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Abstract— The paper considers the properties a Multi-Robot
System should exhibit to perform an assigned task cooperatively.
Our experiments regard specifically the domain of RoboCup
Middle-Size League (MSL) competitions. But the illustrated tech-
niques can be usefully applied also to other service robotics fields
like, for example, videosurveillance. Two issues are addressed in
the paper. The former refers to the problem of dynamic role
assignment in a team of robots. The latter concerns the problem
of sharing the sensory information to cooperatively track moving
objects. Both these problems have been extensively investigated
over the past years by the MSL robot teams. In our proposal,
each individual robot has been designed to become reactively
aware of the environment configuration. In addition, a dynamic
role assignment policy among teammates is activated, basedon
the knowledge about the best behavior that the team is able
to acquire through the shared sensorial information. In the
experiment section, we present the successful performanceof
Artisti Veneti robot team at the MSL Challenge competitions of
RoboCup-2003 to show the effectiveness of our proposed hybrid
architecture, as well as some tests run in laboratory to validate
the Omnidirectional Distributed Vision System which allows to
share the informations gathered by the omnidirectional cameras
of our robots.

Index Terms— Multi-Robot Systems, RoboCup Middle-Size
League Competitions, Cooperative Behaviors, DistributedSens-
ing, Distributed Vision System

I. I NTRODUCTION

A Multi-Robot System (MRS) is characterized by at-
tributes like size, composition, communication topology

and range [12], as well as agent redundancy and collective
intelligence [20]. Thus, solving cooperatively complex tasks
requires an intelligent multi-robot system to show dynamic
group reconfigurability and communication among individu-
als. This can be achieved either through anexplicit or an
implicit approach, or through a combination of both, with the
specification of whether each individual robot shares or not
a common goal [24]. In theexplicit communication, signals
are intentionally shared between two or more individuals,
while in the implicit communication, the robots observe other
robots’ actions. Contrary to what one might expect, intelligent
cooperation does not necessarily require explicit communica-
tion among robots. Indeed, we have previously implemented
collective behavior through implicit communication [32],[31]
and [33]. In this paper, instead, we show how collective actions
can be achieved through the exchange of roles that can be
forced by an appropriate communication mechanism.
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Cooperation abilities are crucial for an MRS that must
operate in a dynamic environment. In particular, we want to
force the emergence of cooperative abilities in the context
of MRS that perform advanced tasks where flexibility and
reliability are especially required. One such context is the
MSL RoboCup competition, where individual robots are often
engaged in collective actions. To improve team performance,
omnidirectional vision and role-based coordination have been
largely introduced by most teams over the years. Indeed, to
effectively coordinate the team actions, each individual in the
team must be able to manage appropriately its role and to
exchange information with its teammates.

In our approach, we have addressed together both the role
assignment problem and the distribution of sensor data. On
one hand, we investigate under what conditions an MRS is
able to perform a given task cooperatively by using a dynamic
role assignment mechanism. On the other, we discuss the
problem of developing a distributed sensoring system based
on omnidirectional vision sensors to cooperatively track and
share the information about moving objects. The combination
of these two approaches has proven very suitable in making
each individual capable of developing a cooperative behavior.

As it is well known, a coordination mechanism for an
MRS operating in a dynamic environment should provide
flexibility and adaptability, where individual robots should be
able to change dynamically their behaviors, in order to execute
different types of cooperative tasks. To this aim, robots do
not need to build a complete global state of the world. It has
been shown that a role assignment mechanism is able to allow
robots to change their role dynamically during the execution
of a task, based on the partial information that each individual
has about its own task and the operating environment [9]. In
our approach, each robot has been designed to become aware
of distinguishing configuration patterns in the environment by
evaluating descriptive conditions as macroparameters at the
reactive level. In parallel, the interaction with a deliberative
level activates the dynamic role assignment among teammates
on the basis of knowledge about the best behavior that the
team should adopt.

When the environment is static, the agent can analyze its
subcomponents, and store the acquired information in a sortof
memory [22]. But if the environment is dynamic, this approach
no longer works, because the information that can be retrieved
from the memory of the agent is no longer up-to-date. This is
one of the reasons why in dynamic environments mobile robots
are increasingly fitted with omnidirectional vision systems
[39]. These systems provide in one shot a complete view of
the surrounding of a single robot. Nevertheless, in a highly
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Fig. 1. Picture taken during experiments to test the Omnidirectional
Distributed Vision System.

dynamic environment such as the RoboCup soccer fields,
this is not enough. Since the evaluation process, can require
gathering a large amount of sensor data, the omnidirectional
vision by itself cannot be sufficient. Given its low resolution,
it does not solve the problem of perceiving occluded or very
distant objects1. However, since each individual is part of a
robot team, the sensorial horizon of the single robot can be
extended by using the information perceived by the teammates.
The separately gathered information can be broadcast to allthe
teammates allowing every robot to fuse its own measurements
with the information received from the others, thus construct-
ing its own ”vision of the world”.

If the robot is part of a multi-robot team, the sensorial
horizon of the single robot can be extended by using the
information perceived by the teammates. In [26] we proposed
anOmnidirectional Distributed Vision System(ODVS) capable
of tracking moving objects in a highly dynamic environment
by sharing the information gathered by every single robot.

Even though the ODVS was developed for the RoboCup
domain, it could be used in more general situations, such as
surveillance systems or intelligent space applications. Every
time the application requires the monitoring of a large area
that cannot be framed in the field of view of a single sensor,
the cooperation of different sensors becomes extremely useful.
Some examples are found in [19] where a Distributed Vision
System composed of perspective cameras is able to drive a
robot through a toy-scale model of a town, in [29] where
multiple perspective cameras can track people moving from
one room to another, and in [21] in which the Distributed
Vision System is able to support the activity of robots and
humans.

As such, the sharing mechanism among the vision sensors,
in combination with a continuous role exchange, enhances
the capabilities of the robot team. This approach is very
general and can be used also in other applications where a
team of robots has to perform complex dynamic tasks in any
environment with multiple moving objects.

Paper sections are organized as described in the following.
Section II recalls the fundamentals of behavior-based architec-

1Note that usually, the effective range for omnidirectionalsensors is shorter
than for perspective cameras due to the lower resolution.

tures to be adopted for each single robot of a team in order to
clarify how to build compound behaviors from primitive ones.
Section III illustrates the basic technique for using a multipart
omnidirectional mirror in a perception module for Gaussian
single-sensor observations. Section IV gives the details of the
hybrid architecture implemented on each team robot, to allow
it to develop the desired complex behaviors, and to coordinate
its action with its teammates. Sections V explains how multiple
observations are fused among the robot of the same team,
in order to enhance their capability in achieving coordinated
actions. Section VI documents a set of experiments that have
been carried on a RoboCup Middle-size League game field to
validate our approach. Finally, the conclusions are presented
in Section VII

II. U SING A BEHAVIOR-BASED APPROACH

I N this section, first we discuss how to build primitive
behaviors to obtain sensorimotor coordination for a single

robot. Then, in section IV, we show how compound behaviors
can be constructed only by processing the information from
the environment and from the other team robots in a suitable
way.

A. Implementing Schemas

The behavior-based approach [6] assumes a robot to be
situated within its environment. Moreover, since robots are
not merely information processing systems, theirembodiments
require that both all acquired information and all delivered
effector commands must be transmitted through their physical
structure. Different research areas like biology, ethology and
psychology, have contributed to the design of robot control.
Among them,schema-based theories have been adapted by
Arbib [1] to build the basic blocks of robot behaviors. In
this perspective, aschemais a generic template for doing
some activity which is parameterized and created like a class
(schema instantiation).

Schema-based methodologies are widely used in robotics.
So, motor schemas, as they were proposed and developed by
Arkin [3], are thebasic units of behavior from which complex
actions can be constructed; they consist of the knowledge of
how to act or perceive as well as the computational process
by which they are enacted[4]. His schemas are always active
and produce outputs as action vectors which are summed
up. Our implementation assumes only one schema to be
active at a time, in a winner-take-all fashion. Moreover, the
output is not a continuous signal but either a motor command
to feed some servo or an evaluated condition affecting the
activation/inhibition mechanism for another schema.

Following [2], we implemented a primitivebehaviorwith
one motor schema, representing the physical activity, and
oneperceptual schemawhich includes sensing. The resulting
governor’s unit of each individual robot is a hybrid archi-
tecture whose deliberative/reactive trade-off stems fromthe
hierarchical organization of its behaviors. In this perspective,
each behavior is implemented at some level and it can use
perceptual schemas coming from the underlying level, even-
tually triggering one selected behavior at that level. Thus, the
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Fig. 2. The hierarchical levels of control for each individual robot, that
represent the different levels of abstraction.

overall architecture is organized at many levels of abstraction,
the lowest one being directly coupled with the environment
by the robot servos. Each level is populated by a set of
control units, which are schema-basedbehaviors receiving
sensor information by monitoring the lower level and acting
on somereleaser. We can build a behavior at level k+1 using
perceptual information coming from the underlying level k and
controlling one of these behaviors.

More explicitly, consider two basic behaviors likede-
fendAreaor carryBall. They can be implemented in C++ as
motor schemas accessing directly robot effectors. On top of
these, we can build two primitive behaviors likeplayDefensive
and chaseBallby simply appending a perceptual schema to
a motor schema, as explained by the following behavior
constructing rules:

playDefensive : seeBall → defendArea

chaseBall : haveBall → carryBall

The perceptual schemasseeBall and haveBall, also imple-
mented in C++, allow to access virtual sensor devices like
senseBalland touchBallwhich are fed by robot physical sen-
sors. A behavior is fired by an activation-inhibition mechanism
built on evaluating-condition patterns. Thus, a primitivebehav-
ior at reactive level results in appending just one perceptual
schema to one motor schema in order to get the sensorimotor
coordination that the individual robot is equipped with. The
reactive level uses only information coming from sensors
and feeds motors with the appropriate commands. Compound
behaviors appear only at higher levels, where they receive
more abstract information about the environment, filtered by
lower behavior functioning.

As suggested by Fig. 2, the control structure of each
robot has been organized into different layers, each of which
represents a different level of abstraction such that an upper
level results in a more abstract handling of the environment.
So, the implicit coordination layer assumes that perceptual
patterns represent events generated by other individuals,ei-
ther opponents or teammates. Moreover, the corresponding
schemas can control the underlying reactive behaviors but,
at the same time, they are also triggered by the individual
goals every robot should pursue. The higher layers refer to
the cooperation capabilities that any robot could exhibit with
its teammate while a cooperative behavior emerges. This is
described in Section IV.

Fig. 3. An omnidirectional image processed by the Vision Agent of the
perception module. Note that the ball has been detected as the red blob and
marked with a yellow cross. The goals have been detected and marked with
red crosses. The black dots are the sample grid used to process the image in
a discrete fashion.

Fig. 4. Profile plot of the omnidirectional mirror used to grab the picture of
Fig. 3. Note that the profile is generated point by point to achieve the desired
resolution in the different parts of the image.

III. S INGLE SENSOROBSERVATION

Every robot of the team is fitted with a catadioptric omni-
directional vision system [18]. Every omnidirectional sensor
mounts a mirror with a different profile, especially tailored
for the task of the robot [25], Fig. 4. The assumptions are:
the omnidirectional vision sensor is calibrated and the objects
are assumed to lie on the floor. In Fig. 5, we sketched
the Perception Moduleimplemented inside our robots. The
omnidirectional image is the input, on the left, of the image
processing module, calledVA Module(Vision Agent Module).
The result of the image processing is sent to the so-called
Scene Module, where all measurements are transformed in the
common frame of reference of the field of play using the inputs
of the encoders and of the localization module. The measures
in the common frame of reference are sent to the other robots
and to theDistributed Vision Module(DV), where they are
fused with the measures received by the teammates.
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Fig. 5. Inside thePerception Moduleof each robot an input image is
processed by the Vision Agent (VA) and the result is passed tothe Scene
Module. Then, the measures are sent to the other robots and to the DV

A description of the scene in the frame of reference of the
field of play (i.e., the positions and speeds of the objects of
interest) is reconstructed here using the data coming from the
encoders and by the localization system. The measurements on
the positions and velocities of the objects are then passed to the
DV and broadcast to the other robots. Fig. 3 shows an example
of the result of the image processing on one omnidirectional
image taken in the RoboCup field of play. The strong distortion
of the image is due to the custom profile of the mirror shown
in Fig. 4. This is a three parts mirror, where the convex outer
section is looking close to the body of the robot with a high
resolution. This part produces the outer ring in the image (the
one containing the single ring of dots and the field lines at high
resolution in Fig. 3). The inner part presents a discontinuity
in the vertex, so the self-reflection of the robot body does not
appear in the picture. The blue goal (on the top of the image),
the yellow goal (on the bottom) and the ball (in the middle-
right) have been detected. The detection of other robots has
not been enabled to not confuse the image.

A two dimensional Gaussian probability distribution is
associated to every measurement. The centroid of the Gaussian
is located at the estimated object position. The widths of
the Gaussian along the principal axes (σr, σθ) correspond
to the uncertainty of the observation along those axes. Every
measure is made in the reference frame of the robot and is
then transformed into the reference frame of the field of play
by the DV. This assumes that the robot knows perfectly its
pose in the environment while it moves in the field of play.
This is done using the self-localisation algorithm developed
by our RoboCup team [28]. Due to the robustness of the self-
localization algorithm, the assumption of an error-free local-
ization is acceptable, even when the robots move in the playing
field. The remaining localization error is taken into account by
overestimating the error associated to the single measurements.
We determined experimentally with 1000 measurements the
width of the Gaussian along the two major axes, i.e. along the
radial direction robot-object (σr) and along the line orthogonal

Fig. 6. The plot of the variances associated to distance measurements.
The axis of abscissas represents the measured distance of anobject from the
robot (in mm). The ordinate represents the variance associated to the distance
measure (in mm).

to this direction (σθ). The plot representing the measured
varianceσr for Robot 1 is displayed in Fig. 6. The data of
the variance was interpolated with the curve of Eq. 1 and we
obtained a function that associates to every measurement the
correct variance along the radial axis2. As can be seen from the
plot, the error increases more than linearly with the distance
from the robot. This is because, with the mirror profile used
in this experiment, the image resolution decreases with the
distance from the robot. This procedure was repeated for each
robot, since they mount heterogeneous vision systems and thus
provide measurements with different accuracies.

y(x) = kxa + q (1)

Only the plot of the data about the distance object-robot
is displayed, since the variance on the azimuth resulted to
be so small that one could assume a zero error on azimuth.
The zero value is not a valid one, though, as it would result
in a degenerated Gaussian distribution. We therefore assumed
a certain non-zero variance, increasing with the distance from
the robot. This will also take into account the errors introduced
by a non-perfect localization of the robot.

It should be noted that the objects observed by the robots
are moving, not static. Assumptions about the time interval
between two measurements cannot be made; in fact, we
are working with robots with very different computational
power, with vision systems working at different frame rates
(from 10 fps to 25 fps). Even within the same robot, one
cannot make any time assumptions regarding the timing of the
measurements, as these are not guaranteed to be delivered at
regular intervals. In fact, to fully exploit the low computational
resources of our robots, we use a thread-scheduling system
which allows a certain flexibility to the execution time of
the threads, so measurements are made available at different
time intervals (the typical value of variations in the image
processing time in our robots is about±20ms). It is therefore

2For Robot 1 the constants of Eq. 1 arek = 0.0000009, a = 2.52,
q = 90mm.
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Fig. 7. The functional architecture of the governing unit for each single
member of the Artisti Veneti robot team.

necessary to associate a precise timestamp to each and every
measurement. The timestamp is that of the omnidirectional
image that is processed to extract the measurements. As we
will explain in the following, the measurements made of the
position and speed of one particular object are not considered
independent and are fused in a track that is used to increase
the robustness of the observations.

IV. BUILDING A HYBRID ARCHITECTURE FOR

COORDINATION

A S previously stated, a schema is the building block of our
architecture where perceptual components are organized

into a hierarchy of abstraction levels. They feed motor schemas
acting as either a control mechanism or a delivery device
towards robot effectors, namely, thewheel-driving motors
and thekicker. At the reactive level (see Fig. 2) schemas
are true behaviors whereas at higher levels they work as
triggering mechanisms to modulate the whole behavior of each
individual. The actual implementation rearranges perceptual
schemas in a network of and-or nodes, generated at start-up
by executing appropriate scripts describing that hierarchy, and
can be easily changed.

A. Integrating Deliberation

A pure reactive level would fail to provide a robot team
with the required cooperation capabilities because of the lack
of some sort of mechanism which allows the behavior of each
individual robot to take into account the behavior of other
robots. Generally, individual robot behaviors are triggered by
coordination in such a way that someactions that are a
part of an agent’s own goal-achieving behavior repertoire,but
have effects in the world, help other agents to achieve their
goals [24]. Even a coordinated behavior among a group of
robots based only on somestigmergic3 property, could fail to
exhibit collective behaviors, because stigmergy in itselfdoes
not guarantee cooperation.

The problem could thus be stated as follows:how much
deliberation should be implemented between agents to ensure
the emergence of cooperative behavior? The solution to the

3This term, commonly used in biological literature, refers to the animal
capabilities to coordinate without explicit communication.

more general problem of making a collective behavior emerge
from the individual behaviors of a group of robots depends on
two different conditions that must be true at the same time.
The first concerns the ability of any robot to recognize the
circumstances under which it can be engaged in a collective
behavior. The second requires that those circumstances be-
come effective, to allow the group of robots to cooperate;
the question of how to trigger, at the abstract level, the
overall performance of the group while trying to exhibit
a collective behavior has been previously elucidated [15].
Integrating deliberation within a behavior-based architecture
is a current topic of research actively debated [16] because
the reactive/deliberativetrade-off depends on how many rep-
resentational issues are implemented and how much reasoning
process is made available to the system.

Since any deliberative process slows down thedecide-sense-
adapt behavior cycle, different priorities should be assigned to
the different layers shown in Fig. 2. In the hybrid multi-level
architecture that we have devised for our robot team (see Fig.
7), two intermediate levels have been provided to allow robot
individuals to communicate. The lower implements stigmergy,
whereas the higher deals with the dynamic role exchange,
needed if we want an effective control on cooperation to be
triggered by internal and external firing conditions.

B. Implementing Coordination

As previously stated, coordination has been implemented
at two stages: the lower, dealing with the reactive level,
provides the necessary conditions to be verified to start an
activation cycle of cooperation. Such conditions are evaluated
by acquiring information from the environment and testing for
specified patterns. If we are looking for a better performance
inside the group then role assignment is needed in what it can
trigger the emergence of the required collective behavior.

Hence, though the general problem of coordinating a group
of robots could be stated as anoptimization problem, the
solution can be searched heuristically simply adding some
behavioral rules with the aim to force the activation of
complementary behaviorswithin different teammates. Such a
solution cannot be considered optimal, but the experimental
evidence shows how this approach can address the problem.
We have, therefore, added a higher layer, devoted to examine
and schedule the behaviors which are the best candidates for
cooperation. It uses a general but simple protocol to allow
robots to assign proper roles, as explained below.

When an individual robot succeeds in recognizing a distin-
guishing configuration pattern in the environment, it triesto
become amasterof a collective action indexed by that pattern.
This can occur because at reactive level some stigmergic
condition forces the estimation of a givenutility function to
evaluate over a fixed threshold. Of course, different individual
robots could evaluate positively the same stigmergic condition.
Therefore, we have introduced a simple but effective method
to acquire a master role on the basis of thetemporal ordering
by which individuals try to notify the other teammates also
wishing to become master. In the case two robots try to
simultaneously advocate a master role, and the utility functions
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computed by both robots give the same value, then a random
selection is done to choose which one must be the master.

Roles are played at different levels; let us call themcanbe,
assume, acquireandadvocatewhere the first three refer to a
supporterand the last one is committed to the master.

As an example, we will discuss the coordination task
between two robots which try to carry the ball towards the
opponent goal, passing and eventually defending it from op-
ponents’ attacks. A number of conditions must be continuously
tested if we want such a cooperative task to become effective.
Because the two robots are required to play well-specified
roles, we assign themaster role to the robot chasing the
ball, whereas the other can be considered thesupporter. We
can then build a couple of complex behaviors for the master
robot and for the supporter robot. Thanks to theclampmaster
behavior, one robot is able to acquire and then to advocate
a master role, showing a dominant role in the clamp action
by chasing the ball. The other robot instead is committed
to acquire a supporting role in the clamp action while it is
approaching the ball.

behavior clampmaster

haveBall(me)&¬haveBall(mate)

→ acquire(Master);
acquire(Master)&Notify(Master)

→ advocate(Master);
behavior clampsupporter

¬acquire(Master)&canBe(Supporter)

→ assume(Supporter);
assume(Supporter)&Notify(Supporter)

→ acquire(Supporter);

Since the role assignment depends onball possess, we can use
the conditionhaveBall to discriminate among robots which
one is really carrying the ball. It can be understood as a
macroparameter, in the style of our previous work [32],
describing the characteristic of the environment, which can
be evaluated by different robots. Moreover, it resynchronizes
the activation of a new cooperation pattern.

Clampmasterand Clampsupporterare complementary be-
haviors that must be arbitrated. The basic rule is that amaster
role must beadvocatedwhereas thesupporterrole should be
acquired. To this aim, we require two reciprocity rules where
a role is switched either fromacquire to advocateor from
assumeto acquireprovided that anotification is made to the
referred teammate. Such rules imply a direct communication
between teammates to assign the role on thefirst notified/first
advocatedbasis. In this way, the robot carrying the ball
advocates the master role for itself and commits the teammate
to acquire the supporter role. By doing so, the former robot
issues a behavior ofchaseBallwhereas the latter exhibits a
behavior ofapproachBall.

C. RoboCup MSL teams cooordination policies

Starting from Stone and Veloso’s pioneering work [36],
since the beginning of RoboCup many teams have imple-
mented some kind of role-based coordination. The first at-
tempts were made on astatic basis, where each robot takes a

fixed role within the team, but if we consider theintegrating
robot societies [35], characterized by a small number of
heterogeneous and specialized members, it becomes impor-
tant for each individual to develop the ability of modifying
dynamically its behavior while performing an assigned task.
Thus, adynamic role assignmentcapability has become a key
issue.

It can be stated as follow.Given n robots, n prioritized
single-robot roles, and some estimation of how well each
robot is expected to play each role, assign robots to roles in
order to maximize the overall expected performance[15]. Role
allocation in an MRS is a dynamic decision problem, changing
over the time, according to the environmental changes. Gerkey
and Mataric [15] showed that the role allocation problem in the
RoboCup domain is similar to the task allocation problem for
MRS that cooperatively achieve a goal, where a time-extended
role concept replaces that of a transient task. They developed
a formal discussion on role allocation issue in RoboCup, by
showing that many allocation mechanisms are algorithmically
equivalent to instances of the canonical greedy algorithm for
the Optimal Assignment problem. Thus the dynamic role
assignment problem is the natural evolution of an iterated
assignment problem in the domain of multi-robot systems.
However, MSL RoboCup teams used hand-coded methods,
where the current allocation is re-evaluated periodicallya few
times per second.

ART Team [30], the ancestor of Artisti Veneti Team [34],
ordered the roles in a descending priority, and then assigned
each role to the available robot with the highestutility function
[17]. Utility is a scalar quantity that estimates the cost of
executing an action. Its value is a weighted sum of factors such
as the distance from target or from the ball, defense-offense
configurations, etc. It should be noted that such computations
are always affected by sensor noise, general uncertainties,
and environmental changes. A slightly different solution was
adopted by CS Friburg Team [38] which used a distributed role
allocation mechanism where two robots may exchange roles
only if both agree, thus increasing their own utility values.
Isocrob team follows a popular policy of distributing the
sensor information among robots. In the ICRA2004 [23] Video
Proceedings, its coordination policy is illustrated. Eachrobot
team member achieves a local estimate of the environment
and shares its evaluation through sensor fusion for distributing
dynamically the suitable roles among the robots. Our Team,
Artisti Veneti [34], at the IAS-Lab of the University of Padua,
has developed its own control architecture starting from a
behavior-based hand-coded software. At beginning, the choice
of the appropriate role was obtained by considering collision
avoidance issues and competitive behaviors [33]. Then, we
have introduced a hybrid architecture [10], [34], where the
deliberative component interacts with the reactive one and
viceversa, as it has been described in the previous subsections,

Other teams used different concepts like the social benefit
[14], or scheduling policies based on Petri Nets [40]. Eigen
Team of Keio University, a RoboCup-MSL World-Champion
on 2002, 2004 and 2005, achieves a cooperative ability through
a continuous exchange of information among the team mem-
bers. The evaluation of task achievement by the team is done



7

by each individual robot with regards to an individual-social
satisfaction, that compares the evaluation of the achievement
of its own particular sub-task with the evaluation of the
achievement of the whole task done by all the other team
members[13]. CoPs Stuttgart uses a special and simplified
form of an Interaction Net to evolve team strategies and agent
behavior fast and efficiently[40]. The robots are able to achieve
a high degree of autonomy in deciding which strategy to use.
They succeeded in showing a pass-play performance.

V. FUSING MULTIPLE OBSERVATIONS

The measures of the position and speed of the tracked
objects can come from two sources: the repeated observations
of the single robot or the observations of the teammates. The
work illustrated in [37], authors do not take into account
the dynamics of the objects to be tracked and assume that
the objects are instantaneously steady. They use a minimal
variance estimation approach to fuse the measurements of the
different robots assuming the measurements are made at the
same instant. In the real world, measurements of different
robots are never made at the same time and because the objects
are moving, every robot will measure the object when it is in
a different position. They solved the problem by discarding
measurements too distant in time to be compatible.

On the contrary, the solution we adopted is similar to the
one proposed in [11], with a significant difference: whereas
they used the externalGlobal Sensor Integratorto fuse the
information, in our implementation every robot fuses all the
received measurements. Every time a new measurement is
received, independently of whether it comes from itself or
from another robot, it is compared with the existing tracks
of the objects. If it is compatible with an existing track, the
measurement is added, otherwise a new track is initialized.

This is done with a classical Kalman filter for every track
[5], [7], [8]. Every incoming measurement can reduce the
variance of the Gaussian distribution, reducing the uncertainty
on the position of the object, as detailed in [37]. This approach
also allows the storage of multiple tracks for a single object;
i.e., the creation of multi-modal distributions for every object.
The real position of the object is decided to be the one with
smallest variance, i.e., the one with smaller uncertainty.This
solves also the problem of dealing with multiple instances of
the same object. For instance, if for some reasons two balls
are on the field of play, every robot will instantiate two tracks
for the ball and will consider as the’real’ ball, the one with
the smallest variance (probably the ball closer to it).

In the classical Kalman filtering approach, it is implicit that
measurements arrive one after the other. In the next section
we will see how we modified this classical approach to take
into account the fact that measurements come from different
robots and that we want to be able to accept measurements
older than the last one (usually, only newer measurements are
taken in account).

A. Fusing Observations from Different Robots

Our system is designed to be totally independent from the
number of robots active on the field. Every robot uses all the

Fig. 8. A conceptual sketch of the fusion of measurements coming from
different robots in the Distributed Vision module (DV) of Robot 1. Note that
Robot 1 is measuring the object’s position only 4 times, while the object’s
position is updated 11 times in this time interval.

measurements available, independently from the number of
teammates. This is done to make the system robust to failures
of single robots.

Fig. 8 depicts a conceptual sketch of the process of fusing
measurements coming from different robots. Every time that
the DV of Robot 1 receives a new measure from Robot 2
or Robot 3, it fuses this measure with its own measures. In
Fig. 8, Robot 1 is measuring the position of the ball only 4
times, but the ball position estimate is updated 11 times in
its DV. This means that the robot has a more reliable world
model. However, there are several problems to solve when
fusing measurements from different robots.

The first problem is that, in order to combine the differ-
ent observations, all the robots must share the same spatio-
temporal frame of reference. It is not enough to be able to refer
all the measurements made in the spatial frame of reference
of a single robot to the common spatial frame of reference
of the field. The robots need also to be able to refer the time
stamp associated to every measurement to a common temporal
frame of reference. In other words, the internal clock of the
robots needs to be precisely synchronized in order to know
the time relation between the different measurements. The
problem of the synchronization of the internal clocks of the
single robots was solved using the well-known Network Time
Protocol, developed by the Network Time Protocol Project4.
Any robot can act as a server for synchronizing the clocks of
the others.

A second problem is that when an agent is cooperating with
other agents, it needs to trust the other agents. The amount of
confidence in the measurements of the others influences the
amount of cooperation. We made every robot more confident
on its own measurements than on measurements received
from the teammates. This is done by doubling the variances
associated to the measures received from the teammates.
This implies also that the single robot measurements are
less affected by errors introduced by the teammates, due

4URL: http://www.eecis.udel.edu/∼ntp
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Fig. 9. A conceptual time diagram showing the process of fusion of measures
older than the last one received. For our robots the image processing time is
40 ms for Robot 1 and 70 ms for Robot 2.

either to non-precise localization or to measurement errors,
like for example in the case the errors in the perception of
the ball position and the different weight of the information
communicated by team-mates could make robots to have rather
different positions of the ball. Thus, the robots can show a
certain degree of cooordination even in absence of perfect
localization and coherent ”map merging”.

A third problem emerging when working with heteroge-
neous vision systems running at different speeds is that the
measurements arrive at different instants in time. When a
robot receives, from another robot, a measurement that is
older than its own measurements, it cannot simply discard that
measurement. Often this measurement can be carrying useful
information even if it is old. As a practical example, consider
the situation of a robot that is close to the object, but has a
very slow vision system. Given its proximity to the object,
this robot will report very accurate measurements which can
improve the estimate generated by a robot with a faster, but
less precise, vision system.

The solution we adopted is conceptually outlined in Fig. 9.
Robot 1 makes two measurements at instantstA andtB ; these
measurements are available at instantst1 andt2, respectively.
The boxes in Fig. 9 represent the image processing time
required by the robot, in our case approximately 40 ms for
Robot 1 and approximately 70 ms for Robot 2). At timet2,
the state of the system is estimated by the DV of Robot 1,
using the measurements made attA and tB. At time t3 the
DV of Robot 1 receives a measure from Robot 2 referring
to an instanttC which precedestB. In order to take into
account this new measurement, the DV retrieves the state of
the system at instanttA, reorders the available measurements
and regenerates the system state fromtA fusing all the received
measures in the correct time sequence. The maximum amount
of delay allowed for a measure to trigger a reappraisal of the
state of the object is 250 ms. Measures older than 250 ms
are considered too old to carry useful information and would
imply to reconsider too much past measures.

B. Related Approaches

The idea for information-sharing in the sensing process
comes from previous work on cooperative sensing, mainly,

Stroupe et al. [37] (using perspective cameras) and Gutmann
et al. [11] (using perspective cameras and laser range finders).

Besides using omnidirectional vision systems, the major
extensions of our proposal, as compared to [37], is the modi-
fication of their approach so as to integrate observations made
at different instants in time, while also taking into account the
speed of the objects being tracked. Compared with [11], the
main difference is their use of an external computer running
a so-calledGlobal Sensor Integrator(GSI). This GSI receives
the observations made by the different robots, integrates them
by elaborating a merged vision of the world, and sends it
back to every single robot. Every single robot then uses the
information received by the GSI only to locate objects out of
its field of view. In our system, on the contrary, every robot
fuses the information coming from the teammates without
the need of an external computer. At the same time, these
measures are used to improve the ones made by the robot
itself. However, we believe that a robot should not fully trust
the information coming from teammates, since they may be
in a misleading situation. So, in the previous SubSection we
proposed a way to appropriately weigh the incoming measures.

VI. EXPERIMENTAL RESULTS

A S we have previously discussed, implicit communication
is a necessary and sufficient tool for activating and

tailoring cooperative behaviors. The problem is how many
times the interaction patterns are needed to be detected by
different robots to initiate a cooperation task. In the case
of simulated soccer games, we have shown [33] that a con-
tinuous evaluation of environmental patterns could trigger a
ball exchange between teammates. The number of successful
cooperation can be kept high by increasing the circumstances
of positive activation by a kind ofBrownian motionamong
teamates. The situation becomes more difficult in the case of
MSL real robot competitions, where the evolving dynamics
of teammates cannot provide such a satisfactory number of
active interactions. Dynamic role assignment thus becomesa
very important feature to be implemented into a team.

The approach described in section IV was success-
fully tested during the MSL Challenge Competition of
RoboCup2003 held in Padua. One of these challenges required
that a team of two robots would be able to show a cooperative
behavior by exchanging the ball between them before scoring
it into a goal that is not defended by an adversary goalkeeping.
Thanks to the described approach, our robot team succeeded
to show a successful performace.

As shown in Fig. 105, we developed a cooperative behavior
of two companion robots, involved in a cooperative task, which
results in carrying the ball towards the opponent goal to score
after having exchanged the ball between themm. As a matter
of fact, the robots exchange the ball by swapping the role.

Fig. 10 shows two different robots,A and B. The first
is chasing the ball, while its companion is approaching to
protect it. TheapproachBallbehavior shown by the latter is
a consequence of the exchange of a low number of short
messages and which result in the assignment of themaster

5The full video is available at http://www.dei.unipd.it/∼robocup/video/tenaglia.avi



9

Fig. 10. Two attacking robots of the Artisti Veneti team showtheir ability in exchanging the ball during a clamp action atthe MSL Challenge of RoboCup-2003
International Competition held in Padua, on July 2003.

role to A and thesupporterrole to B; this is indicated by the
labelsCM and CS in the figure. The two robots are moving
in a strictly coordinate manner. The roles can be swapped,
depending on the actual environmental conditions.

As the two robots approach the goal line, they swap the
roles, and in such a way they exchange the ball because they
have evaluated which one can score more easily. In the figure,
the role labels are swapped to indicate how the roles have
actually been exchanged between the two robots. The resulting
emergentexchangeBallbehavior emphasizes the aptitude of
soccer robots to activate a cooperative cycle of actions.

Regarding implementation, all schemas are executed as
threads in ADE, a runtime environment especially designed
for real-time systems over a Unix/Linux kernel [34]. Also the
arbitration module is executed as a thread; more precisely,
three different threads have been committed to select a behav-
ior for its execution.

Looking at Fig. 7, it can be easily understood how the
governing unit operates to control robot behaviors. First of all,
sensor information, coming from different sources, is piped
towards thesensor driverswhich work as input controllers.
They provide all perceptual schemas with the required sens-

Fig. 11. A screenshot of the Omnidirectional Distributed Vision System
visualization software with two robots steady and the ball moving. The red
circle are the subsequent positions of the ball measured by Robot 1. The black
circles are the positions of the ball measured by Robot 2. Theblue crosses
are the ball positions reconstructed by the Distribute Vision Module of Robot
2.
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Fig. 12. In this experiment, Robot 2 cannot see the ball. Nevertheless, it is
able to locate it by using the measures received from Robot 1 (the red circles)
processed by its Distributed Vision Module (the blue crosses).

ing, also feeding the C-implemented motor schemas which
demand immediate sensor data for triggering. The modules
labelled pilot, Edge and Team, implemented as threads, are
committed to select the most suitable motor schema to gain
exclusive control of the robot. The threadpilot evaluates all
the possible activating conditions. TheEdge module affects
robot behaviors from the external environment by adapting
their execution to the constraints which stem from soccer play
rules like for example avoiding, as far as possible, violating
situations. Finally, theTeammodule provides the necessary
coordination that a single teammate must exhibit to enable
a collective behavior, like for examplepassing the ball, to
emerge from the robot team.

Regarding the Omnidirectional Distributed Vision System,
we used it during the RoboCup 2004 competitions in Lis-
bon (Portugal). In order to have controlled and repeatable
test situations, we performed a series of experiments in our
laboratory, reproducing partial real game situations. In the first
experiment, depicted in Fig. 11, two robots are stationary at
the center of the field (see Fig. 1) and the ball passes between
them. Each robot measures the ball position and speed, sends
these measurements to the other, and fuses its own measures
with those received from the teammate. In Fig. 11, the red
and black squares represent the measurements made by Robot
1 and Robot 2, respectively; the blue crosses represent the
position of the ball, as calculated by Robot 2 while also taking
into account the measurements received from Robot 1. Note
that the frequencies of measurements made by the two robots
are different: Robot 1 is measuring at 16.5 fps (frames per
second), and Robot 2 is measuring at 25 fps.

In the second experiment, depicted in Fig. 12, one robot
(Robot 2) cannot see the ball (because the color threshold
of its vision system for ball recognition was expressly set to
wrong values; the other color thresholds are set correctly,so
the robot is able to self-localize). A second robot (Robot 1)can
see the ball and sends its measurements to Robot 2 (depicted
by red squares). Robot 2 is thus able to correctly estimate
the position of the ball (depicted by blue crosses) using the
measurements received from Robot 1.

The third experiment, depicted in Fig. 13, tests the robust-
ness of the proposedball kidnappingsystem, described in
Section 3. In this experiment, the two robots are at the two
sides of the playing field (approximately 6m apart) and the
ball is kidnappedfrom the position on the left, where it was
stationary, to a position on the right where it starts to move.
Note that the DV considers the new ball position only after
receiving 4 measurements; i.e., the blue crosses appear on the
right-side only after 4 measurements. This is the time interval
needed by the variance of the old track to grow larger than
the variance associated to the new track.

VII. C ONCLUSIONS

I N this paper we have tried to understand how to enhance
the cooperative capability of a robot team playing in the

RoboCup MSL competitions. Our current work is a direct
evolution of our past experience in designing behavior arbi-
tration which triggers and is triggered by purelystigmergic
mechanisms, namely, implicit communication [32], [33].

Considering the inherent difficulty of forcing coordination
during fast and dynamic games, we tried to achieve a cooper-
ative task using a dynamical role assignment, switching from
an implicit team assessment, to an explicitfirst notified/first
advocatedarbitration. Our approach has been tested during
the RoboCup2003 MSL Challenge competition, where our
robot team, Artisti Veneti, showed an excellent coordination
capability for exchanging the ball. This is documented by a
movie, available on our Web site, which was judged as the
best recorded cooperative action by the selection committee
of the RoboCup-2004 MSL qualification procedure.

In the same frame, we have illustrated the implementation
of an Omnidirectional Distributed Vision System used to
share the information needed for planning the cooperation.To
deal with the multiple problems arising when a multi-robot
team works in a real environment, we introduced a series
of new concepts. All the robots are capable of relating all
the measurements to a common spatial frame of reference.
In addition, the observations of all the team members are
synchronized using the Network Time Protocol. The robot
team is also able to take into account the heterogeneity of
its different constituent robots. The state of the system can be
recalculated using old measurements (i.e., older than the last
one in the track), fusing data from different robots, and taking
advantage of the redundancy of observations and observers.

The experiments carried out in our laboratory validate the
approach and suggest its possible applications in other robotics
domains. Although in this paper we showed how to fuse data
from omnidirectional vision sensors only, our approach is very
general and can be applied to fuse measurements coming from
different sensors, such as perspective cameras, laser range
finders, or other kind of sensors, as long as theses ones provide
data that can be represented as Gaussian distributions. In
[27] we fused both video and audio sensor data to improve
the detection of intruders. Thus, our approach, originally
developed within the RoboCup field, can be effectively applied
to service robotics applications, such as surveillance.
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Fig. 13. In this experiment the ball is kidnapped from the position on the
left, where it was stationary, to a position on the right, where it starts to move.
The tracks on the right are blown-up in the dashed box.
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