
EMBEDDED SYSTEMS

PROGRAMMING 2015-16
SQLite

DATA STORAGE: ANDROID

Shared Preferences

Filesystem: internal storage

Filesystem: external storage

SQLite

Network (Google Drive & more)

(Also available in iOS and WP)

http://developer.android.com/guide/topics/data/data-storage.html#pref
http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
http://developer.android.com/guide/topics/data/data-storage.html#filesExternal
http://developer.android.com/guide/topics/data/data-storage.html#db
https://developers.google.com/drive/android/
http://developer.android.com/guide/topics/data/data-storage.html#netw

SQLITE

Software library that implements a lightweitght
SQL database engine

No dependencies from external libraries

One source file (“amalgamation”), one binary file

Code is mature, extensively checked and portable

License: completely open

SQLITE: LICENSE

The author disclaims copyright

to this source code.

In place of a legal notice,

here is a blessing:

May you do good and not evil.

May you find forgiveness

for yourself and forgive others.

May you share freely,

never taking more than you give.

SQLITE: FEATURES

SQLite implements nearly all the features mandated

by the SQL-92 standard

Foreign key support is present since version 3.6.19

For more info on unimplemented features, look up

https://www.sqlite.org/omitted.html

https://www.sqlite.org/foreignkeys.html#fk_unsupported

http://en.wikipedia.org/wiki/SQL-92
https://www.sqlite.org/omitted.html
https://www.sqlite.org/foreignkeys.html#fk_unsupported

IMPORTANT

Regardless of the chosen platform, regardless of the

fact that you are embracing SQLite or not, what you

really need to work with an SQL database is

an understanding of the fundamental concepts
behind relational databases,

a good knowledge of the SQL language

SQL EPITOME (1/6)

An SQL database is a relational database made by one

or more tables.

A table is made up of columns and rows.
Each row represents a record.

Each column represents data associated with records

Constraints may be specified concerning data in a

table or relations between tables

SQL EPITOME (2/6)

Defining an (empty) table addressbook with three

columns: unique identifier, name, phone number

create table addressbook

(

_id integer primary key,

name text,

phone text

);

SQL EPITOME (3/6)

Inserting a row (i.e., a record) into the table

insert into addressbook

values

(

736,

'John Doe',

'555-1212'

);

SQL EPITOME (4/6)

Updating a row (i.e., a record) inside the table

update table addressbook

set phone='555-1424'

where _id=736;

SQL EPITOME (5/6)

Deleting a row (i.e., a record) from the table

delete from addressbook

where _id=736;

delete from addressbook

where name like "%doe%";

Deleting multiple rows

SQL EPITOME (6/6)

Querying, i.e. selecting a subset of rows and colums

satisfying a given property

select name, phone

from mytable

where

_id > 100

and

name like "%doe%"

order by name;

The query may involve multiple tables

(inner join, outer join...)

http://en.wikipedia.org/wiki/Join_(SQL)#Inner_join
http://en.wikipedia.org/wiki/Join_(SQL)#Outer_joins

SQLITE: CORE APIS (1/4)

int sqlite3_open(char *filename,

sqlite3 **ppDb)

Opens a connection to the SQLite database identified
by filename.
Returns a database connection entity ppDb.
Like all SQLite3 APIs, returns an integer error code

int sqlite3_close(sqlite3 *pDB)

closes a database connection previously opened by a
call to sqlite3_open()

http://www.sqlite.org/c3ref/open.html
http://www.sqlite.org/c3ref/close.html

SQLITE: CORE APIS (2/4)

int sqlite3_prepare_v2(sqlite3 *pDB, char

*sqlStatement, int nByte, sqlite3_stmt **ppStmt,

char **pzTail)

Converts the SQL statement sqlStatement into a prepared
statement object.
Returns a pointer ppStmt to the prepared object

int sqlite3_finalize(sqlite3_stmt *pStmt)

Destroys a prepared statement.
Every prepared statement must be destroyed with this routine in
order to avoid memory leaks

int sqlite3_step(sqlite3_stmt *pStmt)

Evaluates a prepared statement up to the point where the first row
of the result is available

http://www.sqlite.org/c3ref/prepare.html
http://www.sqlite.org/c3ref/finalize.html
http://www.sqlite.org/c3ref/step.html

SQLITE: CORE APIS (3/4)

int sqlite3_column_count(sqlite3_stmt *pStmt)

Gives the number of columns in the result set returned by
the prepared statement

int sqlite3_column_type(sqlite3_stmt *pStmt, int

iCol)

Returns the datatype code for the initial data type of the result
column iCol.
The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL

int sqlite3_column_int(sqlite3_stmt *pStmt, int iCol),
double sqlite3_column_double(sqlite3_stmt*, int iCol),
...

Family of functions that return information about a single column

http://www.sqlite.org/c3ref/column_count.html
http://www.sqlite.org/c3ref/stmt.html
http://www.sqlite.org/c3ref/column_blob.html
http://www.sqlite.org/c3ref/column_blob.html
http://www.sqlite.org/c3ref/column_blob.html

SQLITE: CORE APIS (4/4)

int sqlite3_exec(sqlite3 *pDB,

const char *sqlString,

int (*callback)(void*,int,char**,char**),

void *, char **errmsg)

Convenience wrapper for sqlite3_prepare_v2(),

sqlite3_step(), and sqlite3_finalize().

Runs the SQL statements contained in sqlString.

If the callback function of the 3rd argument to

sqlite3_exec() is not NULL, then it is invoked for

each result row coming out of the evaluated SQL

statements

http://www.sqlite.org/c3ref/exec.html

SQLITE: ERROR CODES

SQLITE_OK Successful result

SQLITE_ERROR SQL error or missing database

SQLITE_INTERNAL Internal logic error in SQLite

SQLITE_PERM Access permission denied

SQLITE_ABORT Callback routine requested an abort

SQLITE_BUSY The database file is locked

SQLITE_LOCKED A table in the database is locked

SQLITE_NOMEM A malloc() failed

SQLITE_READONLY Attempt to write a readonly database

SQLITE_INTERRUPT Operation terminated by sqlite3_interrupt()

SQLITE_IOERR Some kind of disk I/O error occurred

SQLITE_CORRUPT The database disk image is malformed

SQLITE_NOTFOUND Unknown opcode in sqlite3_file_control()

SQLITE_FULL Insertion failed because database is full

SQLITE_CANTOPEN Unable to open the database file

SQLITE_PROTOCOL Database lock protocol error

SQLITE_EMPTY Database is empty

SQLITE_SCHEMA The database schema changed

SQLITE_TOOBIG String or BLOB exceeds size limit

SQLITE_CONSTRAINT Abort due to constraint violation

SQLITE_MISMATCH Data type mismatch

SQLITE_MISUSE Library used incorrectly

SQLITE_NOLFS Uses OS features not supported on host

SQLITE_AUTH Authorization denied

SQLITE_FORMAT Auxiliary database format error

SQLITE_RANGE 2nd parameter to sqlite3_bind out of range

SQLITE_NOTADB File opened that is not a database file

SQLITE_ROW sqlite3_step() has another row ready

SQLITE_DONE sqlite3_step() has finished executing

CORE SQLITE: EXAMPLES (1/3)

Creating a table

BIND VARIABLES

SQLite can accept a string where parameters are

identified by templates (like a question mark “?”) and

replace the templates with the real names of the

parameters

Use the sqlite_bind_XXX() family of functions

http://www.sqlite.org/c3ref/bind_blob.html

CORE SQLITE: EXAMPLES (2/3)

Adding a row to a table

CORE SQLITE: EXAMPLES (3/3)

Performing a query

SQLITE: ANDROID

Android supports SQLite well

The SQLite version depends on the Android release

and on the choices of the device vendor.

Android 2.2 and 2.3 usually ship with SQLite 3.6.22.

Android 4.0+ usually ships with SQLite 3.7.x

Java Package: android.database.sqlite

Tool: sqlite3

ANDROID.DATABASE.SQLITE

Provides SQLite DB management classes

Most important classes:

SQLiteDatabase

SQLiteOpenHelper

SQLiteStatement

SQLiteQueryBuilder, SQLiteCursor

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
http://developer.android.com/reference/android/database/sqlite/SQLiteStatement.html
http://developer.android.com/reference/android/database/sqlite/SQLiteQueryBuilder.html
http://developer.android.com/reference/android/database/sqlite/SQLiteCursor.html

SQLITEDATABASE (1/2)

Offers methods to perform common DB management

tasks on the database associated with a class instance

SQLiteDatabase openDatabase(String

path, SQLiteDatabase.CursorFactory

factory, int flags)

Opens a database according to flags

void close()

Closes a database

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.CursorFactory.html

SQLITEDATABASE (2/2)

void execSQL(String sql)

Executes a single SQL statement that is neither a SELECT
nor any other SQL statement that returns data

There are also convenience methods named insert,
delete, replace, update, ... to ease the execution of
the corresponding SQL commands

Cursor rawQuery(String sql, String[]

selectionArgs)

Runs the provided SQL statement returning data, and
returns a Cursor over the result set

http://developer.android.com/reference/android/database/Cursor.html

CURSOR

Provides random access to the result set returned by a DB query

int GetCount()

Returns the number of rows in the cursor

boolean moveToFirst(), moveToLast(), moveToNext(),

moveToPrevious(), moveToPosition(int position)

Moves the cursor to the specified row

int getType(int columnIndex) (Android 3.0+)

Returns the data type of the given column’s value

getString(int columnIndex), getInt(int

columnIndex), getFloat(int columnIndex), ...

Returns the value for the given column in the current row

SQLITEOPENHELPER (1/2)

Helper class that wraps an SQLiteDatabase,

providing support for DB creation and management

Two methods:

onCreate,

onUpgrade,

which are abstract because their implementation is

tailored to the specific database

SQLITEOPENHELPER (1/2)

abstract void onCreate(SQLiteDatabase db)

Called when the database is created for the first time.
The implementation should use this method to create tables
and relations between tables

abstract void onUpgrade(SQLiteDatabase db,

int oldVersion, int newVersion)

Called when the database schema needs to be upgraded (e.g.,
because a new version of the application has been installed).
The implementation should use this method to drop/add
tables, or do anything else it needs to upgrade to the new
schema version

EXAMPLE (1/2)

EXAMPLE (2/2)

Somewhere in an activity

an instance of MyOpenHelper is allocated and used

SQLITESTATEMENT

Encapsulates a pre-compiled statement that is

intended for reuse

The statement must be compiled with the

SQLiteDatabase method
compileStatement(String)

The statement works only with the database it has

been compiled for

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.htmlcompileStatement(java.lang.String)

SQLITEQUERYBUILDER,

SQLITECURSOR

SQLiteQueryBuilder class

Helps build SQL queries for SQLiteDatabase

objects. The key method of this class is

SQLiteCursor class

Encapsulate results from a query. The SQL statement

for the query and the name of the SQLiteDatabase

are passed as parameters to the constructor

String buildQuery(String[] projectionIn, String selection,

String groupBy, String having, String sortOrder,

String limit)

http://developer.android.com/reference/android/database/sqlite/SQLiteQueryBuilder.html
http://developer.android.com/reference/android/database/sqlite/SQLiteCursor.html
http://developer.android.com/reference/android/database/sqlite/SQLiteQueryBuilder.htmlbuildQuery(java.lang.String[], java.lang.String, java.lang.String, java.lang.String, java.lang.String, java.lang.String)

SQLITE3

Command-line program.
Can be invoked from an adb remote shell

Gives you the ability to execute SQLite statements on a
database and includes some useful extra commands

Note: database files for package <x> are stored under
/data/data/<x>/databases/

Not installed on several devices

http://developer.android.com/tools/help/adb.html#commandsummary

LAST MODIFIED: APRIL 17, 2016

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)

LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 4.0

