
EMBEDDED SYSTEMS PROGRAMMING 2015-16 OpenCV

OPENCV 3.1

- "OpenCV" = "Open Computer Vision": library of computer vision algorithms, free and open source
- Cover machine learning as well
- Supports Windows, Mac OS, Linux,
 Android, iOS
- Written C++;
 additional interfaces for C, Python, Java, MATLAB

OpenCV

OPENCY: LICENSE (1/2)

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- * Neither the name of the <organization> nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

OPENCY: LICENSE (2/2)

Modified BSD license ("BSD-new")

- Redistribution and use in source and binary forms,
 with or without modification, are permitted
- (Yes, the license does not require to publish modified source code)
- Redistributions must reproduce the OpenCV copyright notice, advertising material must not

OPENCY: APPLICATIONS

- Facial recognition
- Gesture recognition
 and human-computer interaction in general
- Augmented reality

- Motion tracking
- Mobile robotics

OPENCY: MODULES (1/5)

- core: contains all of the basic object types and their basic operations
- imgproc: basic transformations on images, filters and convolutional operators
- highgui: platform-independent GUI and media I/O functions to read/display images, or to get user input
- video: motion analysis and object tracking
 - calib3d: camera calibration and 3D reconstruction

OPENCY: MODULES (2/5)

- features2d: algorithms for detecting, describing and matching keypoint features
- objdetect: algorithms for detecting specific objects (requires training)
- ml: algorithms for statistical classification, regression and clustering of data
 - flann: clustering and search in multi-D spaces (mostly used by other OpenCV modules)

OPENCY: MODULES (3/5)

- photo: computational photography (inpainting, image denoising)
- stitching: image stitching pipeline
- superres: a few algorithms to enhance image resolution by exploiting the information in multiple frames
- viz: functions for 3D visualization

OPENCY: MODULES (4/5)

- gpu: CUDA-accelerated computer vision
- ocl: OpenCL-accelerated computer vision
- contrib: contributed/experimental functionality
- nonfree: non-free (e.g., patented) functionality
- legacy: deprecated functionality

OPENCY: MODULES (5/5)

- imgcodecs: image file reading and writing
- videoio: media I/O
- videostab: video stabilization

cuda* (cudaarithm, cudafilters, cudaimgproc, ...):
 further CUDA-accelerated functions

OPENCY: EXTRA MODULES (1/4)

- aruco: detection of <u>ArUco</u> fiducial markers
- bgsegm: improved background-foreground segmentation methods
- bioinspired: biologically inspired vision models and tools
- ccalib: custom calibration pattern for 3D reconstruction
- cvv: GUI for interactive visual debugging
- datasets: framework for manipulating datasets
 (loading data, evaluating different algorithms, etc.)

OPENCY: EXTRA MODULES (2/4)

- dnn: Deep Neural Network module
- dpm: object detection with Deformable Part-based Models
- Isface: face recognition algorithms
- fuzzy: image processing based on fuzzy mathematics
- hdf: Hierarchical Data Format I/O routines
- line_descriptor: binary descriptors for lines extracted from an image
- matlab: MATLAB bridge

OPENCY: EXTRA MODULES (3/4)

- optflow: optical flow algorithms
- plot: plot functions for matrix (Mat) data
- reg: image registration algorithms
- rgbd: RGB+Depth processing
- saliency: algorithms for the detection of salient objects
- sfm: Structure From Motion algoritms
- stereo: algorithms for computing stereo correspondence
- structured_light: structured light API

OPENCY: EXTRA MODULES (4/4)

- surface_matching: 3D object recognition
- text: text detection and recognition
- tracking: long-term object tracking API
- xfeatures2d: experimental and non-free 2D features
- ximgproc: additional image processing algorithms
- xobjdetect: additional object detection algorithms
- xphoto: additional photo processing algorithms

CORE

- Data structures (points, arrays, matrices...)
- Operations on data structures including DCT, DFT, sorting, PCA, SVD, eigenvalues, eigenvectors
- Clustering, partitioning
- Drawing functions
- XML/YAML file storage

COMMON DATA TYPES

- Point: 2-D point
- Point3: 3-D point
- Scalar: 4-element vector
- Mat: n-dimensional dense array
 (i.e., n-dimensional dense matrix)

In C++ they are template classes,
 in Java elements are doubles

IMGPROC (1/3)

Image filtering

Blur, smooth, noise reduction, erosion/dilation

White the same of the same

- Computing image derivatives, edge detection
- Convolution with a kernel

Image transformations

- Affine transform, perspective transform, resize
- Rectification, compensation of lens distortion
- Linear-polar space conversion, color space conversion
- Flood fill, thresholding, image segmentation

IMGPROC (2/3)

- Histograms
- Structural analysis and shape descriptors
 - Contours: detection, calculation of lengths and areas
 - Image moments
 - Approximation of a polygonal curve
 - Fit with a line, bounding box, convex hull, circle, ellipse

IMGPROC (3/3)

- Motion analysis and object tracking
 - Accumulation of images (with weights)
 - Phase correlation
- Feature and object detection
 - Corner detection
 - Edge detection
 - Detection of lines and circles
 - Detection of an arbitrary template

HIGHGUI

- Reading/writing image and video files Several image formats: BMP, DIB, JPG, J2K, PNG, TIFF, PBM, ... Supported video codecs are platformdependent. Images are read from / stored to matrices
- Video capturing from cameras

GUI functions for windows and mouse

VIDEO

- Optical flow
- Rigid transform estimation
- Motion estimation of a given silhouette
- Motion splitting into separate independent motions
- Background/foreground segmentation

FEATURES2D

Common data structures
 E.g., the KeyPoint class: models a salient point

- Feature detection (several algorithms)
- Blob detection

OBJDETECT

- Haar feature-based cascade of boosted classifiers
- Discriminatively trained latent SVM

- Both detectors require training
- Both must must be applied repeatedly to the image at different positions and scales

ML (1/3)

- Normal Bayes classifier
 Assumes that feature vectors from each class are normally distributed
- K-nearest neighbors (K-NN)
 Classification outcome is determined by analyzing K of the nearest neighbors of the sample
- Support vector machine (SVM)
 Both 2-class and n-class (n≥2) datasets are supported

ML (2/3)

- Expectation maximization (EM)
 Iterative algorithm for maximum-likelihood estimates
- Neural network
 Feed-forward multi-layer neural network.
 Three common activation functions are supported
- Decision tree
 Both ordered and categorical variables are possible

ML (3/3)

Random trees, extremely randomized trees
 Ensemble classifiers based on decision trees

- Boosting
 ML technique to addresses misclassified instances
 with a multi-step training procedure
- Gradient boosted trees
 Classification algorithm based on decision trees and boosting. n-class (n≥2) datasets are supported

OPENCY 3.1 & ANDROID (1/2)

- Only a subset of modules mapped to Java packages: calib3d, core, features2d, imgcodecs, imgproc, ml, objdetect, photo, video, videoio
- Only a subset of algorithms/functions in such modules
- Additional utils package for data types conversion.
 Additional android package: more about it later
- Documentation is lacking. Official distribution and samples still target the Eclipse IDE

CORE CLASS

- Available only in Java
- Part of the core package

 Collects, as static members, a large set of C++ functions for the manipulation of Mats

CORE CLASS: EXAMPLES

- Basic, element-wise operations
 (e.g., calculating the absolute value of all Mat elements)
- Matrix operations
 (calculating determinant, eingenvalues, PCA, SVD, ...)
- Operations on pairs of Mats (e.g., adding)
- Transforms (e.g., DCT, DFT)
- "Image" operations (e.g., flip a matrix along a row/column)

OPENCV 3.1 & ANDROID (2/2)

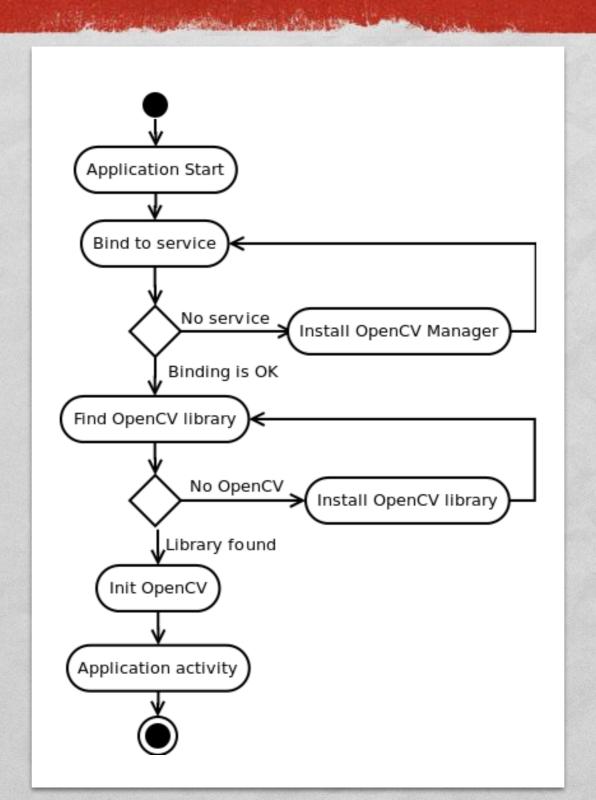
- android module
 - Interfaces and classes for initialization (more on initialization later)
 - Interfaces and classes to interact with the camera
 - Utils class for mat
 → Bitmap conversion
 - FpsMeter class to calculate FPS and display result

 If the Java interface is limiting you, switch to the NDK and access the full-fledged OpenCV

ANDROID: INITIALIZATION

- Static: the app package contains all OpenCV binaries (actually, several copies of them: one for each supported platform)
 - Uses tens of MBs per app
 - App update required when a new OpenCV version is out

 Dynamic: OpenCV binaries contained in the auxiliary app OpenCV Manager



OPENCY MANAGER

- Contains all versions of OpenCV;
 automatic HW acceleration on supported platforms
- Supports both Java and native code

- Must be installed separately
- Available in the Play Store
 and in the OpenCV distribution package

INIT WITH OCV MANAGER

OPENCYLOADER CLASS

Java class providing common initialization methods

- static boolean initDebug() Static initialization
- static boolean initAsync (String Version, Context AppContext, LoaderCallbackInterface Callback) Dynamic initialization with OpenCV version version. Returns true if initialization started successfully

LOADERCALLBACKINTERFACE

Java interface that specifies how initialization must be managed

All the state of t

- void onManagerConnected(int status) Called after an attempt to connect to OpenCV Manager has been made. The initialization status can be SUCCESS, INCOMPATIBLE MANAGER VERSION, INSTALL CANCELED, MARKET ERROR, INIT FAILED
- o void onPackageInstall(InstallCallbackInterface Callback)
 - Called when package installation is needed

BASELOADERCALLBACK CLASS

Java class implementing LoaderCallbackInterface

- Designed to work inside an activity;
 use inside a service requires modifications
- Calls Activity.finish() method to exit in case of initialization failure

INIT: EXAMPLE (1/2)

```
public class MyActivity extends Activity implements LoaderCallbackInterface
private BaseLoaderCallback mOpenCVCallBack = new BaseLoaderCallback(this)
   @Override
   public void onManagerConnected(int status)
      switch (status)
       case LoaderCallbackInterface.SUCCESS:
           Log.i(TAG, "OpenCV loaded successfully");
           // Create and set View
           mView = new puzzle15View(mAppContext);
           setContentView(mView);
        } break;
        default:
           super.onManagerConnected(status);
        } break;
};
```

INIT: EXAMPLE (2/2)

```
/** Call on every application resume **/
@Override
protected void onResume()
    Log.i(TAG, "Called onResume");
    super.onResume();
    Log.i(TAG, "Trying to load OpenCV library");
    if (!OpenCVLoader.initAsync(OpenCVLoader.OPENCV VERSION 2 4 6,
        this, mOpenCVCallBack))
        Log.e (TAG, "Cannot connect to OpenCV Manager");
```

REFERENCES

- OpenCV C++ API reference
- OpenCV Java API reference (includes Androidspecific classes)
- Android Development with OpenCV
- OpenCV 2.4 cheat sheet (C++)

LAST MODIFIED: APRIL 29, 2016

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT) LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 4.0