝑎; 𝜃) ∇($𝑄 𝑠, 𝑎; 𝜃)
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𝑄∗ 𝑠, 𝑎 = 𝔼*∗ 𝑟 + 𝛾max0’ 𝑄
∗ 𝑠’, 𝑎’ |𝑠, 𝑎



The exploration profile
¨ Exploration is crucial in the 

initial phases: the agent 
needs to find out as much as 
it can from the environment

¨ If the agent is too greedy in 
the first episodes, it can get 
stuck in a local maximum

¨ A pre-training phase using a 
simplified environment can 
help if the real one is 
unavailable or 
computationally heavy (or if 
good performance is needed 
from the start)
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Hierarchical Deep 
Reinforcement Learning



Main reference

¨ “Reinforcement Learning: An Introduction” 
Second edition, in progress, Richard S. 
Sutton and Andrew G. Barto 2014, 2015, 
https://web.stanford.edu/class/psych209/Rea
dings/SuttonBartoIPRLBook2ndEd.pdf
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