
EMBEDDED SYSTEMS
PROGRAMMING 2014-15

OO Basics

CLASS, METHOD, OBJECT...

Class: abstract description of a “concept”

Object: concrete realization of a “concept”.  
An object is an instance of a class

Method: piece of executable code

Field: piece of memory containing data.  
Fields store the results of the computationM

em
be

rs

CLASSES: DECLARATION VS.
IMPLEMENTATION

Java: declaration always coincides with
implementation

C++: declaration can be separate from
implementation

EXPORTING DECLARATIONS

Header files

Java: no, declarations extracted automatically from
implementations

C++: yes

Declarations can be read by many source files

(Java: no header files)

C++: “#include” directive

ACCESS MODIFIERS

In both Java and C++, methods and fields can be

public

private: accessible only by elements of the same
class

protected: accessible only by elements in its class,
and classes in the same package (Java) or friends of
the class (C++)

ACCESS MODIFIERS: DEFAULT

Java: members are visible only within their own
package (“package private”)

C++: members are public

CONSTRUCTOR AND
DESTRUCTOR (1/2)

Constructor: special method called (often
automatically) at the instantiation of an object.  
It may accept parameters to initialize fields

Destructor: special method called (often
automatically) when an object is destroyed

If present, constructors/destructors are invoked
automatically. Multiple constructors can be defined
with different parameters

CONSTRUCTOR AND
DESTRUCTOR (2/2)

Java: the constructor must be named as the class.  
The destructor must be called finalize()

C++: the constructor must have the same name as the
class. The destructor has the same name as the class,
but with a tilde (“~”) in front of it

THE POINT CLASS: JAVA

 public class Point
 {
 private double x;
 private double y;

 // Default constructor
 public Point()
 {
 x = 0.0;
 y = 0.0;
 }

 // Standard constructor
 public Point(double cx, double cy)
 {
 x = cx;
 y = cy;
 }

 // Accessor methods

 // Methods to set the coordinates to new values
 public void SetX(double cx) { x=cx; }
 public void SetY(double cy) { y=cy; }

 // Returns the distance from the origin
 public double Distance()
 {
 return java.lang.Math.sqrt(x*x+y*y);
 }
 }

THE POINT CLASS: C++ (1/2)
 #include <cmath> // new-style C++ header

 class Point
 {
 private:
 double x;
 double y;

 public:
 // Default constructor
 Point()
 {
 x = 0.0;
 y = 0.0;
 }

 // Standard constructor
 Point(double cx, double cy)
 {
 x = cx;
 y = cy;
 }

 // Accessor methods

 // Methods to set the coordinates to new values
 void SetX(double cx) { x=cx; }
 void SetY(double cy) { y=cy; }

 // Method that returns the distance from the origin
 double Distance()
 {
 return sqrt(x*x+y*y);
 }
 };

Method declaration distinct from method definition

THE POINT CLASS: C++ (2/2)

 #include <cmath>

 class Point
 {
 private:
 double x;
 double y;

 public:
 Point();
 Point(double cx, double cy);
 void SetX(double cx);
 void SetY(double cy);
 double Distance();
 };

 // Default constructor
 Point::Point()
 {
 x = 0.0;
 y = 0.0;
 }

 ...

Java: the following example shows how to
1. access a variable
2. call a method
3. call a constructor from another
all within the same class

ACCESSING VARIABLES
AND METHODS (1/2)

 public Point() // Default constructor
 {
 // Invoke the standard constructor
 this(0.0, 0.0);
 }

 public Point(double cx, double cy) // Standard constructor
 {
 x = cx; // Access to a variable
 SetY(cy); // Call to a method defined in the class
 }

C++: the following example shows how to
1. access a variable
2. call a method
within the same class

Calling a constructor from another: no way

ACCESSING VARIABLES
AND METHODS (2/2)

 Point(double cx, double cy)
 {
 x = cx; // Access to a variable
 SetY(cy); // Call to a method defined in the class
 }

ALLOCATING OBJECTS (1/2)

Instantiation = creation of an object from a class
(i.e., an instance of the class)

Java: use the new keyword. new returns a reference
(not a pointer!) to the newly allocated object

 // Step 1: definition of a reference variable
 // for the appropriate class
 Point ImaginaryUnit;

 // Step 2: creation of the object (instantiation)
 ImaginaryUnit = new Point(0.0, 1.0);

ALLOCATING OBJECTS (2/2)

Instantiation = creation of an object from a class
(i.e., an instance of the class)

C++: simply define the object as if it were a variable.  
As an alternative, the new keyword can be used to
dynamically allocate the object on the heap

 // Solution 1: just define the object
 Point RealUnit(1.0, 0.0);

 // Solution 2: define a pointer, then allocate an object with "new"
 Point * ImaginaryUnit;
 ImaginaryUnit = new Point(0.0, 1.0);

INVOKING
OBJECT METHODS

Java:

C++:

ImaginaryUnit.SetX(0.0);

RealUnit.SetX(0.0); // For objects

ImaginaryUnit->SetX(0.0); // For pointers

INHERITANCE

Inheritance: creation of classes that extend the
behavior of previously-defined classes while retaining
the original behavior for some aspects

Java: extends keyword

C++: colon “:” operator

INHERITANCE: EXAMPLES (1/3)

Java:

Redefinition of a method is called overriding

 public class Pixel extends Point
 {
 public byte color[]; // New: color in RGB format

 public Pixel() // Redefinition of default constructor
 {
 super(); // Invoking the default constructor of Point

 color = new byte[3];
 color[0] = color[1] = color[2] = 0;
 }

 // Further new fields and methods can be placed here
 }

INHERITANCE: EXAMPLES (2/3)

Java (wrong code):

Does not work because x and y are private in
point, hence inaccessible to subclasses.  
It must not work, otherwise it would break
encapsulation

public class Pixel extends Point
{
 public byte color[]; // New: color in RGB format

 public Pixel() // Redefinition of default constructor
 {
 x = 0.0;
 y = 0.0;
 color = new byte[3];
 color[0] = color[1] = color[2] = 0;
 }

 // Further new fields and methods can be placed here
}

ENCAPSULATION

Encapsulation: the internal status of a class/object is kept
hidden to the maximum possible extent. When necessary,
portion of the status can only be accessed via approved
methods

Encapsulation increases robustness  
Hiding the internals of an object keeps it consistent by
preventing developers from manipulating it in unexpected
ways

Encapsulation helps in managing complexity  
Enforcing a strict discipline for object manipulation limits
nasty inter-dependencies between objects

INHERITANCE: EXAMPLES (3/3)

C++:

The base class constructor is called automatically

Again, trying to access x and y results in a compile-
time error

 class Pixel: public Point
 {
 public:
 unsigned char *color; // New: color in RGB format

 Pixel()
 {
 color = new unsigned char [3];
 color[0] = color[1] = color[2] = 0;
 }

 // Further new fields and methods can be placed here
 };

ON THE USE OF NEW

In C++ there is no garbage collector: memory
allocated with new() must be deallocated explicitly!  
This is mandatory to avoid memory leaks

In C++, memory is released with delete  
(in the destructor, for instance)

 ~Pixel() // Destructor: memory is deallocated here
 {
 delete[] color;
 }

POLYMORPHISM

From the Merriam-Webster dictionary:  
“the quality or state of existing in,  
 or assuming, different forms”

In OO languages: an object instantiated from a
derived class is polymorphic because it behaves both
as an object of the subclass and as an object of the
superclass

THE “STATIC” KEYWORD

Fields and methods can be associated with either

a class (static field/method)

an object (instance field/method)

If a field/method is marked with the static
keyword, only one copy of it exists

STATIC FIELDS (1/2)

Example: Java

 class Customer
 {
 static int MaxCustomerID = 0; // unique to class
 int CustomerID; // different in each instance

 /* ... */

 public Customer() // constructor
 {
 ++MaxCustomerID;
 CustomerID = MaxCustomerID;
 }

 /* ... */
 }

STATIC FIELDS (2/2)

Example: C++

 class Customer
 {
 static int MaxCustomerID; // initialize OUTSIDE THE CLASS
 int CustomerID; // different in each instance

 /* ... */

 public:
 Customer() // constructor
 {
 ++MaxCustomerID;
 CustomerID = MaxCustomerID;
 }

 /* ... */
 };

STATIC METHODS (1/2)

Example: Java

 public class MathClass
 {
 ... // The constructor goes here

 // Accessor methods

 // The arctangent of a number can be calculated
 // even if no object of type MathClass has been
 // allocated
 public static double arctan(double x)
 {
 ...
 }

 ... // Additional methods go here
 }

STATIC METHODS (2/2)

Example: C++

 class MathClass
 {
 public:

 ... // The constructor goes here

 // Accessor methods

 static double arctan(double x)
 {
 ...
 }

 ... // Additional methods go here

 };

EXCEPTIONS

An exception is an event (usually due to an error
condition) that occurs at run time and alters the
normal flow of execution

Exceptions can be raised by library code or by the
programmer itself

Exceptions must be managed! 
Unmanaged exceptions lead to program termination

EXCEPTIONS: JAVA (1/2)

An exception is an object

Raise an exception: throw keyword

Exceptions thrown by a method must be declared in
the method’s header

 class DivideByZeroException extends Exception { }

 public class Point
 {

 // Divides point coordinates by a given factor
 public void ScaleByAFactor(double f) throws DivideByZeroException
 {
 if(f==0.0) throw new DivideByZeroException();
 else
 {
 x = x / f;
 y = y / f;
 }
 }
 }

EXCEPTIONS: JAVA (2/2)

Handle an exception: try...catch()...finally

Multiple catch blocks can be present

 try // code that could throw an exception
 {
 ImaginaryUnit.ScaleByAFactor(sf);
 }

 catch(DivideByZeroException e) // code that handles the exception;
 { // executed only if an exception happens
 // Do something
 System.err.println("Division by zero!");
 }

 finally // code finishing up the operation;
 { // executed in any case
 file.close();
 }

EXCEPTIONS: C++ (1/2)

An exception is not necessarily an object

Raise an exception: throw keyword

Thrown exceptions cannot be declared

 public class Point
 {
 //...

 // Divides point coordinates by a given factor
 void ScaleByAFactor(double f)
 {
 if(f==0.0) throw 123; // Throws an integer
 else
 {
 x = x / f;
 y = y / f;
 }
 }
 };

EXCEPTIONS: C++ (2/2)

Handle an exception: try...catch()

Multiple catch blocks can be present.  
catch(…) (with the 3 dots) catches all exceptions

No finally available

 try // code that could throw an exception
 {
 ImaginaryUnit.ScaleByAFactor(sf);
 }

 catch(int e) // code that handles the exception;
 { // executed only if an exception happens
 // Do something
 cerr << "Division by zero!";
 }

ASSERTIONS

An assertion is a statement to test an assumption
about the program that the programmer thinks must
be true at a specific place.  
If the assertion is not true, an error is generated

The test is performed at run-time,  
hence the program is slowed down a tiny bit

Java: assert keyword, raises exceptions

C++: macro to simulate assertions

ASSERTIONS: EXAMPLE

Java:

C++:

/* Remove an user from a data structure */
/* ... */
assert (NumberOfUsers >= 0);

#include <cassert>

/* Remove an user from a data structure */
/* ... */
assert (NumberOfUsers >= 0);

LAST MODIFIED: FEBRUARY 20, 2015

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)
LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 3.0

mailto:fantozzi@dei.unipd.it
http://creativecommons.org/licenses/by-sa/3.0/

