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Abstract. Wepresent a static parallel implementation of themultifrontal
method to solve unsymmetric sparse linear systems ondistributed-memory
architectures. We target Finite Element (FE) applications where numer-
ical pivoting can be avoided, since an implicit minimum-degree ordering
based on the FE mesh topology suffices to achieve numerical stability. Our
strategy is static in the sense that work distribution and communication
patterns are determined in a preprocessing phase preceding the actual nu-
merical computation. To balance the load among the processors, we devise
a simple model-driven partitioning strategy to precompute a high-quality
balancing for a large family of structured meshes. The resulting approach
is proved to be considerably more efficient than the strategies implemented
by MUMPS and SuperLU DIST, two state-of-the-art parallel multifrontal
solvers.

1 Introduction

Finite Element (FE) applications typically rely on the numerical solution of sys-
tems of Partial Differential Equations (PDEs) modeling the behavior of some
physical system of interest [16]. From a computational point of view, solving
these PDEs involves the solution of large, sparse linear systems whose sparsity
pattern depends on the topology of the FE mesh. Since the physical phenom-
ena under simulation may be non-linear and evolving through time, a given FE
mesh may require the solution of many linear systems with the same sparsity
pattern but with different numerical values. In turn, each of these linear sys-
tems can be solved through iterative or direct methods [10]. The use of direct
methods becomes particularly desirable if the FE application is such that nu-
merical pivoting is unnecessary and the mesh topology remains unchanged over
many iterations. Under this common scenario, successive solutions of (numeri-
cally) different linear systems can share the same computation schedule, hence
heavy preprocessing, whose cost is amortized over the iterations, can be used for
optimization purposes.

In what follows, we regard an FE mesh as a graph with N vertices, represent-
ing degrees of freedom (unknowns) of the physical system, and edges connecting
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any two unknowns interacting within some constraint. Under this view, an ele-
ment becomes a fully-connected subgraph (clique) of M vertices, where M is a
small constant (usually less than 100). Each clique is connected to other cliques
by boundary vertices in a sparse pattern. The N×N linear system Ax = b associ-
ated to the FE mesh at some iteration is assembled by computing A =

∑ne

e=1 Ae,
and b =

∑ne

e=1 be, where ne is the number of elements of the FE mesh, and the
entries ae

ij may be nonzero only when i and j are indices of vertices of the e-th
element of the mesh.

Direct methods solve the assembled linear system by decomposing A into
easy-to-solve factors, the most effective strategies for unsymmetric matrices be-
ing based on LU decomposition. The elimination order aims at reducing the
emergence of fill-ins to preserve sparsity, and can be represented by an Assem-
bly Tree (AT) whose nodes relate to the elimination of a set of unknowns with
the same sparsity pattern. An effective implementation of this idea is the mul-
tifrontal method [11,15], which can be regarded as a post-order visit of the AT
where eliminations at a node employ dense matrix kernels for improved perfor-
mance [4]. If the linear system arises from an FE application, then the resulting
AT can be directly related to the topology of the FE mesh, namely, the former
represents a hierarchical decomposition of the latter into connected regions, with
each AT node corresponding to one such region.

The multifrontal method interleaves phases of assembly of larger and larger
portions of the FE mesh with elimination phases, where a partial LU decom-
position is executed on Fully-Summed (FS) rows and columns, which are those
that need never be updated by further phases. Visiting a leaf of the AT in-
volves computing the matrix Ae and the right hand side vector be of the related
mesh element. Visiting an internal node of the AT entails merging the two re-
gions corresponding to its sons and then eliminating the resulting FS rows and
columns1.

Any efficient implementation of the multifrontal method maintains a compact
representation of the matrices associated with the nodes of the AT into dense
two-dimensional arrays storing the non-zero entries of the corresponding matri-
ces. When two regions are merged together into a larger region associated with
node n of the AT, during the assembly phase we build an f × f matrix An. If s
rows and columns of An become FS due to the assembly, the entries of An can
be arranged as

An =
[

Sn Rn

Cn Nn

]

, where
{

Sn ∈ IRs×s,Rn ∈ IRs×(f−s),

Cn ∈ IR(f−s)×s,Nn ∈ IR(f−s)×(f−s) . (1)

Submatrices Sn, Rn, and Cn are called the FS blocks. After each assembly, the
elimination phase computes the following matrices from An:
1. LnUn ← Sn; 3. L̄n ← Cn(Un)−1;
2. Ūn ← (Ln)−1Rn; 4. Ān ← Nn − L̄nŪn.

1 To avoid ambiguity, we will use the term “vertices” exclusively for the vertices of
the FE mesh, while the word “node” will be reserved for the vertices of the AT.



736 A. Bertoldo, M. Bianco, and G. Pucci

After the elimination phase, matrices Ln, Un, Ūn, and L̄n can be stored else-
where in view of the final forward and backward substitution activities needed
to obtain the final solution, whereas the Shür complement Ān will contribute to
the assembly phase associated with the parent of n. Steps 2, 3, and 4 can employ
high-performance BLAS Level 3 routines [9], whereas any efficient LU decom-
position algorithm can be used in Step 1. The pair of assembly and elimination
phases for a region n will be referred to as the processing of that region.

This paper describes an efficient parallel implementation of the multifrontal
method, whose main feature is a static, model-driven approach to work distribu-
tion and load balancing among the processing elements. By static, we mean that
work distribution and communication patterns do not depend on the numeri-
cal characteristics of the solution process. This is possible whenever numerical
pivoting can be avoided, since a simple implicit minimum-degree pivoting strat-
egy ensures the same numerical stability [5]. The benefit of a static strategy
is twofold. First, inter-processor communication patterns can be precomputed
and optimized; second, heavy preprocessing can be performed to gather data
needed to speed up the subsequent numerical computation with negligible mem-
ory overhead. Preprocessing time can be amortized over the repeated solutions
of systems with the same sparsity structure.

The last few years have seen the emergence of a number of multifrontal solvers
(see [2] and references therein).However, only twoprominent solvers,MUMPS [1,3]
and SuperLU DIST [8,14], work in parallel on distributed-memory architectures
and are capable of solving general unsymmetric linear systems. For this reason, we
will compare the performance of our newly developed solver solely with MUMPS,
and SuperLU DIST2. MUMPS implements a multifrontal algorithm based on a
parallel hierarchical LU decomposition approach similar to the one used in our
solver, but it follows a dynamic approach to distribute the work between the
computing processors. In contrast, SuperLU DIST starts from the full matrix
of the system and partitions it by means of a different technique (based on the
identification of supernodes).

The results presented in this paper substantiate the claim that the fully sta-
tic approach adopted by our solver may ensure considerable performance gains
over the more complex dynamic solution, provided that simple and effective sta-
tic load balancing techniques can be afforded by the application domain under
consideration.

The rest of the paper is organized as follows. In Section 2 we describe the basic
features of a general framework for a parallel multifrontal solver, and introduce
the notation used throughout the paper. In Section 3 we provide the details of our
parallel multifrontal algorithm. In Section 4 we focus on the model-driven parti-
tioning algorithm devised and present a number of issues related to the AT topol-
ogy. In Section 5 we compare the performance of our application with MUMPS
and SuperLU DIST on a number of benchmark FE meshes modeling the behav-
ior of porous media. Finally, Section 6 reports some concluding remarks.

2 In fact, a previous study [2] has proved the superiority of MUMPS over SuperLU DIST.
We decided to retain SuperLU DIST in our comparison mainly for completeness.
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2 A General Framework for a Parallel Multifrontal Solver

In a parallel environment, the work attached to each node of the AT can be
speeded up by distributing this work among the available processors. Define a
function Π that maps each AT node n into a subset Πn

def= Π(n) of available
processors that will perform the work attached to that node. Similarly, let Π l

n

and Πr
n denote the processor sets assigned, respectively, to the left and right

son of an internal node n. We say that two arbitrary processors in the same
set (either Π l

n or Πr
n) are on the same side, while a processor in Π l

n is said
to be on the other side from a processor in Πr

n. The pair (Π , AT) defines a
static processor allocation. In order to carry out the partial LU decomposition
associated with node n, the processors in Πn must first obtain and assemble
the Schür complements Āx and Āy previously computed by the processors in
Π l

n and Πr
n at nodes x and y, children of n. Within this framework, a parallel

multifrontal algorithm defined over (Π , AT) must determine for each node n: 1)
suitable communication patterns among the processors in the subsets Πn, Π l

n,
and Πr

n and 2) how the processors in Πn cooperate to decompose the newly
assembled matrix.

This general framework can be simplified by making some reasonable assump-
tions on the pair (Π , AT). First of all, it is natural to assume that the number
of mesh elements ne (hence, the number of leaves of the AT) is greater than the
number of available computing processors np. Therefore, we can find a set of np

disjoint subtrees that cover all the leaves of the AT and associate each of these
subtrees with a single distinct processor. After an initial data distribution, com-
putation on these subtrees can proceed in parallel without any communication
involved. We call each of these subtrees a Private Assembly Tree (PAT). The
computation on each PAT proceeds as in the sequential case amply described
in [4]. The (uncovered) subtree of the AT that has the roots of the private sub-
trees at its leaves is called Cooperative Assembly Tree (CAT) since it involves
explicit communication between processors. In order to maximize parallelism
while limiting the communication volume and enhancing submachine locality,
we will consider allocation strategies for which Πn = Π l

n ∪ Πr
n, for each node n

of the CAT.

3 Distributed LU Decomposition Algorithm

Our parallel multifrontal strategy essentially computes the same matrices pro-
duced by the sequential algorithm. From here on, these matrices will be referred
to as virtual matrices. In the parallel algorithm a virtual matrix associated with
an internal node n of the CAT is distributed among the processors of Πn, with
each such processor working on a partial (sub)matrix. Consider the virtual matrix
An of Eq. (1). We partition the rows of Cn and Nn into |Πn| subsets denoted
as Cp

n and Np
n, where p ∈ Πn. The task assigned to processor p is to decompose

the partial matrix
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Ap
n =

[
Sn Rn

Cp
n Np

n

]

(2)

by means of the four-step sequential algorithm described in Section 1.
Observe that all processors in Πn need the same decomposition Sn → LnUn

and the solution to the same triangular system Ūn ← (Ln)−1Rn in order to
solve different triangular systems L̄p

n ← Cp
n(Un)−1 and compute different partial

Schür complements Āp
n ← Np

n − L̄p
nŪn. These partial Schür complements form

a row partition of the virtual Schür complement Ān among the processors in
Πn, and will be used in the assembly phase of the father of n. In our solver, we
choose to replicate the above common computation in each processor rather then
having a single processor gather the relevant data, perform the computation, and
then scatter the result to the other processors in Πn. This master/slave scenario
is instead the adopted solution in MUMPS3.

The way we partition the rows of Cn and Nn affects the whole parallel algo-
rithm. We now describe one possible solution that reduces the amount of data
exchanged during the assembly phase. Let Vn and V p

n be the sets of mesh vertices
related, respectively, to the rows of the virtual matrix An and the rows of the
partial matrix Ap

n assigned to p ∈ Πn. Clearly,
⋃

p∈Πn
V p

n = Vn. Our partition-
ing makes sure that V p

n = Vn ∩ V p
ρ , where ρ is the root of the PAT assigned to

processor p, whence we call V p
ρ the set of initial vertices of p. The main drawback

of this simple strategy is that this subset keeps shrinking along the path toward
the root of the AT, and will eventually become empty due to rows becoming
FS, eventually leaving processor p potentially idle: we will address this cause of
imbalance in Section 3.2. Note that the vertices related to the columns of partial
matrices are the same of the corresponding virtual ones. In fact, the choice of
partitioning with respect to the rows (rather than the columns) is totally arbi-
trary. A totally symmetric column-oriented algorithm can be easily obtained by
switching the role of rows and columns.

3.1 The Assembly Phase

In order to build its partial matrix Ap
n, p first has to upgrade the rows of the

partial Shür complement computed by p itself in the previous elimination phase,
to include the entries of the columns held by processors sharing a subset of its
initial vertices. Observe that if more than one processor on the same side has an
initial vertex v, then the corresponding rows of their partial Schür complements
are the same. As a consequence, during the assembly of Ap

n, processor p can
exchange data with at most one other processor per vertex, and this processor
is on the other side from p. No communication within the same side is required
during this step. When this assembly step is finished, all processors having v as
an initial vertex will have the (same) corresponding row in their partial matrix.
This first step of the assembly phase is called the merging step.

3 Note that both approaches afford employing optimized parallel routines for the LU
decomposition of Sn at the root of the AT, without the large communication over-
heads which would be required at internal nodes.
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After the merging step, in order to finish the assembly, p must still complete
the blocks Sn and Rn with the FS rows relative to non-initial vertices. Observe
that the missing FS rows can be found somewhere within the same side, since FS
vertices are shared by both the left and the right components, and the merging
step has already upgraded the corresponding rows. As a consequence, during this
step each processor can exchange data with at most one processor per missing
vertex, and one such processor can always be found on the same side. No commu-
nication with the other side is needed during this step. We call this second assem-
bly step the distribution step, which completes the assembly phase for node n.

3.2 Communication Pattern and Load Balancing

In order to find the communication pattern, we define Sn as the set of shared
vertices among the processors of the left and right son of node n. As we did for
virtual matrices, for each processor p ∈ Πn, we define Sp

n = Sn ∩ V p
n to be the

subset of vertices of p which are also shared. What processor p needs to receive
during the merging step are the rows whose indices are in set Sp

n and arriving
from processors within the other side. Analogously, for the distribution step, we
define Fn as the set of vertices that become FS when processing node n of the
CAT. Clearly, we have that Fn ⊆ Sn. For each p ∈ Πn, we define F p

n = Fn∩V p
n to

be the subset of vertices of p which become FS. What processor p needs to receive
during the distribution step are the rows whose indices are in the set Fn \ F p

n

and arriving from processors within the same side of processor p. Since each
processor has multiple potential sources for gathering the data needed for the
merging and distribution steps, deciding the optimum communication pattern
and the amount of data to gather from each processor involves the solution of a
computationally hard problem. To deal with such a problem efficiently, we make
the reasonable assumption that the latency in setting up a communication is
the real bottleneck. We are then left with minimizing the number of processors
that each processor needs to contact, which is an instance of a Minimum Set
Cover (MSC) problem. The well known greedy strategy for MSC [7] can then be
employed to compute a communication pattern whose performance is not too
distant from the optimal.

When all the vertices in V p
ρ become FS, processor p becomes potentially idle.

Depending on the shape of the region corresponding to the root of the PAT
assigned to processor p, this may happen before the last elimination phase. To
avoid a waste of computing power, an idle processor may be assigned a cer-
tain number of rows belonging to partial matrices of other processors that are
still active. If we limit the possible “donors” of rows to Πn, the resulting load
balancing will feature a high degree of locality easing the parallel forward and
backward substitution algorithm [12]. The communications required for balanc-
ing can be predetermined during the symbolic analysis phase described in the
next subsection. Our approach to balancing is model-driven, in the sense that
we use the same cost model described in Section 4 for partitioning the mesh to
estimate the load of a processor, and adopt a threshold criterion to maintain a
convenient computation/communication ratio.
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3.3 Speeding Up the Assembly Phase

As mentioned in the introduction, there is no change in the sparsity pattern
of the matrices involved in each of the numerous iterations of the multifrontal
solver for a given FE problem. Moreover, our target application domains are
such that numerical pivoting can be avoided. Therefore, as already done in the
sequential application [4], we can spend time on a preprocessing activity that
“simulates” the decomposition process without performing the actual numerical
decomposition. During this symbolic analysis phase, crucial information regard-
ing the decomposition process are gathered, which can then be used to speed
up the subsequent numerical computation. Moreover, in the parallel case, our
static work distribution and load balancing strategies make it possible to ex-
tend symbolic analysis to encompass the optimization of data exchange between
processors during the merging and distribution steps. Specifically, a symbolic
representation of a communication pattern is precomputed, so that the matrices
can be assembled directly from the receive buffers into their final location so
to avoid expensive intermediate buffering and reducing cache-inefficient indirect
addressing and conditional branches.

The symbolic data used to speed up the numerical merging step are an ex-
tension of the γ-functions used to speed up the assembly phase of the sequential
algorithm in [4]. These functions implement inverted references, in the sense that
they map the indices of each entry of the destination buffers to the indices of the
corresponding source buffers containing the values contributing to the assembly
of that entry.

4 A Model-Driven Partitioning Algorithm

When processing an internal CAT node n, processors in Πn synchronize their
work in two different ways: external synchronization is required during the merg-
ing step, since processors on opposite sides exchange data, while internal syn-
chronization takes place during the distribution step between processors ex-
changing FS rows within the same side. The load balancing strategy described
in Section 3.2 aims at reducing internal synchronization, given that all proces-
sors in Πn will be on the same side during the distribution step associated with
the parent of node n. External synchronization time at a node depends on the
discrepancy between the running times of the processors computing the left and
the right subtree of that node. Balancing the total running time on these two
subtrees is much trickier than balancing the work on a single node, since the
total time depends on the overall topology of the AT and on the map between
its leaves and the mesh elements. In order to produce an AT topology capable of
yielding an adequate global balancing, we have developed a very simple recursive
heuristic that simultaneously partitions the FE mesh into nested rectangular re-
gions and determines the working processors for each region (see Fig. 1 for an
example).

The mesh partitioning is driven by the cost function f(n) that models the
execution time of the block LU decomposition step performed at a node n of
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the AT, depending on the block sizes of the matrices allocated to each processor
in Πn. On a fixed AT, based on f(n) we are able to estimate the computing
time t(n) to process its subtree rooted at node n. We synthesize f(n) by least
square interpolation from the running times of a suite of sequential block LU
benchmarks to be run during the installation of the solver library on a target ar-
chitecture. When n is a node of a CAT, the function deals only with computation
time and not with communication.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

17

18 19

21

22 23

25

26 27

29

30 31

32 33
34

35

36 37 38 39

Fig. 1. CAT for 20 processors and the corresponding model-driven partition in 20
regions (one for each leaf) of a square FE mesh. Mesh regions are numbered with the
corresponding leaf identifier.

Driven by function t(n), we may determine the region corresponding to each
node of the AT by visiting the fixed-shape CAT in a depth-first manner. Starting
from the root, which corresponds to the whole mesh, we search for a bisection
that minimizes the difference between t(l) and t(r), where t(l) and t(r) are
recursively obtained in the same fashion. The resulting partitioning algorithm is
exponential in the mesh size but fortunately we can employ simple heuristics to
make it affordable. First, we seek nested partitions of rectangular shape, hence
the number of possible bisections of a mesh region with m elements is Θ(

√
m).

Second, we limit the exhaustive search activity only at the levels of the CAT
whereas we simply decompose each region within a PAT (which will be assigned
to single processor) into roughly equally sized subregions.4 As a result, very
few evaluations of the cost function are generally required before finding such a
minimum.

After partitioning, we are left with mapping the leaves of the CAT with the
processors, trying to enforce as much sub-machine locality as possible. For ex-
ample, when using a parallel machine made by SMPs with p processors each,
every CAT subtree with p leaves should be processed by a single SMP node
to avoid slower inter-node communications. To this purpose, our code features
a very simple greedy strategy for confining communications between different
SMP nodes as close to the root as possible.

4 This latter simplification affects the quality of the resulting partition minimally,
since most of the solver’s work is done at the nodes of the CAT.



742 A. Bertoldo, M. Bianco, and G. Pucci

5 Results

We have compared our solver, dubbed FEMS (Finite-Element Multifrontal Solver)
against MUMPS v. 4.6 and SuperLU DIST v. 2.0. In order to quantify the con-
tribution to performance of the model-driven partitioning strategy described in
Section 4, we have also set up a modified version of FEMS (called FEMS-M in the
following)which uses the METIS package [13] for partitioning. Our targetmachine
is an IBM eServer 575 with 64 Power5 processorsworking at 1.5 GHz, each capable
of a peak performance of 6 Gflop/s. Processors are grouped into 16-processor SMP
nodes connected by an IBM High Performance Switch. We used MPI to perform
communications among processes, and IBM libraries for sequential and parallel
dense linear algebra routines.

Table 1. Test cases main characteristics

Mesh N. of elements Matrix order N. of non-zeros
170 × 170 28900 436905 33955468
140 × 140 19600 296805 23028328
400 × 50 20000 304505 23497308
60 × 150 9000 137105 10573748

Our test suite comprises rectangular meshes of rectangular elements, mod-
eling scenarios in porous media simulations [6], a computationally challenging
application where each finite element has at least 40 degrees of freedom and the
involved sparse linear systems are amenable to direct solution without numer-
ical pivoting. For the sake of brevity, we report here the results obtained for
four large FE meshes in the suite, whose features are summarized in Table 1.
By “large meshes” we mean meshes for which the computation makes an in-
tensive use of main memory. Indeed, as can be seen in Table 2, some execution
times are missing due to memory limitations. FEMS, however, is usually able to
solve each problem with the smallest number of processors w.r.t. its competitors,
which is a clear indication of the fact that the overall memory requirements of
FEMS never exceed those of MUMPS and SuperLU DIST. In fact, the static
approach of FEMS allows to compute the amount of memory required by the
computation exactly, while dynamic approaches generally entail overestimation
of memory requirements.

Table 2 summarizes the factorization time of one iteration for various proces-
sor configurations, where the lower-order terms due to symbolic analysis, data-
distribution, and backward/forward substitution are not included. FEMS and
FEMS-M employ implicit minimum-degree ordering, while we let MUMPS au-
tomatically choose the fastest pivoting strategy between minimum-degree and
METIS ordering, and set up SuperLU DIST to use minimum-degree ordering on
AT + A. In order to make a fair comparison, we disabled numerical pivoting in
both competitor solvers. Results show that our solver outperforms MUMPS and
SuperLU DIST with both partitioning methods on all test cases and processors
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Table 2. Running-time comparison of FEMS, FEMS-M, MUMPS and SuperLU DIST.
Times are in seconds (missing values are due to memory limitations arising when the
large test cases are run on a few processors).

Number of processors
Solver 1 4 8 12 16 24 32 48 64
FEMS – 12.70 7.14 5.65 4.77 3.99 3.49 3.11 3.01
FEMS-M – 16.63 9.20 8.20 6.55 5.38 4.85 4.41 3.98
MUMPS – – 25.21 18.69 18.64 14.79 11.75 8.64 6.68

17
0x

17
0

SuperLU DIST – – – 15.29 13.55 21.97 15.12 10.71 11.21
FEMS – 7.22 4.15 3.34 2.77 2.38 2.06 1.89 1.80
FEMS-M – 9.32 6.89 4.74 4.69 3.82 3.32 3.04 2.84
MUMPS – 22.31 15.67 12.24 12.19 10.01 7.21 5.66 4.12

14
0x

14
0

SuperLU DIST – 17.80 11.31 9.57 8.54 8.26 7.60 7.04 7.51
FEMS 19.18 4.88 2.73 2.03 1.64 1.27 1.06 0.89 0.81
FEMS-M – 7.72 5.22 3.85 3.48 3.23 2.51 1.99 1.69
MUMPS – 11.82 7.81 5.90 6.86 5.91 4.47 3.84 3.35

40
0x

50

SuperLU DIST – 13.86 9.23 8.16 7.45 7.51 6.93 6.59 7.05
FEMS 8.06 2.08 1.15 0.97 0.77 0.66 0.60 0.53 0.52
FEMS-M 9.91 3.14 1.71 1.55 1.28 1.16 1.05 0.79 0.78
MUMPS 16.57 4.78 3.31 2.56 2.87 3.04 2.79 2.70 3.20

60
x
15

0

SuperLU DIST 16.08 6.06 4.01 3.57 3.41 3.26 3.13 2.81 3.18
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Fig. 2. Parallel performance of the solvers. The graph on the left shows the scalabil-
ity, whereas that on the right the effective utilization of the computing power. The
rate graph is limited to 32 processors due to flop-count limitations of our computing
environment.

configurations. The better performance of our solver also in the sequential case
shows the benefits of precomputing index functions to speed up the assembly
phase. Moreover, it is clear that the model-driven partitioning algorithm sub-
stantially improves performance over the use of the general METIS partitioning
routines.
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Figure 2 gives a better insight into the parallel behavior of the solvers, where
we chose to plot the speedup and performance rate graphs relative the 60 × 150
test case, since the corresponding matrix is small enough to be sequentially fac-
torized by each solver within the available memory. Our solver exhibits consider-
ably higher scalability than the others and makes a better use of the computing
power, even if this test case is relatively small. The relatively worse performance
of FEMS-M over FEMS mainly depends on a larger external synchronization
time since the number of floating-point operations executed by the two versions
of our solver is roughly the same.

 9 11 13 15 16 20 24 28  8 10 12 14  4  5  6  7  2  3  1
0

1

2

3

4

5

6

7

[2] [2] [2]
[2] [2] [2] [2]

[2]

[3]
[3] [3] [3]

[5]
[5]

[5]
[5]

[10][10]

[20]

Time analysis for CAT subtrees − Mesh 170x170 − Model−driven partitioning

Subtree root node

E
xe

cu
tio

n 
tim

e 
[s

]

Minimum total time
Maximum total time
Part due to elimination

 9 11 13 15 16 20 24 28  8 10 12 14  4  5  6  7  2  3  1
0

1

2

3

4

5

6

7

[2]
[2]

[2]

[2]

[2]

[2]

[2]

[2]

[3] [3] [3]

[3]

[5]
[5]

[5]
[5]

[10]

[10]
[20]

Time analysis for CAT subtrees − Mesh 170x170 − Partitioning with METIS

Subtree root node

E
xe

cu
tio

n 
tim

e 
[s

]

Minimum total time
Maximum total time
Part due to elimination

Fig. 3. Differential time analysis of FEMS and FEMS-M on the CAT of Figure 1

A better perspective on the effectiveness of our model-driven partitioning al-
gorithm can be gained by looking at Figure 3 where we compare the running
times achieved by FEMS and FEMS-M on each subtree of the CAT shown in
Figure 1. Each group of bars represents the total time to compute the subtree
rooted at node n (in abscissa), with |Πn| shown above the bars in square brack-
ets; gray and white bars represent, respectively, the minimum and the maximum
finishing time of processors in Πn, with the black portion of each bar represent-
ing the fraction of the total time due to the elimination phase. The graph on the
left proves that our cost model is very accurate, since the resulting balance of
the elimination time is almost perfect. Furthermore, modeling only elimination
time seems to be an effective choice also in guaranteeing a good balancing of
the overall running time of sibling subtrees. In contrast, observe in the graph on
the right that the balancing of the elimination time is much coarser when using
METIS, which uniformly partitions the FE mesh into equally sized regions, with-
out considering the distribution of the ensuing computation along the assembly
tree.

6 Conclusions and Future Work

We presented a parallel multifrontal linear system solver especially tailored for
FE applications, whose main features are a static allocation of work based on the
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topology of the FE mesh and a model-driven load balancing technique. Future
work will involve the release of a software library providing our FEMS solver.
The library will adapt to the computing platform by running a carefully selected
suite of microbenchmarks needed to determine the parameters of the cost model
used to provide the partitioning. In order to enable to run FEMS also on hetero-
geneous machines, we are planning to provide the possibility of instantiating the
cost model differently on different nodes of the parallel machine. Finally, further
research effort will be devoted to the effective application of our model-driven
partitioning and static work allocation strategy for unstructured and 3D meshes.
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