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Computational security

The complexity vs. success
probability tradeoff

For a (probabilistic) attack

Ps

1

T

strong

weak

T0

ε

Concrete security (T0, ε)

For any probabilistic attack with
complexity T and success event S, it
must be P [S, T < T0] < ε

Asymptotic security in key length
n

For any probabilistic attack with
complexity T and success event S, it
must be P [S, T < P (n)] < ε(n)
with vanishing

ε(n) = o(1/Q(n))
for any polynomials P (n), Q(n).

Ex.: “brute force” attack with N trials: T ∝ N , Ps = N/2n
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Physical layer security - Motivation

Wireless communications
are inherently vulnerable to
various attacks

Any device is a potential
eavesdropper/jammer

Cryptographic mechanisms
(e.g., WPA) require costly
key renewal

Little is done to protect
transmissions at the
physical layer directly

Diversity and randomness of
the channels can be
leveraged to provide security
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Computational security systems can be broken by an attacker with
enough computational power

Post-quantum security systems have not been shown breakable by
quantum computers in polynomial time
In unconditional security, the attacker is not better off at guessing by
observing the protocol communications. However, in designing the
system, (statistical) knowledge of the attacker channel is often required
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Do we really need unconditional security?

Bruce Schneier on Quantum Cryptography

“Quantum cryptography doesn’t address the
weak points of the system.

Mathematical cryptography is the strongest link
in most security chains. The real problems are
elsewhere: computer security, network security,
user interface and so on.”

It’s like defending yourself by putting a stake in the ground.
Whether the stake is 50 feet tall or 100 feet tall, the attacker
will go around it.

It’s not that quantum cryptography might be insecure; it’s that
cryptography is already sufficiently secure.”

, 16 Oct 2008
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Do we really need unconditional security?

A more suitable simile, in my opinion. . .

It is true that computational security is
still the strong point of security, and we

should defend the weaker points. . .
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A more suitable simile, in my opinion. . .

It is true that computational security is
still the strong point of security, and we

should defend the weaker points. . .. . . until a computational (technological
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Do we really need unconditional security?

Ross J. Anderson on Quantum Computing and Cryptography

“Why quantum computing is hard — and quantum
cryptography is not provably secure
we still cannot perform [quantum] computation with
more than about three qubits and are no closer to
solving problems of real interest than a decade ago.

In consequence we dispute the claim that a quantum
cryptosystem based on EPR pairs must be secure.”

ArXiv, 30 Jan 2013

Scott Aaronson’ response

“quantum mechanics might someday be super-
seded by an even deeper theory
but the fact that quantum computing still hasn’t
progressed beyond a few qubits does not [. . . ]
overthrow quantum mechanics.”

Shtetl-Optimized, 4 Feb 2013

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Outline

1 What is unconditional security?

2 Signal processing for unconditional secrecy
Random binning
Precoding and beamforming for MIMO and OFDM

3 Signal processing for unconditionally secure key agreement

4 Unconditionally secure authentication

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Outline

1 What is unconditional security?

2 Signal processing for unconditional secrecy
Random binning
Precoding and beamforming for MIMO and OFDM

3 Signal processing for unconditionally secure key agreement

4 Unconditionally secure authentication

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

The wiretap channel [Wyner, ‘75]

A C(u) pyz|x(·) D(y) B

E

u ûx y

z

We aim for reliable transmissions to B, i.e. limn→∞ P [u 6= û] = 0,
under the constraint of secrecy with respect to E

Secrecy constraints

Perfect secrecy, [Shannon, ‘49]: I(u, z) = 0

Asymptotic perfect secrecy: lim
n→∞

I(u, z) = 0

Vanishing information rate, [Wyner, ‘75]: lim
n→∞

1
nI(u, z) = 0
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Random binning: a toy example
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Random binning encoding & channel resolvability

The basic idea is to use a probabilistic encoder u→ x

Consider a subset X ′n ⊂ Xn that allows to simulate the channel,
that is pz|x∈X ′

n
(·) = pz|x∈Xn(·) = pz(·)

Map each possible message u to a disjoint X ′n(u)

Choose the codeword x randomly from X ′n(u)

Channel resolvability [Han-Verdù, ‘93]

The minimum number of typical codewords in X ′n is |X ′n| ≥ 2nI(x;z)

Secrecy rates and secrecy capacity

Transmission rates for which we can satisfy the secrecy constraint and
guarantee reliability are called achievable secrecy rates.

The secrecy
capacity is the supremum of all achievable secrecy rates.
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Secrecy capacity

Theorem

The secrecy capacity of the wiretap channel in bit/channel use is

Cs = max
u

[I(u; y)− I(u; z)]+ ≥ max
x

[I(x; y)− I(x; z)]+

Visualization of the proof

Xn Yn•
•

•
•

Zn

X ′n

2nR ' 2nI(x;y)

2nI(x;z)
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Orthogonal frequency division multiplexing (OFDM)

Assume the legitimate nodes are communicating via OFDM modulation
in presence of an eavesdropper.

Motivation for choosing OFDM:

widely adopted as the physical layer for wireless, high-rate links

efficient use of channel frequency diversity (high spectral efficiency)

low complexity transceivers (FFT-based devices)

Fundamental performance limits for wiretap OFDM

achievable secrecy-rates with OFDM transmission (and robustness
wrt system parameters)

is an OFDM receiver the best for Eve?

Signal processing for unconditional security N. Laurenti
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System block diagram

symbol-by-symbol analysis

stationarity

A
u(nT )

T
x(nT )

GR +
y(nT )

R
v(nT )

B

wR(nT )

GE +
z(nT )

R
z′(nT )

E

wE(nT )

instance of MIMO Gaussian wiretap channel (MIMOME) with
HR = RGRT diagonal, and HE = RGET

complete CSI on both the main and eavesdropper channel

transmitter power constraint tr(Kx) = tr(TKuT
∗) ≤ P
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OFDM secrecy capacity (I)

Definition
Cs(P ) = max

u:tr(Kx)≤P
[I(u;v)− I(u; z)]

Lemma

The secrecy capacity is achieved by a Gaussian u

Proof.

Use the analogous result for a matrix covariance constraint Ku � P
Let KP = {K � 0 : tr(TKT ∗) ≤ P}, so

⋃
P∈KP

{K : K � P } = KP
Cs = max

P∈KP

max
u:Ku�P

[I(u;v)− I(u; z)]

= max
P∈KP

max
u∼CN (0,Ku)

Ku�P

[I(u;v)− I(u; z)]

= max
u∼CN (0,Ku)

Ku∈KP

[I(u;v)− I(u; z)]
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OFDM secrecy capacity (II)

Theorem

The secrecy capacity of the OFDM wiretap channel is given by

Cs = max
tr(K)≤P

[
log |I + H̃RKH̃∗R| − log |I + H̃EKH̃∗E |

]
(non convex problem) where

H̃R =

{
HRDCPF for CP

FDZSHR for ZS
, H̃E =

{
HEDCPF for CP

HE for ZS

DCP =

[
IM−µ 0

0 1√
2
Iµ

]
, DZS =

[ 1√
2
Iµ 0

0 IM−µ

]
The corresponding input covariance is given by

Ku =

{
FDCPK

?DCPF for CP

K? for ZS

where K? maximizes Cs above.
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Asymptotic values of secrecy capacity

High SNR limit

If H̃E has full column rank, then

lim
P→∞

Cs(P ) =

M∑
i=1

[
log2 σ

2
i (H̃RH̃

†
E)
]+

Low SNR limit

As P → 0

Cs(P ) =
P

(1 + ρ) ln 2

[
λmax(H̃∗RH̃R

−H̃∗EH̃E)
]+

+ o(P )

At high SNR, transmit on all
the SVD directions of H̃RH̃

†
E

in which the legitimate receiver
has higher gain than the
eavesdropper.

At low SNR, transmit only on
the direction that gives the best
advantage

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5
high SNR secrecy capacity [bit/s/Hz]

cumulative probability

generic (A,B),E

OFDM (A,B),E

ZS (A,B)

CP (A,B)
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Achievable rates with Gaussian inputs

Generalized SVD
Choose the Gaussian parallel inputs with uniform power

Water Filling
Pretend the eavesdropper channel is diagonal too, with
HE = diag(GE(f1), . . . , GE(fM ))

Choose the optimal distribution [Li et al., ‘06]

Power allocation
Restrict to diagonal Ku

Choose the optimal power allocation by optimization in RM

Signal processing for unconditional security N. Laurenti
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Achievable secrecy rates with finite inputs

Use 2ni-QAM on subchannel i

Lemma

lim
n→∞

R(n,P ) = RU(P )
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lim
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RU(P ) = lim
P→∞

RG(P )
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Proposition
lim

P→∞
lim

n→∞
R(n,P ) = lim

P→∞
RG(P )

In the high SNR limit, any rate that is achievable by independent
Gaussian inputs is also achievable by uniform QAM inputs with sufficient
cardinality
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Conclusions

We have proved the single letter characterization of the secrecy
capacity for an OFDM system with a general eavesdropper

We have expressed in closed form the secrecy capacity at high SNR,
and its derivative at low SNR, showing the loss with respect to the
OFDM eavesdropper case over the statistics of a fading channel
model.

We have numerically evaluated efficient optimal power allocation
schemes for generic eavesdropper, and compared them with other
methods.

We have shown that even with uniform QAM and bit loading on the
main channel the high SNR secrecy capacity can be achieved.
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Cryptographic key agreement [Diffie-Hellman, ‘76]

A fA(·, ·) fB(·, ·) B

E

rA rB

kA kB

c

c
cA

c
cB

Objective

maxL(kA) subject to:
correctness: kA = kB

secrecy: infeasible to derive k from c
uniformity: pkA(a) ≈ 1/2L(kA)

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Cryptographic key agreement [Diffie-Hellman, ‘76]

A fA(·, ·) fB(·, ·) B

E

rA rB

kA kB

c

c
cA

c
cB

Objective

maxL(kA) subject to:
correctness: kA = kB

secrecy: infeasible to derive k from c
uniformity: pkA(a) ≈ 1/2L(kA)

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Cryptographic key agreement [Diffie-Hellman, ‘76]

A fA(·, ·) fB(·, ·) B

E

rA rB

kA kB

c

c
cA

c
cB

Objective

maxL(kA) subject to:
correctness: kA = kB

secrecy: infeasible to derive k from c
uniformity: pkA(a) ≈ 1/2L(kA)

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Unconditional key agreement [Ahlswede-Csiszar, ‘93]

A fA(·, ·) fB(·, ·) BE

pxyz(·)
x y

z

kA kB

c

c
cA

c
cB

Objective
max
fA,fB

H(kA) subject to:

correctness: P [kA 6= kB] < ε
secrecy: I(kA, kB; z, c) < ε′

uniformity: L−H(kA) < ε′′

Secret-key capacity

S = lim
n→∞

max
fA,fB

[
1
n H(kA)

]
and ε, ε′, ε′′ → 0

upper bound: S ≤ I(x; y|z)

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Unconditional key agreement [Ahlswede-Csiszar, ‘93]

A fA(·, ·) fB(·, ·) BE

pxyz(·)
x y

z

kA kB

c

c
cA

c
cB

Objective
max
fA,fB

H(kA) subject to:

correctness: P [kA 6= kB] < ε
secrecy: I(kA, kB; z, c) < ε′

uniformity: L−H(kA) < ε′′

Secret-key capacity

S = lim
n→∞

max
fA,fB

[
1
n H(kA)

]
and ε, ε′, ε′′ → 0

upper bound: S ≤ I(x; y|z)

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Unconditional key agreement [Ahlswede-Csiszar, ‘93]

A fA(·, ·) fB(·, ·) BE

pxyz(·)
x y

z

kA kB

c

c
cA

c
cB

Objective
max
fA,fB

H(kA) subject to:

correctness: P [kA 6= kB] < ε
secrecy: I(kA, kB; z, c) < ε′

uniformity: L−H(kA) < ε′′

Secret-key capacity

S = lim
n→∞

max
fA,fB

[
1
n H(kA)

]
and ε, ε′, ε′′ → 0

upper bound: S ≤ I(x; y|z)

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Unconditional key agreement [Ahlswede-Csiszar, ‘93]

A fA(·, ·) fB(·, ·) BE

pxyz(·)
x y

z

kA kB

c

c
cA

c
cB

Objective
max
fA,fB

H(kA) subject to:

correctness: P [kA 6= kB] < ε
secrecy: I(kA, kB; z, c) < ε′

uniformity: L−H(kA) < ε′′

Secret-key capacity

S = lim
n→∞

max
fA,fB

[
1
n H(kA)

]
and ε, ε′, ε′′ → 0

upper bound: S ≤ I(x; y|z)

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Unconditional key agreement [Maurer, ‘93]

A fA(·, ·) fB(·, ·) BE

pyz|x(·)x y

z
kA kB

c
c

cA
c

cB

Upper and lower bounds

S ≤ max
x

I(x; y|z)

S ≥ max
x

[I(x; y)− I(x; z)]

Optimal 3-step protocol
1 randomness sharing

to maximize I(x; y|z)
2 information reconciliation

for correctness
3 privacy amplification

for secrecy and uniformity
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Divide et impera

H(x)

I(x; y)

I(x; z)

randomness
sharing

x, y, z

correlation
and diversity

H(x′)

I(x′; y′)

I(x′; z, c′)

advantage
distillation

x′, y′, c′

advantage
over E

H(x′′) = I(x′′; y′′)

I(x′′; z, c′, c′′)

key reconcili-
ation

x′′, y′′, c′′

correctness

H(kA)

I(kA; z, c)

privacy
amplification

kA, kB, c
′′′

uniformity
and secrecy
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Reconciliation of sifted keys

A encoder decoder BE

quantum channel
(sifted)

x′ y′

x̂′

classic channel

c
c

cA
c

cB

quantum classic
channel channel
private public

low rate high rate
unreliable reliable

Aim

To allow B to reliably reconstruct x̂′ = x′,
by transmitting c = (cA, cB) publicly,
with the minimum leakage of information
I(x′; c) to E.
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Existing models and solutions

Coding techniques for reconciliation fall into 1 of 3 categories:

cascade iteratively (and interactively) split the keys to locate single
errors and correct them [Brassard-Salvail, ‘93]

hashing given a (n, n− r) parity check matrix H
Alice transmits c = Hx′.
Bob chooses x̂′ = arg mina:Ha=c d(a,y)
Examples: Winnow [Buttler et al., ‘03]

LDPC [Elkouss et al., ‘09]

systematic pick a (n+ r, n) generating matrix G =

[
In
A

]
Alice transmits c = Ax′.
Bob chooses x̂′ = arg mina∈C d(a,y)
Examples: LDPC [Mondin et al., ‘10]

BCH [Traisilanun et al., ‘07]
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Existing models and solutions

The choice of the coding technique for reconciliation depends on the
model for the classical channel

layer ch. type condition delays codes used
Physical AWGN high SNR none systematic (soft)
Data link binary low BER low systematic (hard)
Net & up packet error free long cascade, hashing
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Cascade and Winnow: common structure

i = 0, εi = εq

segment x′ and y′ into blocks of
length Li, with εiLi � 1

check if parity of each block is
the same in x′ and y′

correct error in blocks of y′ with
different parities

i← i+ 1, estimate εi, equally
permute x′ and y′

for i = I, let x̂′ = y′

the condition εiLi � 1 ensures
that multiple errors in a block
are unlikely

the block parities need to be
exchanged (cA, cB)

both algorithms can correct a
single error per block
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Privacy amplification

A compress compress BE

quantum channel
(reconciled)

x′ x̂′

k k̂

classic channel

c
c

cA
c

cB

quantum classic
channel channel
private public

low rate high rate

Aim

To allow A and B to remove any information E
might have from k̂ = k,
by publicly agreeing on the compressing
function, and with the minimum amount of
compression.

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Privacy amplification

A compress compress BE

quantum channel
(reconciled)

x′ x̂′

k k̂

classic channel

c
c

cA
c

cB

quantum classic
channel channel
private public

low rate high rate

Aim

To allow A and B to remove any information E
might have from k̂ = k,
by publicly agreeing on the compressing
function, and with the minimum amount of
compression.

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Privacy amplification

A compress compress BE

quantum channel
(reconciled)

x′ x̂′

k k̂

classic channel

c
c

cA
c

cB

quantum classic
channel channel
private public

low rate high rate

Aim

To allow A and B to remove any information E
might have from k̂ = k,
by publicly agreeing on the compressing
function, and with the minimum amount of
compression.

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Privacy amplification

A compress compress BE

quantum channel
(reconciled)

x′ x̂′

k k̂

classic channel

c
c

cA
c

cB

quantum classic
channel channel
private public

low rate high rate

Aim

To allow A and B to remove any information E
might have from k̂ = k,
by publicly agreeing on the compressing
function, and with the minimum amount of
compression.

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Choosing a compression function

Must be chosen randomly, after transmission

Must be compactly representable

Assume we know that Eve has observed some t-bit linear function of the
reconciled key

z = Mx′ , with M ∈ {0, 1}t×n

(include c observed during reconciliation)

Theorem (Universal hashing functions [Bennett et al., ‘95])

If the compressing function A is chosen uniformly from a class of
universal hashing s× n matrices, then on average (over M and A)

I(k; z,A) ≤ 1

ln 2
2s+t−n
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Choosing a compression function

Once we choose a hashing matrix A, we would like to obtain

1 H(k) = s (perfect uniformity)

2 I(k; z) = 0 (perfect secrecy)

Lemma 1

If rank(A) = s and x′ is uniform over {0, 1}n, then k is uniform over
{0, 1}s

Example: binary Toeplitz matrices

A is uniquely specified by n+ s− 1 bits a = [a−r+1, . . . , an−1]

If a is uniform in {0, 1}n+s−1, P [rank(A) < s] = 1/2n−s+1

Lemma 2

If dimN (M)− dim (N (M) ∩N (A)) = rank(A) and x′ is uniform
over {0, 1}n, then I(k; z) = 0
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Choosing a compression function

Theorem

If dimN (M)− dim (N (M) ∩N (A)) = s and x′ is uniform over
{0, 1}n, then k is uniform and perfectly secret.

Illustration

{0, 1}n{0, 1}t {0, 1}s

∼ N (A)

∼ N (M)

z

M
x

A

k
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Outline

1 What is unconditional security?

2 Signal processing for unconditional secrecy

3 Signal processing for unconditionally secure key agreement
unconditionally secure key agreement
Information reconciliation
Privacy amplification
Precoding and beamforming for MIMO randomness sharing

4 Unconditionally secure authentication
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Secret-key rate

`: length of k
n: number of noisy channel uses

R = `/n: key rate

Definition

A secret-key rate R is achievable if

lim
n→∞

P
[
k 6= k̂

]
= 0 (reliability)

lim
n→∞

I(k; z, rA, rB) = 0 (secrecy)

lim
n→∞

H(k)− nR = 0 (uniformity)

Secret-key capacity

S = sup{R : R is achievable}
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Secret-key agreement over MIMO channels

A
x

HR +
y

B

wR

HE +
z

E

wE

public channel

quasi-static MIMO channels (OFDM as a particular case)

assume HE full column rank (otherwise d.o.f.)

average power constraint, tr(Kx) ≤ P
complete CSI on both the main and eavesdropper channel
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Secret-key capacity

Lemma

The secret-key capacity is achieved with a Gaussian x and is given by

S(P ) = max
tr(Kx)≤P

log |I + K
1
2
xH

∗
RHRK

1
2
x (I + K

1
2
xH

∗
EHEK

1
2
x )−1|

Proof.

I(x;y|z) = h(y, z)− h(z)− h(wR)

optimality of Gaussian x analogous to MIMO secrecy capacity
[Khisti-Wornell, ‘10]

h(y, z) = log(2πe)nR+nE det

[
HRKxH

∗
R HRKxH

∗
E

HEKxH
∗
R HEKxH

∗
E

]
use block determinant and matrix manipulation
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High-SNR secret-key capacity (I)

Proposition

The high-power secret-key capacity when HE has full column rank is

S(∞) = lim
P→∞

S(P ) =

s∑
i=1

log(1 + σ2
i ),

where σ1, . . . , σs are the generalized singular values of (HR,HE).

Proof of achievability.

We build {Kx(P )}P≥0 such that lim
P→∞

I (x;y|z) =
∑s
i=1 log(1 + σ2

i )

From the GSVD: Ψ∗RHRV =

[
0 0
0 DR

]
, Ψ∗EHEV =

[
I 0
0 DE

]
choose x = V

[
0
t

]
with lim

P→∞
λmin(Kt) =∞ and tr(Kx(P )) ≤ P

I (x;y|z) = log
|I + (D∗RDR + D∗EDE)−1K−1t |

|I + (D∗EDE)−1K−1t |
+log

|D∗RDR + D∗EDE|
|D∗EDE|
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High-SNR secret-key capacity (I)

Proposition

The high-power secret-key capacity when HE has full column rank is

S(∞) = lim
P→∞

S(P ) =

s∑
i=1

log(1 + σ2
i ),

where σ1, . . . , σs are the generalized singular values of (HR,HE).

Proof of the converse.

We prove that ∀x, it is I (x;y|z) ≤
∑s
i=1 log(1 + σ2

i ).

I (x;y|z) = h(y|z)− h(y|x) = min
Θ

h(y −Θz)− h(wR) (LMMSE)

≤ h(y −HRH
†
Ez)− h(wR) = h(wR −HRH

†
EwE)− h(wR)

= log |I + HR(H∗EHE)−1H∗R| =
∑s
i=1 log(1 + σ2

i )

Hence S(P ) ≤
∑s
i=1 log(1 + σ2

i ), for all P .
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High-SNR secret-key capacity (II)

Corollary

If HR has full column rank, S(∞) is achieved by any Gaussian x such
that lim

P→∞
λmin(Kx) =∞.

Remark 1 If rank(HE) < nT, Alice can transmit information in N (HE)

S(P ) =

s∑
i=1

log(1 + σ2
i ) + log

∣∣∣∣I +
P

p
(H∗RHR + H∗EHE)H]

E

∣∣∣∣− o(1),

H]
E is the projection onto N (HE) and p = dimN (HR)⊥ ∩N (HE).

Remark 2 In contrast with secrecy capacity, the high SNR secret-key
capacity is achieved by transmitting along all the directions obtained with
the GSVD, including those with σi ≤ 1.
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Low-SNR secret-key capacity

Proposition

Ṡ(0) =
1

ln 2
λmax(H

∗
RHR)

and it is achieved by beamforming along the corresponding eigenspace.

S̈(0) = −min
{αi}

1

ln 2

∑̀
i=1

α2
i

(
λmax(H

∗
RHR)2 + 2λmax(H

∗
RHR)‖HEui‖2

)
,

where ui form an orthonormal basis of the λmax(H
∗
RHR) eigenspace and∑

αi = 1. It is achieved by Kx = P
∑`
i=1 αiuiu

∗
i

Second-order Taylor expansion as P → 0:

S(P ) = Ṡ(0)P +
S̈(0)

2
P 2 + o(P 2)

Observe that the optimal signaling does not depend on the eavesdropper’s
channel and also achieves low-power, main channel capacity.
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Numerical results for finite SNR

0

1

2

3

4

5

−30 −20 −10 0 10 20 30
SNR [dB]

ergodic secret-key rate [bit/s/Hz]

high SNR limit
secret-key capacity
uniform GSVD
semi-blind
low SNR optimal

Parameters

nT = nR = nE = 3
1000 channel realizations

Secret-key capacity:
computed
numerically via KKT
conditions

Semi-blind: input
that achieves
capacity of HR,
regardless of HE

The semi-blind solution is optimal at low and high SNR and nearly
optimal in intermediate power regimes.
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Blind key agreement: outage analysis

Assume the transmitter:

has perfect CSI on HR

has statistical CSI on HE

(Rayleigh fading)

uses low-power optimal
input

R = log

(
1 +

Pλmax(H
∗
RHR)

1 + P‖HEu1‖2

)
10−12

10−9

10−6

10−3

1

0 0.5 1 1.5 2
ϑ [bit/s/Hz]

P [R < ϑ]

λR = 0 dB
λE = −10 dB
nE = 3
nE = 5
nE = 10

λE = 0 dB

Outage probability

P [R < ϑ] = 1− 1

(nE − 1)!
γ

(
nE ,

λmax(H
∗
RHR)

2ϑ − 1
− 1

P

)
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Conclusions

We have derived closed-form expressions of the secret-key capacity
in the high and low-power regimes.

The low-power optimal signaling is independent from the
eavesdropper’s channel.

We propose a semi-blind approach: the (unconstrained) capacity
achieving input is optimal in the asymptotic regimes, and performs
well in the intermediate regimes.

We evaluate the secret-key rate outage probability to perform
strictly blind key-sharing with statistical CSI about the
eavesdropper’s channel.
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2 Signal processing for unconditional secrecy

3 Signal processing for unconditionally secure key agreement

4 Unconditionally secure authentication
Universal hashing
Physical layer authentication for MIMO systems
Authentication based on channel estimation
Effective attack strategies
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Unconditional authentication / integrity protection

A S(k;u) V (k;x, u) B

E

u

u

ok, u

no
x

k k

Kerchoff’s-like Assumption

E knows:

the functions S(·; ·), V (·; ·)
the distributions pu(·), pk(·)

Non forgeability of x is only based
on hiding the key k

Unconditionally secure
authentication

Ask for pMD < ε, while pFA → 0
I(k;x|u) ≥ − log ε,
H(k|u, x) ≥ − log ε

It requires H(k) ≥ −2 log ε
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Unconditionally secure authentication

Unconditionally secure authentication can be obtained with a One Time
Pad

A T (k0;u) +

T (k0;u) +

? B

E

u

u

t x

ok, u

no
t x

k0

k0

ki

ki

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Unconditionally secure integrity protection

Need {Tk(u)}k∈K to be a class of universal2 hashing functions for some
parameter ε, that is

1 Tk : U → T , ∀k ∈ K

2 (uniform mapping) ∀u ∈ U , t ∈ T , it must be |Ku→t| ≤ ε |K|, where

Ku→t = {k ∈ K : Tk(u) = t}

3 (uniform collisions) ∀u1, u2 ∈ U ,, it must be |Ku1u2
| ≤ ε |K|, where

Ku1u2
= {k ∈ K : Tk(u1) = Tk(u2)}

The lowest possible (ideal) value of ε is 1/ |T |.
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Classes of universal2 hashing functions

Example

All the functions The class of all the functions mapping U to T is

universal with ε = 1/ |T |. Its cardinality is |K| = |T ||U|

Example

All the linear functions (matrices) If U = F`u , T = F`t , with F a finite
field, the class of all the matrices F`t×`u is universal with ε = 1/ |T |. Its
cardinality is |K| = |T | · |U|

Example

All the Toeplitz matrices If U = F`u , T = F`t , with F a finite field, the
class of all the Toeplitz matrices in F`t×`u is universal with ε = 1/ |T |.
Its cardinality is |K| = |F|`t+`u−1
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1 What is unconditional security?

2 Signal processing for unconditional secrecy

3 Signal processing for unconditionally secure key agreement

4 Unconditionally secure authentication
Universal hashing
Physical layer authentication for MIMO systems
Authentication based on channel estimation
Effective attack strategies
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Motivations

The problem of message authentication is certainly, together with that of
message confidentiality, one of the most common tasks in information
security.

Classical solution is cryptographic: hash and sign protocols.

Physical Layer Secrecy already enjoys a rich literature. It is not so for
authentication.

What could be the purpose of PHY authentication?

Provide an outer defense, to reduce the amount of attacks that higher
layers must repel?
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Previous work

Information theory results

With secret key and noiseless transmission [Maurer, ‘00]

Allowing for distortion of the message [Martinian et al., ‘05]

Introducing noisy channel for key and message [Lai et al., ‘09]

Device identification schemes

Pre-shared key used in modulation

Wireless fingerprinting

Channel-based schemes

With spatial diversity from cooperating receivers [Chen et al., ‘07]

Diversity from estimation of a wide band channel
[Xiao et al., ‘06–‘10], but no attack at the physical layer. . .
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System model

A B

E

hAB

h
A
E h

EB

h = [h0, . . . , hN−1] :
channel fading coefficients (e.g., impulse
response, frequency response, channel
matrix entries)

channel statistics

complex, jointly Gaussian,
circularly symmetric

h(AB) ∼ CN (0ν×1,R
(AB))

h(AE) ∼ CN (0µ×1,R
(AE))

h(EB) ∼ CN (0ϕ×1,R
(EB))

channel reciprocity

E
[
h(AB)h(AE)∗] = R(AB,AE)

E
[
h(AB)h(EB)∗] = R(AB,EB)

E
[
h(AE)h(EB)∗] = R(AE,EB)

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

System model

A B

E

hAB

h
A
E h

EB

h = [h0, . . . , hN−1] :
channel fading coefficients (e.g., impulse
response, frequency response, channel
matrix entries)

channel statistics

complex, jointly Gaussian,
circularly symmetric

h(AB) ∼ CN (0ν×1,R
(AB))

h(AE) ∼ CN (0µ×1,R
(AE))

h(EB) ∼ CN (0ϕ×1,R
(EB))

channel reciprocity

E
[
h(AB)h(AE)∗] = R(AB,AE)

E
[
h(AB)h(EB)∗] = R(AB,EB)

E
[
h(AE)h(EB)∗] = R(AE,EB)

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Outline

1 What is unconditional security?

2 Signal processing for unconditional secrecy

3 Signal processing for unconditionally secure key agreement

4 Unconditionally secure authentication
Universal hashing
Physical layer authentication for MIMO systems
Authentication based on channel estimation
Effective attack strategies

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Authentication scheme [Xiao et al., ‘08]

Phase I: training

A (securely) sends a training sequence to B

B obtains a (reliable) ML estimate ĥAB of the channel

ĥAB = hAB + wI , wI ∼ CN (0, σ2
I I)

Phase II: hypothesis testing

For every received packet, B estimates the channel response ĥ(t) and
checks it against the hypotheses

(authentic) H0 : ĥ(t) = hAB + wI(t) , wII(t) ∼ CN (0, σ2
III)

(forged) H1 : ĥ(t) = g(t) + wI(t) , g(t) arbitrary

Signal processing for unconditional security N. Laurenti



Unconditional security Secrecy Secret key agreement Authentication

Generalized likelihood ratio test (GLRT)

Formulation

log likelihood ratio: Ψ = log
fĥ|H1,g

(ĥ|ĥ)

fĥ|H0
(ĥ)

∝ 2

σ2

ν−1∑
n=0

∣∣∣ĥn − ĥ(AB)
n

∣∣∣2
compare with a threshold :

{
Ψ ≤ ϑ : decide for H0 ,

Ψ > ϑ : decide for H1 .

Probability of False Alarm and Missed Detection

Ψ is a chi-square variable

PFA = P [Ψ > ϑ |H0] = 1− Fχ2,0(ϑ)PMD = P [Ψ < ϑ |H1] = Fχ2,β(ϑ)

If we fix a target PFA, we get PMD(β) = Fχ2,β

(
F−1χ2,0 (1− PFA)

)
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Effective attack strategies

Knowledge assumptions

We assume that E has estimated her channels to A and B

ĥAE = hAE + wAE , ĥEB = hEB + wEB

with wAE ∼ CN (0, σ2
AEI),wEB ∼ CN (0, σ2

EBI)

Optimal strategy for a single attack
If the horizon of E is a single attack, her optimal strategy is the ML
estimate of ĥAB

ḡ = −
(
[R−1]11

)−1 (
[R−1]12ĥ

(AE) + [R−1]13ĥ
(EB)

)
with R the covariance matrix of [ĥAB, ĥAE, ĥEB]
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A repeated attack strategy

<{U∗a}

={U∗a}

U∗ĥ(AB)

−` + U∗ḡ ` + U∗ḡ

−2j` + U∗ḡ

−j` + U∗ḡ

U∗ḡ

`

`

Sequential guessing problem. . .
. . . with distortion and lies
[Arikan-Merhav, ‘98], on a continuous
space.
For the ease of tractability

consider a discrete set Z of
regularly spaced points

at any attempt τ , choose the next
best guess among them, given the
previous failed attempts

ḡ(t) = arg max
z∈Z

P
[
z + wII(t) ∈ S | ∩t−1t′=0

{
ḡ(t′) + wII(t′) 6∈ S

}]
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A repeated attack strategy

<{U∗a}

={U∗a}

U∗ĥ(AB)

`

`

Evaluation of probabilities
As a further simplification

partition Cν into ν-dimensional
cubes centered in Z

replace S with the cube in which
ĥAB lies

It becomes a discrete guessing problem
without distortion.

q(z|a) = P
[
ĥ(t) ∈ R(z)| ḡ(t) = a

]
p(z) = P

[
ĥAB ∈ R(z)|ĥAE, ĥEB

]

ḡ(t) = arg max
a

∑
z∈Z

p(z)q(z|a)

t−1∏
t′=1

(1− q(z|ḡ(t′)))
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Bound on the achievable (E [pFA] ,E [pMD]) region

Let d (x, y) = x log x
1−y + (1− x) log 1−x

y

Then, for any authentication procedure that makes use of ĥAB, ĥ,

d (E [pFA] ,E [pMD]) ≤ D
(
pĥ,ĥ(AB)|H0

|| pĥ,ĥ(AB)|H1

)
d (E [pMD] ,E [pFA]) ≤ D

(
pĥ,ĥ(AB)|H1

|| pĥ,ĥ(AB)|H0

)

The above outer bounds depend on the
attack strategy fĥ|H1,ĥ(AE),ĥ(EB) as under

H1, ĥ is independent of ĥ(AB), when
conditioned on ĥ(AE), ĥ(EB).
We consider
fĥ|H1,ĥ(AE),ĥ(EB) = fĥ|H0,ĥ(AE),ĥ(EB)

E [pFA]

E [pMD]

0 1

1
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Let d (x, y) = x log x
1−y + (1− x) log 1−x

y

Then, for any authentication procedure that makes use of ĥAB, ĥ,

d (E [pFA] ,E [pMD]) ≤ D
(
pĥ,ĥ(AB)|H0

|| pĥ,ĥ(AB)|H1

)
d (E [pMD] ,E [pFA]) ≤ D

(
pĥ,ĥ(AB)|H1

|| pĥ,ĥ(AB)|H0

)

The above outer bounds depend on the
attack strategy fĥ|H1,ĥ(AE),ĥ(EB) as under

H1, ĥ is independent of ĥ(AB), when
conditioned on ĥ(AE), ĥ(EB).
We consider
fĥ|H1,ĥ(AE),ĥ(EB) = fĥ|H0,ĥ(AE),ĥ(EB)

E [pFA]

E [pMD]

0 1

1
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Average PMD vs channels correlation

E [PMD]

ρ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

N = 2
N = 5
N = 8

optimal ḡ
g = hEB

Parameters

OFDM scenario
N iid subcarriers
Rayleigh fading

SNRI = 15 dB

SNRII = 20 dB

PFA = 10−4
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CDF of first success for multiple attack strategy

P
[
t(F) ≤ τ

]

τ
10 20 30 40 50 60 70 80 90 100

10−4

10−3

10−2

10−1

pFA = 10−2

ρ = 0.8 pFA = 10−3

ρ = 0.1 pFA = 10−4

Parameters

OFDM scenario
N = 5 iid
subcarriers
Rayleigh fading

SNRI = 15 dB

SNRII →∞
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Conclusions

We have generalized the physical-layer technique of [Xiao et al., ‘06–‘10]
to provide authentication between Alice and Bob, also assuming a more
general model for the attack employed by Eve.

We provide the optimal strategy for Eve in the case of single attack and
we perform an analytical computation of E [PMD] with respect to channel
distribution.

Moreover, we formulate a suboptimal multiple attacks strategy for Eve
consisting in a sequence of messages and channel guesses aiming to break
authentication.

Numerical results confirm the merits of the considered method when
diversity is sufficiently high and when correlation among channels is low.
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