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Abstract— The paper considers the properties a Multi-Robot Cooperation abilities are crucial for an MRS that must
System should exhibit to perform an assigned task cooperatly. —operate in a dynamic environment. In particular, we want to
Our experiments regard specifically the domain of RoboCup qrce the emergence of cooperative abilities in the context

Middle-Size League (MSL) competitions. But the illustratel tech- L
niques can be usefully applied also to other service roboticfields of MRS that perform advanced tasks where flexibility and

like, for example, videosurveillance. Two issues are addssed in '€liability are especially required. One such context ie th
the paper. The former refers to the problem of dynamic role MSL RoboCup competition, where individual robots are often
assignment in a team of robots. The latter concerns the proem  engaged in collective actions. To improve team performance
of sharing the sensory information to cooperatively track moving - mpjdirectional vision and role-based coordination hagerb
objects. Both these problems have been extensively invegited | v introd db . h Indeed. t
over the past years by the MSL robot teams. In our proposal, 'arg9€ly InNtroduced by most teams over n€ years. Inaeed, (o
each individual robot has been designed to become reactiyel €ffectively coordinate the team actions, each individoatie
aware of the environment configuration. In addition, a dynanic team must be able to manage appropriately its role and to
role assignment policy among teammates is activated, bgsmm exchange information with its teammates.
the knowledge about the best behavior that the team is able |, 5y approach, we have addressed together both the role
to acquire through the shared sensorial information. In the . S
experiment section, we present the successful performancef 2SSignment problem and the distribution of sensor data. On
Artisti Veneti robot team at the MSL Challenge competitionsof On€ hand, we investigate under what conditions an MRS is
RoboCup-2003 to show the effectiveness of our proposed hyir able to perform a given task cooperatively by using a dynamic
architecture, as well as some tests run in laboratory to vatlate role assignment mechanism. On the other, we discuss the
the Omnidirectional Distributed Vision System which allows to 5 5h1em of developing a distributed sensoring system based
share the informations gathered by the omnidirectional careras L . S .
of our robots. on omnidirectional vision sensors to cooperatively trankl a
share the information about moving objects. The combinatio
of these two approaches has proven very suitable in making
each individual capable of developing a cooperative beinavi
As it is well known, a coordination mechanism for an
MRS operating in a dynamic environment should provide
. INTRODUCTION flexibility and adaptability, where individual robots shdibe
Multi-Robot System (MRS) is characterized by atable to change dynamically their behaviors, in order to etec
tributes like size, composition, communication topologglifferent types of cooperative tasks. To this aim, robots do
and range [12], as well as agent redundancy and collectivet need to build a complete global state of the world. It has
intelligence [20]. Thus, solving cooperatively complesks been shown that a role assignment mechanism is able to allow
requires an intelligent multi-robot system to show dynami®bots to change their role dynamically during the executio
group reconfigurability and communication among individuef a task, based on the partial information that each indaid
als. This can be achieved either through explicit or an has about its own task and the operating environment [9]. In
implicit approach, or through a combination of both, with theur approach, each robot has been designed to become aware
specification of whether each individual robot shares or net distinguishing configuration patterns in the environirian
a common goal [24]. In thexplicit communicationsignals evaluating descriptive conditions as macroparameterfiat t
are intentionally shared between two or more individualggactive level. In parallel, the interaction with a deliiére
while in theimplicit communicationthe robots observe otherlevel activates the dynamic role assignment among teansmate
robots’ actions. Contrary to what one might expect, ingeltit on the basis of knowledge about the best behavior that the
cooperation does not necessarily require explicit comoasni team should adopt.
tion among robots. Indeed, we have previously implementedWhen the environment is static, the agent can analyze its
collective behavior through implicit communication [3231] Subcomponents, and store the acquired information in ao$ort
and [33]. In this paper, instead, we show how collectiveomsti memory [22]. But if the environmentis dynamic, this apptoac
can be achieved through the exchange of roles that canrselonger works, because the information that can be retriev
forced by an appropriate communication mechanism. from the memory of the agent is no longer up-to-date. This is
one of the reasons why in dynamic environments mobile robots
E. Pagello and E. Menegatti are with the Autonomous Systeawilatory  gre increasingly fitted with omnidirectional vision system
(AlS-Lab), Dept of Information Engineering, University Badua, Italy. . . .
A. D'Angelo is with the Dept. of Mathematics and Computer ebcie, [39]. These systems provide in one shot a complete view of
Udine University, Italy the surrounding of a single robot. Nevertheless, in a highly
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tures to be adopted for each single robot of a team in order to
clarify how to build compound behaviors from primitive ones
Section Il illustrates the basic technique for using a iipalt
omnidirectional mirror in a perception module for Gaussian
single-sensor observations. Section IV gives the detéithe
hybrid architecture implemented on each team robot, tavallo

it to develop the desired complex behaviors, and to cootdina
its action with its teammates. Sections V explains how midti
observations are fused among the robot of the same team,
N Y 4 in order to enhance their capability in achieving coordidat

. - : actions. Section VI documents a set of experiments that have
) i been carried on a RoboCup Middle-size League game field to

Fig. 1.  Picture taken during experiments to test the Omeitional Vvalidate our approach. Finally, the conclusions are ptesen
Distributed Vision System. in Section VII

Il. USING A BEHAVIOR-BASED APPROACH

dynamic environment such as the RoboCup soccer fields,N this section, first we discuss how to build primitive

this is not enough. Since the evaluation process, can ®quf behaviors to obtain sensorimotor coordination for a single
gathering a large amount of sensor data, the omnidiredtiorghot. Then, in section IV, we show how compound behaviors
vision by itself cannot be sufficient. Given its low resotutj can be constructed only by processing the information from

it does not solve the problem of perceiving occluded or vefife environment and from the other team robots in a suitable
distant objects However, since each individual is part of avay.

robot team, the sensorial horizon of the single robot can be
extended by using the information perceived by the tearm’natg Implementing Schemas
The separately gathered information can be broadcasttioeall * - )
teammates allowing every robot to fuse its own measurementd he behavior-based approach [6] assumes a robot to be
with the information received from the others, thus corstru situated within its environment. Moreover, since robots are
ing its own "vision of the world”. not merely information processing systems, tiegibodiments

If the robot is part of a multi-robot team, the sensoridfduire that both all acquired information and all deliere
horizon of the single robot can be extended by using tiffector commands must be transmitted through their physic
information perceived by the teammates. In [26] we propos&ffucture. Different research areas like biology, ethplagd
anOmnidirectional Distributed Vision Systef@DVS) capable PSychology, have contributed to the design of robot control
of tracking moving objects in a highly dynamic environmerffMong them,schemebased theories have been adapted by
by sharing the information gathered by every single robot. ArPib [1] to build the basic blocks of robot behaviors. In

Even though the ODVS was developed for the RoboCUiS Perspective, achemais a generic template for doing
domain, it could be used in more general situations, such $N€ activity which is parameterized and created like asclas

surveillance systems or intelligent space applicationger{e (schema instantiation . . . .
time the application requires the monitoring of a large areg Schema-based methodologies are widely used in robotics.

that cannot be framed in the field of view of a single sensop®: Motor schemasas they were proposed and developed by

the cooperation of different sensors becomes extremefyxluse’a"rk_in [3], are thebasic units of behavior from which complex
Some examples are found in [19] where a Distributed Visidftions can be con;tructed; they consist of the _knowledge of
System composed of perspective cameras is able to driv Qv t9 act or perceive as Wel,l as the computational process
robot through a toy-scale model of a town, in [29] wher@Y which they are enacted]. I-_||s schemas are always active
multiple perspective cameras can track people moving froffd Produce outputs as action vectors which are summed
one room to another, and in [21] in which the Distribute§fP- Our implementation assumes only one schema to be
Vision System is able to support the activity of robots an@Ctive at a time, in a winner-take-all fashion. Moreovee th
humans. output is not a continuous signal but either a motor command

As such, the sharing mechanism among the vision sensé?sfeed some servo or an evaluated condition affecting the

in combination with a continuous role exchange, enhanc@%t'vat'on/'nh'b't'on mechanism for another schema.

the capabilities of the robot team. This approach is ver Following [2], we implemented a primitiveehavior with

general and can be used also in other applications wher ne motor schemarepresenting the physical activity, and

team of robots has to perform complex dynamic tasks in aﬂ)'?e perceptual schemwhich includes sensing. The resulting
environment with multiple moving objects governor’s unit of each individual robot is a hybrid archi-

Paper sections are organized as described in the followitcture whose deliberative/reactive trade-off stems ftom

Section Il recalls the fundamentals of behavior-baseditawh hierarchical _org_an!zatlon of its behaviors. In this pe_[swe,
each behavior is implemented at some level and it can use

INote that usually, the effective range for omnidirectiosahsors is shorter percept.ual S.Chemas coming from the underlylng level, even-
than for perspective cameras due to the lower resolution. tually triggering one selected behavior at that level. Thie
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Fig. 2. The hierarchical levels of control for each indivatiuobot, that
represent the different levels of abstraction.

overall architecture is organized at many levels of abstac

the lowest one being directly coupled with the environment

by the robot servos. Each level is populated by a set of

control _un'tS' W_h'Ch are S(_:he_ma'badehaV'orS recelvmg_ Fig. 3. An omnidirectional image processed by the Vision rtgef the

sensor information by monitoring the lower level and actingerception module. Note that the ball has been detectedeasethblob and

on somereleaser We can build a behavior at level k+1 usinqnarked with a yellow cross. The goals have been detected amkieth with
. . . . ed crosses. The black dots are the sample grid used to préeesmage in

perceptual information coming from the underlying leveHda , giscrete fashion.

controlling one of these behaviors.

More explicitly, consider two basic behaviors likee-
fendAreaor carryBall. They can be implemented in C++ as 7t
motor schemas accessing directly robot effectors. On top of 4
these, we can build two primitive behaviors ligyDefensive
and chaseBallby simply appending a perceptual schema to
a motor schema, as explained by the following behavior
constructing rules:

playDefensive : seeBall — defendArea 1"
chaseBall . haveBall — carryBall o

The perceptual schema®eBall and haveBall also imple-

mented in C++, allow to access virtual sensor devices like

senseBalandtouchBallwhich are fed by robot physical sen- . -+ . : . . .

sors. A behavior is fired by an activation-inhibition mecisam

built on evaluating-condition patterns. Thus, a primitdehav- Fig. 4. Profile plot of the omnidirectional mirror used to lyre picture of

ior at reactive level results in appending just one percadptd:ig- 3. Note that the profile is generated point by point toi@ehthe desired

. .~ resolution in the different parts of the image.

schema to one motor schema in order to get the sensormotor

coordination that the individual robot is equipped with.eTh

reactive level uses only information coming from sensors

and feeds motors with the appropriate commands. Compound I1l. SINGLE SENSOROBSERVATION

behaviors appear only at higher levels, where they receiveEvery robot of the team is fitted with a catadioptric omni-

more abstract information about the environment, filtergd klirectional vision system [18]. Every omnidirectional sen

lower behavior functioning. mounts a mirror with a different profile, especially taildre
As suggested by Fig. 2, the control structure of eadbr the task of the robot [25], Fig. 4. The assumptions are:

robot has been organized into different layers, each of lwhithe omnidirectional vision sensor is calibrated and thectsj

represents a different level of abstraction such that areupmre assumed to lie on the floor. In Fig. 5, we sketched

level results in a more abstract handling of the environmetthe Perception Moduleémplemented inside our robots. The

So, the implicit coordination layer assumes that percéptuamnidirectional image is the input, on the left, of the image

patterns represent events generated by other individaals, processing module, calledA Module(Vision Agent Module).

ther opponents or teammates. Moreover, the correspondirfte result of the image processing is sent to the so-called

schemas can control the underlying reactive behaviors b8tene Modulenvhere all measurements are transformed in the

at the same time, they are also triggered by the individuedmmon frame of reference of the field of play using the inputs

goals every robot should pursue. The higher layers refer abthe encoders and of the localization module. The measures

the cooperation capabilities that any robot could exhibihw in the common frame of reference are sent to the other robots

its teammate while a cooperative behavior emerges. Thisaisd to theDistributed Vision ModulgDV), where they are

described in Section IV. fused with the measures received by the teammates.
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Fig. 6. The plot of the variances associated to distance unemagnts.
Fig. 5. Inside thePerception Moduleof each robot an input image is The axis of abscissas represents the measured distanceobfeam from the
processed by the Vision Agent (VA) and the result is passethédScene obot (in mm). The ordinate represents the variance adedcta the distance
Module Then, the measures are sent to the other robots and to the Dv Measure (in mm).

o ) to this direction ). The plot representing the measured
A description of the scene in the frame of reference of thyriances, for Robot 1 is displayed in Fig. 6. The data of

field of play (i.e., the positions and speeds of the objects fife variance was interpolated with the curve of Eq. 1 and we
interest) is reconstructed here using the data coming fl@n thtained a function that associates to every measurement th
encoders and by the localization system. The measurementg.grrect variance along the radial &i#\s can be seen from the

the positions and velocities of the objects are then passtubt plot, the error increases more than linearly with the distan

DV and broadcast to the other robots. Fig. 3 shows an examgigm the robot. This is because, with the mirror profile used
of the result of the image processing on one omnidirectiongl this experiment, the image resolution decreases with the
image taken in the RoboCup field of play. The strong distartiqjistance from the robot. This procedure was repeated fdr eac

of the image is due to the custom profile of the mirror showypot, since they mount heterogeneous vision systems aisd th
section is looking close to the body of the robot with a hig

resolution. This part produces the outer ring in the image (t — fp0
- : ; o _ y(z) = ka +q 1)
one containing the single ring of dots and the field lines ghhi
resolution in Fig. 3). The inner part presents a discontyjnui  Only the plot of the data about the distance object-robot
in the vertex, so the self-reflection of the robot body does ni§ displayed, since the variance on the azimuth resulted to
appear in the picture. The blue goal (on the top of the imag®g S0 small that one could assume a zero error on azimuth.
the yellow goal (on the bottom) and the ball (in the middlelhe zero value is not a valid one, though, as it would result
right) have been detected. The detection of other robots Hag degenerated Gaussian distribution. We therefore aabum
not been enabled to not confuse the image. a certain non-zero variance, increasing with the distarm® f
he robot. This will also take into account the errors introed

iy a non-perfect localization of the robot.
flt should be noted that the objects observed by the robots
re moving, not static. Assumptions about the time interval

tween two measurements cannot be made; in fact, we
[e working with robots with very different computational

wer, with vision systems working at different frame rates

A two dimensional Gaussian probability distribution i
associated to every measurement. The centroid of the Gaus
is located at the estimated object position. The widths o
the Gaussian along the principal axes.,(og) correspond a
to the uncertainty of the observation along those axes.yEv
measure is made in the reference frame of the robot and®
then transformed into the reference frame of the field of pl

by the DV. This assumes that the robot knows perfectly i om th fES to ZtS fps). Evertl_ within ths. same trOt.’Ot' (;r;;z
pose in the environment while it moves in the field of plaf.anno make any 'mr? assumptions regar mg eb'mén? 0 de
This is done using the self-localisation algorithm develbp measurements, as these are not guaranteed to be delivered at

by our RoboCup team [28]. Due to the robustness of the Serlffa_gular intervals. In fact, to fully exploit the low compp'tmal
localization algorithm, the assumption of an error-freeale resources of our robots, we use a thread-scheduling system

ization is acceptable, even when the robots move in therplj;ainhiCh allows a certain flexibility to the execution time of
f the threads, so measurements are made available at differen

field. The remaining localization error is taken into accon . ) . . .
time intervals (the typical value of variations in the image

overestimating the error associated to the single measumsm R bots is abaLp0 It is theref
We determined experimentally with 1000 measurements {REpcessing time in our robots is & ms). Itis therefore

width of the Gaussian along the two major axes, i.e. along ther,, rohot 1 the constants of Eq. 1 ake= 0.0000009, @ = 2.52
radial direction robot-object{.) and along the line orthogonalg = 90mm.



V2 more general problem of making a collective behavior emerge
\ from the individual behaviors of a group of robots depends on
two different conditions that must be true at the same time.
The first concerns the ability of any robot to recognize the
circumstances under which it can be engaged in a collective

behavior. The second requires that those circumstances be-
come effective, to allow the group of robots to cooperate;
Perceptual Schemas Mlorschemes the question of how to trigger, at the abstract level, the
ﬁ * | * overall performance of the group while trying to exhibit
Edge i a collective behavior has been previously elucidated [15].
— > B\ T Integrating deliberation within a behavior-based ardftitee

is a current topic of research actively debated [16] because
Fig. 7. The functional architecture of the governing unit &ach single the reaCt_Ndde_l'beratlvetrade'Oﬂ depends on how many rep-_
member of the Artisti Veneti robot team. resentational issues are implemented and how much regsonin
process is made available to the system.

) ) ) Since any deliberative process slows downdbeide-sense-
necessary to associate a precise timestamp to each and exgont hehavior cycledifferent priorities should be assigned to

measurement. The timestamp is that of the omnidirectiongk gitferent layers shown in Fig. 2. In the hybrid multi-¢év
image that is processed to extract the measurements. AS Wehitecture that we have devised for our robot team (see Fig
will explain in the following, the measurements made of the) 1o intermediate levels have been provided to allow tobo
position and speed of one particular object are not corsitiefn jiyiguals to communicate. The lower implements stigrgerg
independent and are fused in a track that is used to increggfsreas the higher deals with the dynamic role exchange,
the robustness of the observations. needed if we want an effective control on cooperation to be

triggered by internal and external firing conditions.
IV. BUILDING A HYBRID ARCHITECTURE FOR

COORDINATION ) o
S previously stated, a schema is the building block of omIJBr' Implementing Coordination

architecture where perceptual components are organized\s previously stated, coordination has been implemented

into a hierarchy of abstraction levels. They feed motor s at two stages: the lower, dealing with the reactive level,
acting as either a control mechanism or a delivery deviggovides the necessary conditions to be verified to start an
towards robot effectors, namely, theheel-driving motors activation cycle of cooperation. Such conditions are esteid
and thekicker. At the reactive level (see Fig. 2) schemaby acquiring information from the environment and testiog f
are true behaviors whereas at higher levels they work $gecified patterns. If we are looking for a better perforneanc
triggering mechanisms to modulate the whole behavior df eai@side the group then role assignment is needed in what it can
individual. The actual implementation rearranges pergapt trigger the emergence of the required collective behavior.
schemas in a network of and-or nodes, generated at start-uplence, though the general problem of coordinating a group
by executing appropriate scripts describing that hiengrahd of robots could be stated as aptimization problem the
can be easily changed. solution can be searched heuristically simply adding some
behavioral rules with the aim to force the activation of
complementary behaviosgithin different teammates. Such a
. . . solution cannot be considered optimal, but the experimenta

_A pure rea_ct|ve level WQUId fail t(_)_ P“’V'de a robot téam, idence shows how this approach can address the problem.
with the required coope_ratlon qapabllmes because _Ofahk ! We have, therefore, added a higher layer, devoted to examine
_Of some sort of mechams_m which allows the behgwor of eaﬁrﬁd schedule the behaviors which are the best candidates for
individual robot to take into account the behavior of othel,qneration. It uses a general but simple protocol to allow
robots. Generally, individual robot behaviors are triggkby robots to assign proper roles, as explained below.

cootrd|fnat|on in t,SUCh a wally tE_at _sorrl;aﬁtlops that frt? @ When an individual robot succeeds in recognizing a distin-
Ear 0 ?fn a:ge_n tshown gl(;a ha(i |e\€|hng € a\ilo;reper:_o Htth uishing configuration pattern in the environment, it tries
ave efiects in the world, help other agents to achieve Ecome anasterof a collective action indexed by that pattern.

got?ls [2b4]. Ifjvenla coordlnf';lted bggawor among I?:i ?r$up GFhis can occur because at reactive level some stigmergic
robots based only on sonséigmergic property, could fail to - ., jition forces the estimation of a giverility function to

exhibit collective behaviors, because stigmergy in itsties evaluate over a fixed threshold. Of course, different irdliai

not guarantee cooperation. " . o
robots could evaluate positively the same stigmergic dardi
The problem could thus be stated as followsw much Therefore, we have introduced a simple but effective method

deliberation should be implgmented b_etween aggnts to ensyy acquire a master role on the basis of theporal ordering
the emergence of cooperative behatidhe solution to the by which individuals try to notify the other teammates also

3This term, commonly used in biological literature, refeosthe animal V\{IShIﬂg to become mastetn the case two rOb_O.tS try to
capabilities to coordinate without explicit communicatio simultaneously advocate a master role, and the utilitytions

A. Integrating Deliberation



computed by both robots give the same value, then a randéired role within the team, but if we consider th@egrating
selection is done to choose which one must be the masterrobot societies [35], characterized by a small number of
Roles are played at different levels; let us call theambe heterogeneous and specialized members, it becomes impor-
assumeacquire and advocatewhere the first three refer to atant for each individual to develop the ability of modifying
supporterand the last one is committed to the master. dynamically its behavior while performing an assigned task
As an example, we will discuss the coordination taskhus, adynamic role assignmemapability has become a key
between two robots which try to carry the ball towards thissue.
opponent goal, passing and eventually defending it from op-It can be stated as followGiven n robots, n prioritized
ponents’ attacks. A number of conditions must be continlyoussingle-robot roles, and some estimation of how well each
tested if we want such a cooperative task to become effectivebot is expected to play each role, assign robots to roles in
Because the two robots are required to play well-specifietder to maximize the overall expected performajigd. Role
roles, we assign thenasterrole to the robot chasing theallocation in an MRS is a dynamic decision problem, changing
ball, whereas the other can be consideredghpeporter We over the time, according to the environmental changes. &yerk
can then build a couple of complex behaviors for the mastend Mataric [15] showed that the role allocation problenhim t
robot and for the supporter robot. Thanks to thempmaster RoboCup domain is similar to the task allocation problem for
behavior, one robot is able to acquire and then to advocatRS that cooperatively achieve a goal, where a time-ext@nde
a master role, showing a dominant role in the clamp actioole concept replaces that of a transient task. They deedlop
by chasing the ball. The other robot instead is committexdformal discussion on role allocation issue in RoboCup, by
to acquire a supporting role in the clamp action while it ishowing that many allocation mechanisms are algorithryical
approaching the ball. equivalent to instances of the canonical greedy algoritom f
the Optimal Assignment problem. Thus the dynamic role
assignment problem is the natural evolution of an iterated
assignment problem in the domain of multi-robot systems.
However, MSL RoboCup teams used hand-coded methods,
where the current allocation is re-evaluated periodicalfew

behavior clampmaster
haveBall(me)&—have Ball(mate)

— acquire(Master);
acquire(Master)&Notify(Master)

— advocate(Master); times per second.
behavior clampsupporter ART Team [30], the ancestor of Artisti Veneti Team [34],
—acquire(Master)&can Be(Supporter) ordered the roles in a descending priority, and then asdigne
— assume(Supporter); each role to the available robot with the highetslity function
assume(Supporter)& Noti fy(Supporter) [17]. Utility is a scalar quantity that estimates the cost of
— acquire(Supporter); executing an action. Its value is a weighted sum of factoth su

Since the role assianment dependsbail DOSSESSWE Can Use as the distance from target or from the ball, defense-offens
g P b S configurations, etc. It should be noted that such computatio

the conditionhaveBallto discriminate among robots which . o
. . are always affected by sensor noise, general uncertginties
one is really carrying the ball. It can be understood as a

. : and environmental changes. A slightly different solutioasw
macroparameter in the style of our previous work [32], : . S
o .7 ) . adopted by CS Friburg Team [38] which used a distributed role
describing the characteristic of the environment, which ca . .
. . “allocation mechanism where two robots may exchange roles
be evaluated by different robots. Moreover, it resynctresi : . . . o
- . only if both agree, thus increasing their own utility values
the activation of a new cooperation pattern.

Clampmasterand Clampsupporterre complementary be- Isocrob team follows a popular policy of distributing the
haviors that must be arbitrated. The basic rule is t tor Sensor information among robots. In the ICRA2004 [23] Video

Proceedings, its coordination policy is illustrated. Eachot
role must beadvocatedvhereas thesupporterrole should be . . .
: o ) . . team member achieves a local estimate of the environment
acquired To this aim, we require two reciprocity rules where

a role is switched either fromacquire to advocateor from and shares its evaluation through sensor fusion for disirig

: ! e dynamically the suitable roles among the robots. Our Team
assumeo acquire provided that anotificationis made to the Y y g '

referred teammate. Such rules imply a direct communicati'a‘rrltIStI Veneti [34], at the IAS-Lab of the University of Paal

; ) e e as developed its own control architecture starting from a
between teammates to assign the role onfitise notified/first . . .
. . . ehavior-based hand-coded software. At beginning, theceho
advocatedbasis. In this way, the robot carrying the bal

. . 0{ the appropriate role was obtained by considering colfisi
advocates the master role for itself and commits the teammat _. . " )
. : a¥0|dance issues and competitive behaviors [33]. Then, we
to acquire the supporter role. By doing so, the former robH . : .
. . o ave introduced a hybrid architecture [10], [34], where the
issues a behavior afhaseBallwhereas the latter exhibits a_ . . : : !
. deliberative component interacts with the reactive one and
behavior ofapproachBall . . ; . ) .
viceversa, as it has been described in the previous subsscti
o o Other teams used different concepts like the social benefit
C. RoboCup MSL teams cooordination policies [14], or scheduling policies based on Petri Nets [40]. Eigen
Starting from Stone and Veloso’'s pioneering work [36]Team of Keio University, a RoboCup-MSL World-Champion
since the beginning of RoboCup many teams have implen 2002, 2004 and 2005, achieves a cooperative ability ¢irou
mented some kind of role-based coordination. The first a-continuous exchange of information among the team mem-
tempts were made onsatic basis where each robot takes abers. The evaluation of task achievement by the team is done



by each individual robot with regards to an individual-sdci
satisfaction, that compares the evaluation of the achiemm
of its own particular sub-task with the evaluation of the
achievement of the whole task done by all the other team
members[13]. CoPs Stuttgart uses a special and simplified RoPot2
form of an Interaction Net to evolve team strategies and fagen
behavior fast and efficiently[40]. The robots are able tdaah Robot 3
a high degree of autonomy in deciding which strategy to use.

They succeeded in showing a pass-play performance.

Robot 1

Robot 1
H—K SSH—k—
V. FUSING MULTIPLE OBSERVATIONS DV

The measures of the position and speed of the tracked
objects can come from two sources: the repeated obsersation
of the single robot or the observations of the teammates. The
work illustrated in [37]’ authors do not take into aCCOur\'gig. 8. A conceptual sketch of the fusion of measurementsirgprfrom
the dynamics of the objects to be tracked and assume thi@érent robots in the Distributed Vision module (DV) of Bat 1. Note that
the objects are instantaneously steady. They use a minirfigot 1 is measuring the object's position only 4 times, /e objects

. . . sition is updated 11 times in this time interval.
variance estimation approach to fuse the measurementg of #fi
different robots assuming the measurements are made at the
same instant. In the real world, measurements of different
robots are never made at the same time and because the obfgegsurements available, independently from the number of
are moving, every robot will measure the object when it is iifammates. This is done to make the system robust to failures
a different position. They solved the problem by discardingf single robots.
measurements too distant in time to be compatible. Fig. 8 depicts a conceptual sketch of the process of fusing

On the contrary, the solution we adopted is similar to th@easurements coming from different robots. Every time that
one proposed in [11], with a significant difference: wheredbe DV of Robot 1 receives a new measure from Robot 2
they used the externablobal Sensor Integratoto fuse the or Robot 3, it fuses this measure with its own measures. In
information, in our implementation every robot fuses ak thFig. 8, Robot 1 is measuring the position of the ball only 4
received measurements. Every time a new measurementimes, but the ball position estimate is updated 11 times in
received, independently of whether it comes from itself dis DV. This means that the robot has a more reliable world
from another robot, it is compared with the existing track&odel. However, there are several problems to solve when
of the objects. If it is compatible with an existing tracketh fusing measurements from different robots.
measurement is added, otherwise a new track is initialized. The first problem is that, in order to combine the differ-

This is done with a classical Kalman filter for every traclent observations, all the robots must share the same spatio-
[5], [7], [8]. Every incoming measurement can reduce thi@mporal frame of reference. Itis not enough to be able &rref
variance of the Gaussian distribution, reducing the uagest all the measurements made in the spatial frame of reference
on the position of the object, as detailed in [37]. This apgio Of a single robot to the common spatial frame of reference
also allows the storage of multiple tracks for a single objecf the field. The robots need also to be able to refer the time
i.e., the creation of multi-modal distributions for evergject. stamp associated to every measurement to a common temporal
The real position of the object is decided to be the one wiffeme of reference. In other words, the internal clock of the
smallest variance, i.e., the one with smaller uncertaifitys robots needs to be precisely synchronized in order to know
solves also the problem of dealing with multiple instances ¢he time relation between the different measurements. The
the same object. For instance, if for some reasons two baioblem of the synchronization of the internal clocks of the
are on the field of play, every robot will instantiate two kac Single robots was solved using the well-known Network Time
for the ball and will consider as theeal’ ball, the one with Protocol, developed by the Network Time Protocol Prdject
the smallest variance (probably the ball closer to it). Any robot can act as a server for synchronizing the clocks of

In the classical Kalman filtering approach, it is impliciath the others.
measurements arrive one after the other. In the next sectiof\ second problem is that when an agent is cooperating with
we will see how we modified this classical approach to takiher agents, it needs to trust the other agents. The améunt o
into account the fact that measurements come from differet@tnfidence in the measurements of the others influences the
robots and that we want to be able to accept measuremexount of cooperation. We made every robot more confident
older than the last one (usually, only newer measuremeats @n its own measurements than on measurements received
taken in account). from the teammates. This is done by doubling the variances
associated to the measures received from the teammates.
This implies also that the single robot measurements are

A. Fusing Observations from Different Robots _
) ] ) less affected by errors introduced by the teammates, due
Our system is designed to be totally independent from the

number of robots active on the field. Every robot uses all the*URL: http:/imww.eecis.udel.edwhtp




Stroupe et al. [37] (using perspective cameras) and Gutmann
et al. [11] (using perspective cameras and laser range fhder

Besides using omnidirectional vision systems, the major
extensions of our proposal, as compared to [37], is the modi-
fication of their approach so as to integrate observatiordema
at different instants in time, while also taking into accbtire

Robot2

b2

Robot1

P
oK

S tg in 1B t2 |13 speed of the objects being tracked. Compared with [11], the
DV ' by main difference is their use of an external computer running
[

a so-calledGlobal Sensor IntegratofGSI). This GSI receives
the observations made by the different robots, integrétest

time by elaborating a merged vision of the world, and sends it
fo o A el time di Howing th - back to every single robot. Every single robot then uses the
e pncpiue lme dsgran shoting e process otfvel meseure® information received by the GS! only to locate objects oL of
40 ms for Robot 1 and 70 ms for Robot 2. its field of view. In our system, on the contrary, every robot
fuses the information coming from the teammates without
the need of an external computer. At the same time, these

either to non-precise localization or to measurement gyrof’€asures are used to improve the ones made by the robot
like for example in the case the errors in the perception §felf- However, we believe that a robot should not fullystru
the ball position and the different weight of the informatio the information coming from teammates, since they may be

communicated by team-mates could make robots to have ratfef Misleading situation. So, in the previous SubSection we
different positions of the ball. Thus, the robots can show R{OPOSed away to appropriately weigh the incoming measures

certain degree of cooordination even in absence of perfect

localization and coherent "map merging”. VI. EXPERIMENTAL RESULTS
A third problem emerging when working with heteroge- S we have previously discussed, implicit communication
neous vision systems running at different speeds is that is a necessary and sufficient tool for activating and

measurements arrive at different instants in time. Whentailoring cooperative behaviors. The problem is how many
robot receives, from another robot, a measurement thattilmes the interaction patterns are needed to be detected by
older than its own measurements, it cannot simply discaat thifferent robots to initiate a cooperation task. In the case
measurement. Often this measurement can be carrying usefusimulated soccer games, we have shown [33] that a con-
information even if it is old. As a practical example, coresid tinuous evaluation of environmental patterns could trigge
the situation of a robot that is close to the object, but hasball exchange between teammates. The number of successful
very slow vision system. Given its proximity to the objectcooperation can be kept high by increasing the circumstgance
this robot will report very accurate measurements which ca positive activation by a kind oBrownian motionamong
improve the estimate generated by a robot with a faster, isamates. The situation becomes more difficult in the case of
less precise, vision system. MSL real robot competitions, where the evolving dynamics
The solution we adopted is conceptually outlined in Fig. @f teammates cannot provide such a satisfactory number of
Robot 1 makes two measurements at instaptandt g; these active interactions. Dynamic role assignment thus becames
measurements are available at instantandt,, respectively. very important feature to be implemented into a team.
The boxes in Fig. 9 represent the image processing timeThe approach described in section IV was success-
required by the robot, in our case approximately 40 ms féully tested during the MSL Challenge Competition of
Robot 1 and approximately 70 ms for Robot 2). At timse¢ RoboCup2003 held in Padua. One of these challenges required
the state of the system is estimated by the DV of Robot that a team of two robots would be able to show a cooperative
using the measurements madetatandtgz. At time ¢3 the behavior by exchanging the ball between them before scoring
DV of Robot 1 receives a measure from Robot 2 referringinto a goal that is not defended by an adversary goalkeepin
to an instanttc which precedegp. In order to take into Thanks to the described approach, our robot team succeeded
account this new measurement, the DV retrieves the statet@fshow a successful performace.
the system at instant,, reorders the available measurements As shown in Fig. 18, we developed a cooperative behavior
and regenerates the system state ftarfusing all the received of two companion robots, involved in a cooperative taskoluhi
measures in the correct time sequence. The maximum amo@sults in carrying the ball towards the opponent goal toesco
of delay allowed for a measure to trigger a reappraisal of tladter having exchanged the ball between themm. As a matter
state of the object is 250 ms. Measures older than 250 wisfact, the robots exchange the ball by swapping the role.
are considered too old to carry useful information and would Fig. 10 shows two different robot$d and B. The first
imply to reconsider too much past measures. is chasing the ball, while its companion is approaching to
protect it. TheapproachBallbehavior shown by the latter is
a consequence of the exchange of a low number of short

B. Related Approaches i X ,
) ) ) o ) messages and which result in the assignment ofntlaster
The idea for information-sharing in the sensing process

comes from previous work on cooperative sensing, mainly5The full video is available at http://www.dei.unipd-itftobocup/video/tenaglia.avi



Fig. 10. Two attacking robots of the Artisti Veneti team shibwir ability in exchanging the ball during a clamp actioritet MSL Challenge of RoboCup-2003
International Competition held in Padua, on July 2003.

role to A and thesupporterrole to B; this is indicated by the
labelsCM and CSin the figure. The two robots are moving
in a strictly coordinate manner. The roles can be swappec o
depending on the actual environmental conditions.
As the two robots approach the goal line, they swap the
roles, and in such a way they exchange the ball because thi
have evaluated which one can score more easily. In the figur

the role labels are swapped to indicate how the roles hav . %jﬁ@%&

actually been exchanged between the two robots. The negulti . :»38.2’% I

emergentexchangeBalbehavior emphasizes the aptitude of «22;!-’5

soccer robots to activate a cooperative cycle of actions. ,,axa"&ﬁ e
Regarding implementation, all schemas are executed & o

threads in ADE, a runtime environment especially designet

for real-time systems over a Unix/Linux kernel [34]. Alsath
arbitration module is executed as a thread; more precisel
three different threads have been committed to select avbeha
ior for its execution. Fig. 11. A screenshot of the Omnidirectional Distributecsivh System
Looking at Fig. 7, it can be easily understood how th {sualization software with two robots steady and the baiving. The red
. 9 . 9 | by behavi Fift grcle are the subsequent positions of the ball measurecobptRL. The black
governing unit operates t9 contro ro ot behaviors. |'5’t b' circles are the positions of the ball measured by Robot 2. Alhe crosses
sensor information, coming from different sources, is gipeare the ball positions reconstructed by the Distributedvisilodule of Robot
towards thesensor driverswhich work as input controllers. -

They provide all perceptual schemas with the required sens-
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The third experiment, depicted in Fig. 13, tests the robust-

(2] T robot T viskon ness of the proposedall kidnappingsystem, described in
» ool @ ikt Section 3. In this experiment, the two robots are at the two
« robot 2 DV sides of the playing field (approximately 6m apart) and the

ball is kidnappedfrom the position on the left, where it was
stationary, to a position on the right where it starts to move
i Note that the DV considers the new ball position only after
receiving 4 measurements; i.e., the blue crosses appeaeon t

4&‘ right-side only after 4 measurements. This is the time vater
needed by the variance of the old track to grow larger than

the variance associated to the new track.

VIl. CONCLUSIONS
Fig. 12. In this experiment, Robot 2 cannot see the ball. Neetess, it is
able to locate it by using the measures received from Robtitelréd circles) N this paper we have tried to understand how to enhance

processed by its Distributed Vision Module (the blue crekse the Cooperative capability of a robot team playing in the
RoboCup MSL competitions. Our current work is a direct
evolution of our past experience in designing behavior-arbi

ing, also feeding the C-implemented motor schemas whidfation which triggers and is triggered by puredfigmergic
demand immediate sensor data for triggering. The modul@echanisms, namely, implicit communication [32], [33].
labelled pilot, Edge and Team implemented as threads, are Considering the inherent difficulty of forcing coordinatio
committed to select the most suitable motor schema to gaiaring fast and dynamic games, we tried to achieve a cooper-
exclusive control of the robot. The thregilot evaluates all ative task using a dynamical role assignment, switchinghfro
the possible activating conditions. Ti&lge module affects an implicit team assessment, to an expligist notified/first
robot behaviors from the external environment by adaptirgivocatedarbitration. Our approach has been tested during
their execution to the constraints which stem from soccay plthe RoboCup2003 MSL Challenge competition, where our
rules like for example avoiding, as far as possible, vialgti robot team, Artisti Veneti, showed an excellent coordirati
situations. Finally, theTfeammodule provides the necessaryapability for exchanging the ball. This is documented by a
coordination that a single teammate must exhibit to enabigovie, available on our Web site, which was judged as the
a collective behavior, like for examplpassing the ballto best recorded cooperative action by the selection comnitte
emerge from the robot team. of the RoboCup-2004 MSL qualification procedure.
Regarding the Omnidirectional Distributed Vision System, In the same frame, we have illustrated the implementation
we used it during the RoboCup 2004 competitions in Lisf an Omnidirectional Distributed Vision System used to
bon (Portugal). In order to have controlled and repeatatsbare the information needed for planning the cooperalfion.
test situations, we performed a series of experiments in aleal with the multiple problems arising when a multi-robot
laboratory, reproducing partial real game situationshiftrst team works in a real environment, we introduced a series
experiment, depicted in Fig. 11, two robots are stationary af new concepts. All the robots are capable of relating all
the center of the field (see Fig. 1) and the ball passes betwéls® measurements to a common spatial frame of reference.
them. Each robot measures the ball position and speed, seindaddition, the observations of all the team members are
these measurements to the other, and fuses its own meassyeshronized using the Network Time Protocol. The robot
with those received from the teammate. In Fig. 11, the rédam is also able to take into account the heterogeneity of
and black squares represent the measurements made by Ribalifferent constituent robots. The state of the systemhm
1 and Robot 2, respectively; the blue crosses represent thealculated using old measurements (i.e., older thanaste |
position of the ball, as calculated by Robot 2 while alsorigki one in the track), fusing data from different robots, andrtgk
into account the measurements received from Robot 1. N@igvantage of the redundancy of observations and observers.
that the frequencies of measurements made by the two robot¥he experiments carried out in our laboratory validate the
are different: Robot 1 is measuring at 16.5 fps (frames papproach and suggest its possible applications in othetiasb
second), and Robot 2 is measuring at 25 fps. domains. Although in this paper we showed how to fuse data
In the second experiment, depicted in Fig. 12, one robfsom omnidirectional vision sensors only, our approacheigv
(Robot 2) cannot see the ball (because the color threshgkeheral and can be applied to fuse measurements coming from
of its vision system for ball recognition was expressly et Wifferent sensors, such as perspective cameras, lasee rang
wrong values; the other color thresholds are set correstly, finders, or other kind of sensors, as long as theses onesiprovi
the robot is able to self-localize). A second robot (Robatd) data that can be represented as Gaussian distributions. In
see the ball and sends its measurements to Robot 2 (depi¢® we fused both video and audio sensor data to improve
by red squares). Robot 2 is thus able to correctly estimdtee detection of intruders. Thus, our approach, originally
the position of the ball (depicted by blue crosses) using tldeveloped within the RoboCup field, can be effectively agapli
measurements received from Robot 1. to service robotics applications, such as surveillance.



= robot 1 vision
o robot 2 vision
x robot 2 DVM

Fig. 13. In this experiment the ball is kidnapped from theifims on the

left, where it was stationary, to a position on the right, vehi¢ starts to move.

The tracks on the right are blown-up in the dashed box.
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