
EMBEDDED SYSTEMS

PROGRAMMING 2015-16
Language Basics

(PROGRAMMING)

LANGUAGES

"T
h
e
 t

o
w

e
r

o
f
B

ab
e
l"

 b
y

P
ie

te
r

B
ru

e
ge

l
th

e
 E

ld
e
r

K
u
n
st

h
is

to
ri

sc
h
e
s

M
u
se

u
m

,
V

ie
n
n
a

ABOUT THE LANGUAGES

C (1972)

Designed “to replace assembly language” and still being efficient

Standard: ISO/IEC 9899:2011 (latest version, December 2011)

C++ (1983)

Designed to add object orientation to C while still allowing low-level

(sometimes nasty) operations. 99.9% compatible with C.

Standard: ISO/IEC 14882:2014 (latest version, December 2014)

Java (1993)

Designed to be easier and less error-inducing than C++

Standard: none, interested parties decide the way to follow via the JCP

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=64029&ICS1=35&ICS2=60

PARADIGMS

The aforementioned languages can be considered

imperative
The program is composed by a series of statements

that dictate what should be done

structured
Control structures (loops, etc.) are available

procedural
Control structures called “subroutines” are available

for C++ and Java: object-oriented

OBJECT ORIENTATION

Several modern programming languages embrace

the object-oriented (OO) paradigm

Data and code must/can be encapsulated

into special structures called objects

Encourages associations with real-world entities,

which should make programming easier

Favors code modularity

More about OO programming in a dedicated lecture

(C)

C++

JAVA

FORMATTING

The following rules apply to all 3 languages

(C, C++, Java)

White spaces separate names and keywords

Statements are terminated by a “;”

COMMENTS

The following rules apply to all 3 languages

(C, C++, Java)

Anything from “//” to the end of a line is a comment

Anything enclosed between “/*” and “*/” is a

comment

COMMENTS: JAVA

In Java, a comment starting with two asterisks is a

documentation comment

A documentation comment describes the declaration

that follows it

Many IDEs are able to handle and/or extract

documentation comments

NAMES

The following rules apply to all 3 languages

(C, C++, Java)

A name includes letters, numbers and “_”.

The first character must be a letter

No white spaces allowed inside a name

Names are case sensitive

VARIABLES

The following rules apply to all 3 languages
(C, C++, Java)

The languages are statically-typed: all variables must be
declared before use

A declaration contains the data type and the name of the
variable

A default value may be optionally specified

VARIABLES: INITIALIZATION

Java: if no value is provided, variables are initialized

to zero by default

C, C++: if no value is provided, variables assume a

random value

PRIMITIVE DATA TYPES (1/2)

The following data types are common to all 3 languages

(C, C++, Java)

short: 16-bit signed two’s complement integer

int: 32-bit signed two’s complement integer

float: 32-bit IEEE 754 floating point

double: 64-bit IEEE 754 floating point

C, C++:

32-bit computer}

PRIMITIVE DATA TYPES (2/2)

The following data types are common to all 3

languages (C, C++, Java)

Enumerated type (enum): a set of named values.

Use enum types to represent a fixed set of constants

known at compile time

http://en.wikipedia.org/wiki/Value_(computer_science)

PRIMITIVE DATA TYPES: JAVA

byte: 8-bit signed two’s complement integer

boolean: only two values, i.e. true and false

char: 16-bit Unicode character

All the integer types are always signed

PRIMITIVE DATA TYPES: C, C++

bool: only two values, i.e. true and false

char: 8-bit character

void: generic identifier, does not imply type

Integer data types can be unsigned

Pointers to data (more on this later)

PRIMITIVE DATA TYPES:

EXAMPLES (1/2)

All 3 languages:

Java:

PRIMITIVE DATA TYPES:

EXAMPLES (2/2)

C and C++:

ARRAYS

The following rules apply to all 3 languages

(C, C++, Java)

An array is a container that holds a fixed number L

of values of the same data type

L is established when the array is created

The i-th element of an array A is identified by A[i],

with i ranging from 0 (zero) to L-1

ARRAYS: EXAMPLES

Definition of an array of integers in Java:

Definition of an array of integers in C and C++:

STRINGS

Java: Unicode character strings are a primitive data

type handled through the String class.

Once created, a String object cannot be changed.

C++: no strings, but the standard string class

emulates them via null-terminated arrays of char

C: no strings, no libraries,

only null-terminated arrays of char

STRINGS: EXAMPLES

Java

C++

C

CONSTANTS

To declare a variable as constant

Java: prepend the final keyword

C, C++: prepend the const keyword

OPERATORS

Common to all 3 languages (C, C++, Java)

Assignment: =

Arithmetic: + - * / % ++ --

Bitwise: & | ~ ^ << >>

Relational: == != <= >= < >

Conditional: && ||

OPERATORS: JAVA

The + operator is a concatenation operator when

at least one of its operands is a string

(more about strings later)

OPERATORS: EXAMPLES

The following expressions are equivalent

FUNCTIONS

Function: piece of code that can be invoked to

perform a specific task

Identified by a function name

Can receive one or more input parameters

Can return at most one output parameter

Java: no functions, only methods (e.g., functions inside

a class)

DECLARATION

VS. DEFINITION

Declaration: only the name and parameters (i.e., the

function prototype) are specified

Definition: code for the function (i.e., the function

implementation) is provided

Declaration and definition can be provided together

or kept separate

Mutatis mutandis, the same can be said also for

variables, methods, classes...

FUNCTIONS: EXAMPLES

Declarations in C and C++

RETURN

C, C++, Java:

used to specify the return value of a function

or a method

Terminates the execution of the function/method

HEADER FILES (1/2)

C, C++: contain declaration of variables and classes,

prototypes of library functions, ...

Use the .h extensions.

Can be included (and therefore shared) by many

source files.

#include directive

EXAMPLE: C++

sum.h: contains the declaration of function sum

sum.cpp: contains the definition of function sum

program.cpp: uses function sum

HEADER FILES (2/2)

Java: no header files. Identifiers are automatically

extracted from source files,

read from dynamic libraries

PACKAGES AND NAMESPACES

Java: Package. C++: Namespace

Purpose: grouping names into contexts so as to avoid

naming collisions

You must use the fully qualified name of an element in

a package/namespace, unless you previously declared

that the package/namespace is being used

EXAMPLE: JAVA

Code not explicitly declared within a package goes

into the unnamed package

In another source file:

EXAMPLE: C++

Code not explicitly declared within a namespace goes

into the global namespace

In another source file:

ENTRY POINT OF A

PROGRAM

Java: “main(…)” method of the entry class (can be specified if

the program is inside a JAR)

C, C++: “main(…)” function

The “…” in “main(…)” indicates the program’s parameters

Syntax for parameters is fixed

“HELLO WORLD!”: JAVA

Hello.java

“HELLO WORLD!”: C

Hello.c

“HELLO WORLD!”: C++

Hello.cpp

“HELLO WORLD!”: TRUE C++

Hello2.cpp

CONDITIONAL EXECUTION

Common to all three languages

if(…) {…} else {…} construct:

the boolean condition inside (…) is calculated;

if it evaluates to true, then the code inside the former

pair of curly braces is executed, otherwise the code

inside the latter pair

The else {} part is optional: if it is not specified and

the condition evaluates to false, no code is executed

EVALUATION RULE

Beware of the evaluation rule for subclauses!

Short-circuit evaluation: subclauses are evaluated

from left to right and the evaluation stops as soon as

the boolean value of the whole clause is univocally

determined

Can be an issue if some subclauses perform

assignments or have other side effects

SWITCH(...)...CASE

Common to all three languages

The (non-boolean) expression following switch is

evaluated, then the case clause associated with the

value is executed

No case for the value: no code is executed

default keyword (optional): used to label a block

of statements to be executed if no case matches

SWITCH(...)...CASE: EXAMPLE

Adapted from Wikipedia

LOOPS (1/3)

Common to all three languages

for(…) loop

The loop is executed as long as the condition is true

(possibly forever)

LOOPS (2/3)

Common to all three languages

while(…) loop

The loop is executed as long as the condition is true

(possibly forever, possibly zero times)

LOOPS (3/3)

Common to all three languages

do…while(…) loop

The loop is executed as long as the condition is true

(possibly forever, at least one time)

LOOPS: EXAMPLES

C, C++, Java

At the end of the program, A=B=C

BREAK

Common to all three languages

Terminates the execution of one of the following:

switch(…)...case

for(…) loop

while(…) loop

do…while(…) loop

BREAK: EXAMPLE

A fourth way to initialize an array

GOTO

C and C++: transfers execution to a specific

source position, identified by a label

goto gained a bad name; it is seldom used nowadays

Java: although reserved as a keyword, goto is not

used and has no function

GOTO CONSIDERED HARMFUL

Edsger W. Dijkstra

Communications of the ACM
March 1968

http://dx.doi.org/10.1145/362929.362947

POINTERS (1/3)

C and C++ only. No pointers in Java!

A pointer is a data type that do not contain data:

it contains the address of data stored elsewhere

p

p is a pointer to a

a

POINTERS (2/3)

Definition of a pointer

Assignment of an address to a pointer via the
reference operator &

Access to pointed data via the dereference
operator *

POINTERS (3/3)

The size of a pointer is equal to the size of addresses

on the host machine (nowadays, 32 or 64 bits)

A pointer may be NULL

(i.e., it does not point to anything valid)

If a pointer is not NULL, there is no way to tell

whether it points to valid data or not

VOID POINTERS (1/2)

void pointers point to a value that has no type
(and thus also no specified length)

void pointers can point to any kind of data

but cannot be directly dereferenced

VOID POINTERS (2/2)

C allows implicit conversion from void* to other

pointer types

C++ does not

(an example of incompatibility between C and C++)

POINTER ARITHMETIC

C and C++ only

Arithmetic operators can be applied to pointers

When calculating a pointer arithmetic expression, the

integer operands are multiplied by the size of the

object being pointed to

MALLOC, FREE

C: dynamic memory must be allocated with the malloc

stdlib function, and must be explicitly released with free

C++: dynamic memory can be managed with the library
functions malloc and free, or with the new and delete

language operators

LAST MODIFIED: FEBRUARY 29, 2016

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)

LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 3.0

