
EMBEDDED SYSTEMS

PROGRAMMING 2015-16
More About Languages

JAVA: ANNOTATIONS (1/2)

Structured comments to source code (=metadata).

They provide data about the code, but

they are not part of the code itself

Can be used

by the compiler to detect errors or suppress warnings

by software tools to generate documentation, code, ...

Insert an annotation by prepending an “@”

Not available in C and C++

JAVA: ANNOTATIONS (2/2)

Sample annotations used by the Java compiler

@Deprecated: indicates that the annotated element

should no longer be used

@Override: informs the compiler that the element

is meant to override an element declared in a

superclass

@SuppressWarnings: tells the compiler to

suppress a set of specific warnings

COPY CONSTRUCTOR

Java, C++

The copy constructor is a special constructor used

when a newly-instantiated object is a copy of an

existing object

First argument of the CC: must be a reference to an

object of the same type as the one being constructed

COPY CONSTRUCTOR: C++

A default CC is automatically generated by the

compiler, but an user-provided CC is mandatory

when the class

allocates memory dynamically,

owns non-shareable references,

such as references to files

COPY CONSTRUCTOR:

EXAMPLES (1/2)

Java

COPY CONSTRUCTOR:

EXAMPLES (2/2)

C++

JAVA: COPY CONSTRUCTOR

VS. CLONING

Java: an object can be copied by implementing

either the copy constructor or the clone() method

However, cloning is less flexible.

Example: clone() can’t initialize blank final

variables, while a constructor can

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlclone()

NESTED CLASS

Java, C++

A nested class is a class declared within the body of

another class or interface; no special syntax

A nested class is a member of its enclosing class

A nested class interacts with the instance members of

its outer class (and other classes) just like any other

top-level class

JAVA: INNER CLASS

A non-static nested class is called an inner class

Inner classes have access to members of the

enclosing class, even if they are declared private;

fields must be final

Static nested classes are allowed access only through

an object reference

Inner classes cannot define static members

JAVA: EXAMPLES

Instantiation of a static nested class

Instantiation of an inner class: instantiate the outer

class first, then create the inner object within the

outer object

JAVA: ANONYMOUS CLASS

Inner class without a name

Declaration coincide with instantiation, hence it must

take place inside a method

An inner class declared inside a method (with or

without a name) is called a “local class”

C++: NESTED CLASS

A nested class can directly use names, type names,

names of static members, and enumerators only from

the enclosing class

A nested class can be declared and then defined later

The declaration/definition of a nested class do not

cause any object to be instantiated: instantiation must

be explicit

structs and unions can be nested as well

C++: EXAMPLE

C++: VIRTUAL FUNCTION

Member function (=method) of a class, whose

functionality can be overridden in its derived classes

Declared with the virtual keyword

Differently from plain overloading, calls are resolved

at run time (more on this later)

Mandatory when a base-class pointer is used to

access an overridden method of the derived class

VIRTUAL FUNCTION:

EXAMPLE

Were print() not declared virtual, the method

of the base class would be called in main()

ABSTRACT CLASS

A class whose definition is incomplete.

It cannot be instantiated: it can only be subclassed

Java: abstract classes (and methods); interfaces

C++: abstract classes; pure virtual methods

JAVA: INTERFACE

Group of related methods with empty bodies

(i.e., undefined methods)

To be used, an interface must be implemented
by a class

JAVA:

ABSTRACT CLASS/METHOD

Abstract method: a method that is declared

(without braces and followed by a semicolon, as in a

C++ declaration) but not defined

Abstract class: a class that is declared abstract.

It may or may not include abstract methods.

It cannot be instantiated, but it can be subclassed

Unlike interfaces, abstract classes can contain

fields that are not static and final,

implemented methods

C++: ABSTRACT CLASS

Pure virtual function: a method that is declared

virtual, not defined, and followed by “=0;”

Abstract class: a class that contains at least one pure

virtual function

REFERENCES (1/3)

Java

Objects (including some data types, such as arrays) are

manipulated not directly, but by reference, i.e., via a “handle” to

the object

References are null when they do not reference any object

The use of references is so pervasive that imprecise statements

are often made, e.g., “Pass an object to the method” (wrong)

instead of “Pass an object reference to the method” (correct)

REFERENCES: QUIZ 1

Java

What is the value of p.y at the end of the code

fragment? Is it 1.0 or 2.0?

REFERENCES: QUIZ 2

Java

Does (s == t) evaluate to true or false?

Example from “Java in a Nutshell”

http://docstore.mik.ua/orelly/java-ent/jnut/ch02_10.htm

JAVA VS. C++ (1/3)

Java:

p is a reference to a Point object

C++:

p is an object of type Point, i.e., an instance of

Point

JAVA VS. C++ (2/3)

Java:

p is a reference to a Point object

C++:

p is a pointer to a Point object, i.e.,

it contains the memory address of a Point object

JAVA VS. C++ (3/3)

Java:

When the member foo ends: p is destroyed and the Point
object is no longer referenced, so the garbage collector
destroys it as well

C++:

When the member foo ends: p is destroyed, the Point
object is no longer referenced but nobody destroys it
(memory leak)

REFERENCES (2/3)

C++ (and C)

A reference to an entity is an alternate name
for that entity

When you change a reference, you change the

content of the referent

POINTERS VS. REFERENCES

C++ (and C)

Pointer
Distinct from the object it points to
The “*” operator is required to dereference an address
The value of the pointer can be changed
Can be NULL

Reference
Different name for the object it points to
No operator required to dereference
Once bound to an object, it cannot be changed
Can’t be NULL

REFERENCES (3/3)

C++ (and C)

Parameters are frequently passed by reference,

not by value

& VS. & (NO KIDDING)

C++ (and C)

The symbol “&” is used

to define a reference

for the address-of operator

REFERENCES IN C++

References are further used while redefining

operators

NAME BINDING

The act of associating identifiers (of fields, of

members, ...) with the correct class/object/function/...

Static binding (aka early binding)

“Binding as you know it”: the association is

performed at compile time

Dynamic binding (aka late binding)

The association is performed at run time since at

compile time there is not enough information to

determine which object must be called

DYNAMIC BINDING: PROS

It increases flexibility:

some decisions are not hardwired in the source

code, but they are taken only at run time

It allows for more extensible software:

new classes can be added at run time without

recompiling, and without even knowing their source

code

DYNAMIC BINDING: CONS

It is slower:

a search into a suitable data structure must be

performed at run time to determine which

object/method to use

BINDING: EXAMPLES (1/3)

Both examples are in Java

Example: static binding of an object

Another example: is this static or dynamic binding?

BINDING: EXAMPLES (2/3)

Example: dynamic binding of objects in Java

BINDING: EXAMPLES (3/3)

Example: dynamic binding of objects in C++

RUN TIME

METHOD INVOCATION

Is it possible to invoke a method that is dynamically

chosen at run time?

Java: yes, use the Method class

C++: yes, use pointers to member functions

JAVA: THE METHOD CLASS

Part of the java.lang.reflect package (more on reflection
later)

Provides access to - and information about - a single method of a
class or interface.
Both class and instance methods can be accessed

Object invoke(Object obj, Object... args)

Invokes the method of obj represented by the instance of
Method

Method getMethod(String name, Class<?>...

parameterTypes)

Part of class Class. Returns a reference to a method

http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/AccessibleObject.html
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Method.htmlinvoke(java.lang.Object, java.lang.Object...)
http://docs.oracle.com/javase/7/docs/api/java/lang/Class.htmlgetMethod(java.lang.String, java.lang.Class...)
http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html

METHOD CLASS: EXAMPLE

Invoking different object methods in different

situations. The method is chosen at run time

POINTERS TO FUNCTIONS

C++: as in C, it is possible to define a pointer to a

function

POINTERS TO

MEMBER FUNCTIONS

C++: it is possible to define a pointer to a member

function, i.e., a pointer to a method

REFLECTION

Reflection: the process by which a computer

program can observe and modify its own structure

and behavior at run time

Data and code structures can be manipulated as well

For OO languages: classes and objects can be

observed and modified as well

TYPE INTROSPECTION

Type introspection: the process by which an OO

program can determine the type of an object at run

time

Supported by Java and C++

Key functionalities: determining whether an object...

...is an instance of a given class

...inherits from the specified class

INTROSPECTION: JAVA (1/2)

Introspection is natively supported in Java;
some support is also provided by java.lang.Object

getClass() method
Inherited from java.lang.Object.
Returns a type token Class<T>, i.e., an instance of the
class Class that represents the class of the calling object.
Allows to check whether an object is an instance of a given class

instanceof operator
Returns true if the expression on its left can be cast
to the type on its right.
Allows to check whether an object is an instance of
(or inherits from) a specified class

http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html

INTROSPECTION: JAVA (2/2)

Example: invoking instanceof and getClass()

INTROSPECTION: C++ (1/2)

Introspection is natively supported in C++

typeid(obj) operator

Returns a reference to an object of type type_info that

describes the type of object obj.

Allows to check whether obj is an instance of a given class

dynamic_cast<target-type>(pr) operator

Succeeds if pr is a pointer (or reference) to either an

object of type target-type or an object derived from it.

If it succeeds, a valid pointer/reference is returned.

Allows to check whether pr is derived from a given class

INTROSPECTION: C++ (2/2)

Example: using typeid and dynamic_cast

PARAMETERIZED TYPES (1/2)

Define a class without knowing what datatype(s)
will be handled by the operations of the class

The code must operate with any datatype(s) specified

at instantiation time (“generic programming”)

Less source code duplication, same object code

Example: a single, parametrized quicksort routine can

sort data of any type (provided data can be compared)

PARAMETERIZED TYPES (2/2)

Java: generic types (aka “generics”)

C++: template classes

WHY NOT OBJECT?

A “very base” class (e.g., Object in Java) can be used

instead, with the real object type inspected at runtime

Coherency inside the class (all methods passing the same

object type) manually handled

No error detection at compile time

JAVA: GENERIC TYPE

Generic class or interface parameterized over types

Names of type parameters delimited by angle

brackets; names purely conventional

Names can be freely used inside the class/interface

NAMING CONVENTIONS

Type parameter names are single, uppercase letters

E - Element

K - Key

N - Number

T - Type

V - Value

GENERIC TYPE: EXAMPLE

Definition

Instantiation: replace the generic type with some

concrete value

C++: TEMPLATE

Template class: definition

Template function: definition

Template variable (C++14): not talking about it

TEMPLATE CLASS: EXAMPLE

Definition

Instantiation: replace the generic type with some

concrete value

TEMPLATE FUNCTION:

EXAMPLE

A parametrized quicksort

C
o

d
e
:

ja
va

2
s.

co
m

http://java2s.com

CONCURRENCY: JAVA

Concept of thread,

associated with an instance of the class Thread.

Every program has at least one thread

and can create more

Support for synchronization via the wait(),

notify() (Object class) and join() methods

(Thread class)

Support for mutually exclusive access to resources

with the synchronized keyword

THREAD CLASS

Implements the interface Runnable with the single

method run(), which contains the code to be run.

In the standard implementation, run() does nothing

Two strategies for creating a new thread

1. Instantiate a class derived from Thread

2. Create an instance of Thread, and pass to the

constructor an object implementing Runnable

CREATING A THREAD (1/2)

First strategy

Subclass Thread and override the run() method,

then create an instance of the subclass

C
o

d
e
:
d
o

cs
.o

ra
cl

e
.c

o
m

http://docs.oracle.com

CREATING A THREAD (2/2)

Second strategy

Create an instance of Thread,

pass a Runnable object to the constructor

C
o

d
e
:
d
o

cs
.o

ra
cl

e
.c

o
m

http://docs.oracle.com

THREAD CLASS: SOME METHODS

void start()

Causes the thread to begin execution

void setPriority(int newPriority)

Changes the priority of the thread

static void sleep(long millis, int nanos)

Causes the thread to pause execution for the specified number of milliseconds plus the

specified number of nanoseconds

public final void wait(long timeout) (inherited from Object)

Causes the thread to wait until either another thread invokes the notify() method or a

specified amount of time has elapsed

public final void notify() (inherited from Object)

Wakes up the thread

void join()

Causes the current thread to pause execution until the thread upon which join() has

been invoked terminates. Overloads of join() allow to specify a waiting period

SYNCHRONIZED METHODS

No two concurrent executions of synchronized

methods on the same object are possible

Mutual exclusion: invocations are serialized.

The object behaves like it has a global lock which all

its synchronized methods must acquire

(indeed, it is exactly so)

Constructors cannot be synchronized

(does not make sense anyway)

EXAMPLE

If an object is visible to more than one thread, all

reads or writes to that object’s variables can be done

through synchronized methods to avoid some

concurrency issues

C
o

d
e
:
d
o

cs
.o

ra
cl

e
.c

o
m

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

SYNCHRONIZED STATEMENTS

Any statement, or group of statements, can be

declared as synchronized by specifying the object

that provides the lock

All accesses to the statement(s) are serialized

Improves concurrency: only a portion of a method is

serialized

EXAMPLE

In the following code, there is no reason to prevent

interleaved updates of c1 and c2

C
o

d
e
:
d
o

cs
.o

ra
cl

e
.c

o
m

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

JAVA: MORE ON

CONCURRENCY

Look at the packages

java.util.concurrent

java.util.concurrent.atomic

java.util.concurrent.locks

CONCURRENCY: C++

Concept of thread,

associated with an instance of the class Thread.

Every program has at least one thread

and can create more

Support for synchronization via the join() and

detach() methods of the Thread class

Support for mutually exclusive access to resources

with atomic types and mutex classes

THREAD CLASS

A thread starts immediately when an object is
instantiated from the class Thread

The code to be run is passed inside a function

as a parameter to the constructor of Thread

Further arguments for the constructor

are passed as parameters to the function

EXAMPLE

THREAD CLASS: SOME

METHODS

bool joinable()

Returns true if the thread object is joinable, i.e., it actually
represents a thread of execution, and false otherwise

id get_id()

If the thread object is joinable, returns a value that uniquely
identifies the thread

void join()

Causes the current thread to pause execution until the thread
upon which join() has been invoked terminates

void detach()

Causes the current thread to be detached from the thread upon
which detach() has been invoked

ATOMIC TYPES

Atomic types are types that are guaranteed to be

accessible without causing race conditions

Some examples:

Atomic type Contains

atomic_bool bool

atomic_char char

atomic_int int

atomic_uint unsigned int

MUTEXES

Allow mutually-exclusive access to critical sections of the source code

mutex class

Implements a binary semaphore. Does not support recursion (i.e., a thread shall

not invoke the lock() or try_lock() methods on a mutex it already owns):

use the recursive_mutex class for that

timed_mutex class

A mutex that additionally supports timed “try to acquire lock” requests
(try_lock_for(…) method)

void lock(…) function

Locks all the objects passed as arguments, blocking the calling thread until all locks

have been acquired

bool try_lock(…) function

Nonblocking variant of lock(…). Returns true if the locks have been successfully

acquired, false otherwise

LAST MODIFIED: APRIL 29, 2016

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)

COPYRIGHT ON SOME EXAMPLES, AS NOTED IN THE SLIDES: ORACLE AMERICA INC.

LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 4.0

ORACLE LICENSE: HTTP://WWW.ORACLE.COM/TECHNETWORK/LICENSES/BSD-LICENSE-1835287.HTML

