
ANDROID SECURITY
EMBEDDED SYSTEM PROGRAMMING 2015/2016

PAOLO MONTESEL

BACKGROUND
Security is hard
Android was designed with a multi-layered security
architecture
Android has had many security problems in the past and
still has
Google is actively working on it
End-user actions are also considered in order to mitigate
Social Engineering attacks
Vendor-speci�c �avours of the OS can introduce new bugs
and delay security patches

SECURITY GOALS
Protect user data
Protect system resources
Provide application isolation

OVERVIEW

SECURITY PROGRAM
The entire development lifecycle of Android is subjected to a

rigid security program:

Design Review: Each major feature is reviewed by
engineers and security experts
Penetration Testing/Code Review: OS components are
subject to security reviews both from Google and 3rd party
consultants.
Community Review: AOSP code is open and can be
reviewed by anyone
Incident Response: Google has a dedicated team in charge
of providing rapid mitigation and minimize risk when a bug
is reported.

SECURITY MECHANISMS
Security at the OS level through the Linux kernel
Mandatory application sandboxing
Secure IPC
Application signing
Application-de�ned, user-granted permissions

BRIEF ANDROID SECURITY HISTORY
1.5: ProPolice and buffer/integer over�ow protections
2.3: Format String protections, No eXecute (NX) bit
3.0: Full Disk Encryption
4.0: Address Space Layout Randomization (ASLR), secure
credentials storage
4.1: Position Independent Executables (PIE) support
4.3: SELinux (permissive mode), no more setuid/setgid
programs, hardware-backed secure credentials storage
4.4: SELinux (enforcing mode), Certi�cate Pinning
5.0: Better Full Disk Encryption, encryption by default,
non-PIE support dropped
6.0: Runtime permissions, veri�ed boot, Fingerprints

ANDROID SOFTWARE
STACK

ANDROID SOFTWARE STACK

KEY CONCEPTS
Each layer in the software stack assumes that the
components below are properly secured
All code above the Linux Kernel is restricted by the
Application Sandbox (excluding a small amount of Android
code running as root)
Device Hardware: Android is processor-agnostic but takes
advantage of hardware-speci�c security features
Android OS: Built on top of Linux. Device resources are all
accessed through the OS
Android App Runtime: Both Dalvik and native applications
run in the Application Sandbox

APPLICATION SANDBOX
Kernel-level sandbox
Each application has a unique user ID
Each application runs on a separate process
Apps have limited access to the OS by default
Apps cannot interact with each other by default
Native code as secure as the Dalvik code
To break out of the Sandbox, an attacker must often
compromise the Linux Kernel

APPLICATION SANDBOX
If an app requires a permission, it is assigned the
corresponding group ID
If two App's certi�cates match, they can share the same
UID

PERMISSION MODEL

PERMISSION MODEL
By default, Apps can access a limited range of system
resources
Certain APIs are missing on purpose (e.g.: direct SIM-card
manipulation APIs)
Sensitive APIs are protected through a permission
mechanism

Declared in the AndroidManifest.xml
Accepted by the user at install-time
Requested at run-time from Android 6.0 onwards

Special treatment is given to cost-sensitive APIs like SMS

APPLICATION SIGNING

APPLICATION SIGNING
Identi�es the author of an App
Allows for automatically updating Apps in a secure manner
Proves the integrity of the APK
If two APKs' signatures match, they can choose to use the
same UID
Since Android 4.2, Apps are veri�ed by default and the OS
can block the installation of harmful APKs

AUTHENTICATION

AUTHENTICATION
Android 6.0 introduces a new Hardware Abstraction Layer
(HAL) for hardware-based security
Used by Fingerprint API, Lockscreen, Device Encryption
and Client Certi�cates
Protect keys against kernel compromise or physical attacks
Keystore: hardware-backed storage for keys, usually
including a Trusted Execution Environment (TEE)
Gatekeeper: Components for PIN/pattern/password
authentication
Fingerprint: Components for �ngerprint authentication

ARCHITECTURE
Gatekeeper and Fingerprint components interact with the
Keystore through the use of Authentication Tokens
At �rst boot, a 64-bit User SID (Secure IDenti�er) is
created from Gatekeeper information
SID identi�es the user and is the token used to access his
cryptographic material
AuthTokens contain the SID
Hardware enforces a minimum amount of time between
authentication attempts in order to avoid bruteforcing
Keys don't leave the TEE

AUTHENTICATION FLOW

FULL DISK ENCRYPTION

FILESYTEM ENCRYPTION
Full FS encryption can be enabled on Android devices since
Android 3.0.
Android 5.0 improves FS encryption: faster encryption,
encrypt on �rst boot, patterns and encryption without
password, hardware-backed storage of keys
Uses 128-bit Advanced Encryption Standard (AES) with
cipher-block chaining (CBC). 256-bit key is reccomended
for optimal security

SECURITY THREATS

ANDROID SECURITY THREATS
Permission mechanism is too coarse
Vendors don't support old devices (no security �xes)
Privilege escalation using old kernel bugs (that's what
rooting Apps do)
APK repacking with malware
Apps signed with the same certi�cate can leverage the
shared UID to share sensitive data
Bugs in the Trusted Execution Environment
implementations (Qualcomm's had serious security �aws)

CASE STUDY: STAGEFRIGHT

STAGEFRIGHT
Group of bugs in the Stagefright component of AOSP
Discovered by Joshua Drake of the Zimperium security
�rm
Announced on July 27, 2015
Allows an attacker to perform remote code execution and
privilege escalation on a device
Affects all Android versions from Froyo (2.2) to Lollipop
(5.1.1): 95% of devices at the time
Exploits integer over�ows of libstagefright's MP4 parsing
code

IMPACT
Bugs are triggered by simply playing an MP4 video
Can be triggered automatically by an MMS thanks to
Hangout's video pre-loading
Requires no user interaction
Totally invisible to the user, as an exploit can erase the
MMS through code
Requires an Over-The-Air (OTA) update from the phone
manufacturer to get �xed
First �xes didn't actually �x the problem

RUNNING PRIVILEGES
Luckily, stagefright doesn't run as root
Still, it runs inside the media server
More privileges than normal Apps: camera, audio, sockets,
bluetooth
On some devices, even more: graphic devices, sdcard_r,
internal media R/W, adb shell

CONCLUSION

CONCLUSION
Android security is a though problem, but it's improving
Developers must be careful, especially when using NDK
Users should not install APKs from 3rd parties (e.g.:
cracked APKs)
Rooting Apps are basically exploiting your OS
If a rooting App can run code as root, any App can
Keep your phone updated :)

BIBLIOGRAPHY (1)
Android Security
P. Faruki et al., "Android Security: A Survey of Issues,
Malware Penetration, and Defenses"
Felt, Adrienne Porter, et al. "A survey of mobile malware in
the wild." Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices.
ACM, 2011.

https://source.android.com/security/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6999911&isnumber=7110413
https://people.eecs.berkeley.edu/~daw/papers/mobilemal-spsm11.pdf

BIBLIOGRAPHY (2)

Stagefright: Scary Code in the Heart of Android, Black Hat
USA '15

Vidas, Timothy, Daniel Votipka, and Nicolas Christin. "All
Your Droid Are Belong to Us: A Survey of Current Android
Attacks." WOOT. 2011.

(slides) (video)
Extracting Qualcomm's KeyMaster Keys - Breaking
Android Full Disk Encryption

https://www.usenix.org/legacy/event/woot11/tech/final_files/Vidas.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.youtube.com/watch?v=71YP65UANP0
https://bits-please.blogspot.it/2016/06/extracting-qualcomms-keymaster-keys.html

THE END

