

LA LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

a.a. 2018-2019

Prof. Maristella Agosti
Presidente dei CdS in Ingegneria Informatica
maristella.agosti@unipd.it

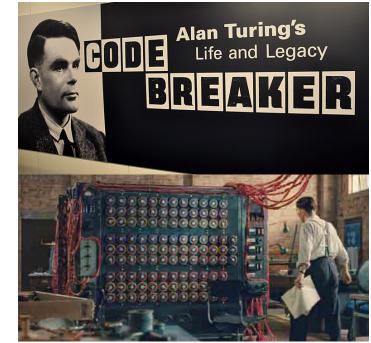
Le buone notizie

□ Gli informatici del DEI

- □ hanno ulteriormente rinnovato l'offerta didattica dell'aa 2018/2019, e la rinnoveranno anche nell'aa 2019-2020
- hanno contribuito e contribuiscono all'avvio e al rinnovamento di altri Corsi di Studio
- normalmente preferiscono l'understatement
- OCSE: What are the returns on higher education for individuals and countries?

Criteri per scegliere un Corso di Laurea Magistrale

- □ Attitudine Personale
- Offerta didattica e attività di ricerca dei docenti nel dipartimento di riferimento, che, per Ingegneria Informatica, è il Dipartimento di Ingegneria dell'Informazione (DEI)
- □ Competenze richieste e fornite visto che
 l'Ingegneria Informatica è pervasiva
- □ Sbocchi occupazionali



Ingegneria Informatica

- L'Ingegneria Informatica si occupa della ideazione, progettazione e sviluppo di sistemi per l'elaborazione dell'informazione
- Quali sono le differenze fra un corso di laurea in Ingegneria Informatica e un corso
- Approccio sistemico ai problemi
- Solidi fondamenti teorici logico-matematici
- L'Ingegneria Informatica abilita innovazioni e rivoluzioni in una moltitudine di discipline

Purtroppo in Italia c'è una percezione limitata di cosa è

in Informatica

Perché scegliere Ingegneria Informatica

- □ Perché vi interessa e perché vi fornisce:
 - Alta formazione in Ingegneria: acquisizione di conoscenze generali e specifiche e sviluppo di capacità di risolvere problemi complessi in applicazioni scientifiche, industriali e sociali realizzando i corrispondenti sistemi
- Ambiente internazionale: contatti ed esperienze all'estero, Erasmus+ Traineeships
- Rapporti con le aziende: tesi con stage in azienda
- □ Tasso di occupazione

Ed ora le presentazioni su:

- Insegnamenti organizzati in base alla Ricerca
 DEI nei vari settori
 - Prof. Sergio Canazza
- Il "Manifesto" della Laurea Magistrale in Ingegneria Informatica: offerta didattica e struttura
 - Prof. Maristella Agosti
- Occupazione: l'ingegnere informatico e il mondo del lavoro
 - Prof. Maria Silvia Pini

LA LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

a.a. 2018-2019

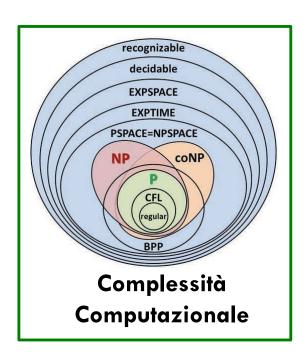
INGEGNERIA INFORMATICA @DEI: DIDATTICA E RICERCA Prof. Sergio Canazza

Sommario

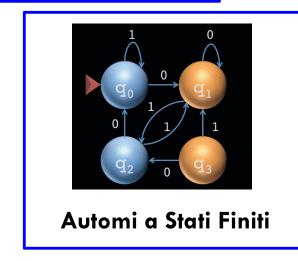
 Presentazione delle aree di ricerca di Ingegneria Informatica @DEI

Ingegneria Informatica @DEI

- Gli insegnamenti hanno un impianto teoricoapplicativo e offrono competenze su:
 - modelli
 - algoritmi
 - sistemi
 - tecnologie
 - applicazioni informatiche
- Molti insegnamenti prevedono la realizzazione di un progetto e/o attività di laboratorio



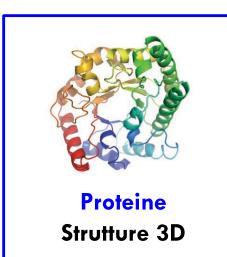
Automi e linguaggi


(Bilardi, Satta)

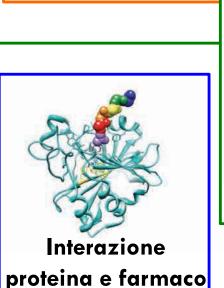
Teoria

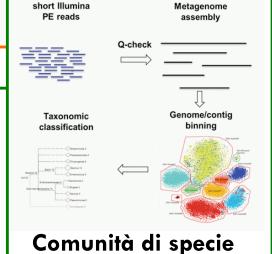
Applicazioni

- Automi, linguaggi e computazione: modelli formali per l'analisi della struttura dei problemi e la rappresentazione della computazione
- Compilatori: teoria del parsing e generazione di codice macchina da linguaggi ad alto livello


Bioinformatica e biologia computazionale

(Comin, Di Camillo, Ferrari, Pizzi, Vandin)


Algoritmi e strutture dati


Biologia e Medicina

Pattern di mutazioni

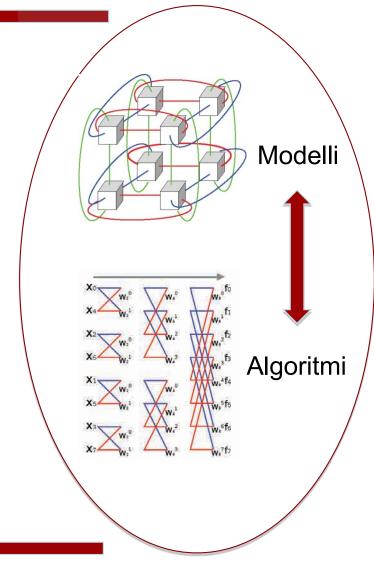
in malattie

 Algoritmi per la bioinformatica: astrazione di problemi biologici in termini matematici e progettazione di algoritmi efficienti ed efficaci per la loro soluzione

Calcolo avanzato

(Bilardi, Fantozzi, Peserico, Pietracaprina, Pucci, Silvestri, Vandin)

Architetture parallele e gerarchiche

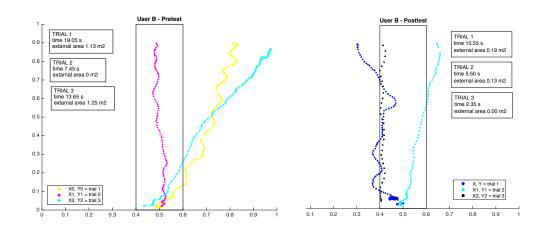

Tecniche di intelligenza computazionale

- Calcolo parallelo: analisi di architetture, progettazione e analisi di algoritmi
- Progettazione avanzata di algoritmi: metodi e tecniche di problem solving

Informatica per la musica e il multimedia

(Canazza, De Poli, Rodà)

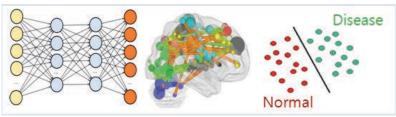
Sistemi automatici per performance musicali e strumenti musicali virtuali



Informatica per
la tutela
e la
valorizzazione
dei beni
culturali
musicali

Multimodalità, interazione e realtà aumentata per la produzione artistica e la rieducazione motoria

 Informatica per la musica e il multimedia: musica, multimedia, creatività computazionale, valorizzazione beni culturali musicali, interazione persona-computer


Ingegneria Informatica per la salute

(Fantozzi, Ferrari, Menegatti, Migliardi, Nanni, Peserico, Pietracaprina, Pucci, Vandin)

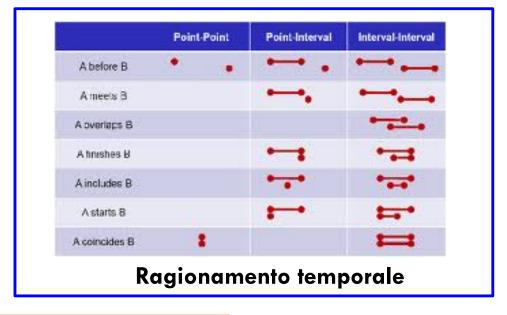
Supporti per aging society

Prospective memory helper

Machine Learning per diagnosi medica

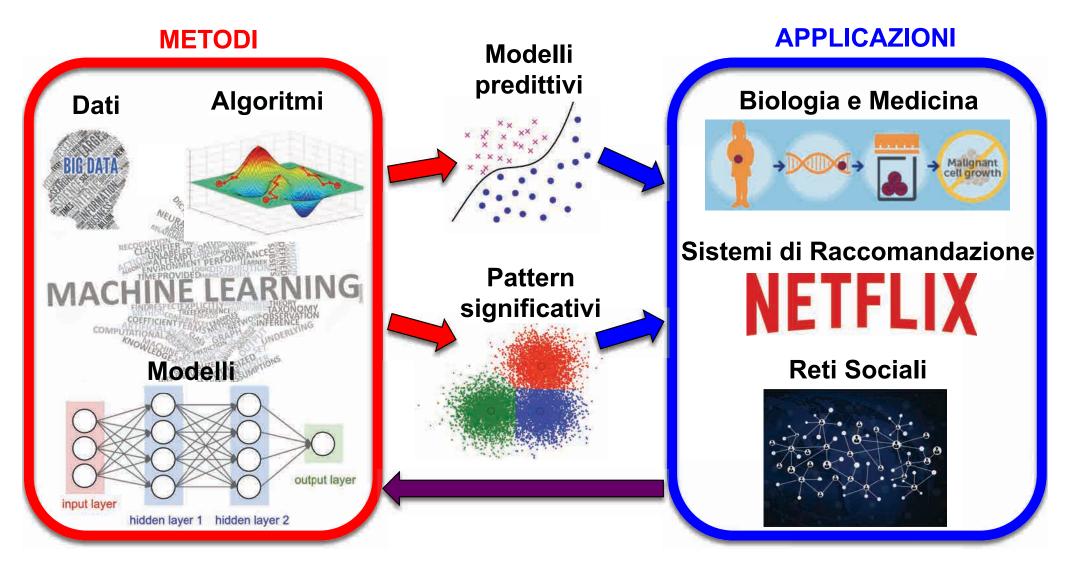
Dermatologia computazionale

Dispositivi guidati da BCI (Brain-Computer Interface)



Intelligenza artificiale

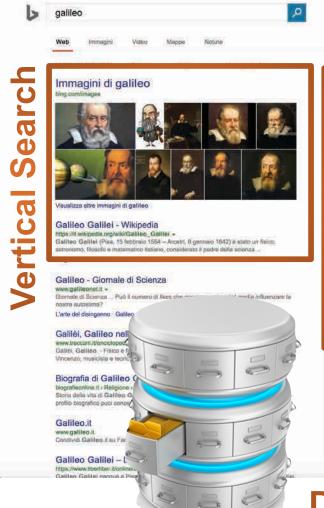
(Nanni, Pini, Satta)


 Sistemi intelligenti: metodi e tecniche dell'intelligenza artificiale

Machine learning

(Di Nunzio, Ferro, Melucci, Nanni, Pietracaprina, Pini, Pucci, Silvello, Vandin)

- Machine learning (in inglese): fondamenti e principi di base del problema dell'apprendimento automatico; modelli e algoritmi
- Big data computing (in inglese): analisi di insiemi di dati potenzialmente grandi, con particolare attenzione agli aspetti computazionali



Reperimento dell'informazione e dati permanenti

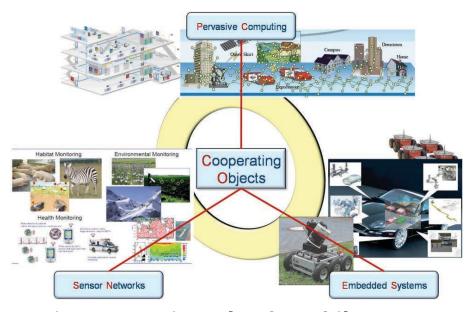
(Agosti, Cozza, Di Nunzio, Ferro, Silvello)

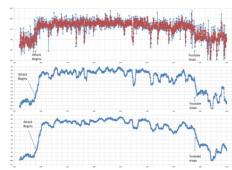
Search Engines

Semantic Search

English Accedi A

Machine Learning from User Interaction and Gamification


- Database management systems (in inglese):
 progettazione e realizzazione di applicazioni distribuite
 per la gestione e la permanenza di dati strutturati nel tempo
- Reperimento dell'informazione: progettazione e valutazione di sistemi di reperimento dell'informazione e motori di ricerca (Search Engines) che gestiscono grandi quantità di documenti e risorse digitali (big data)
- Web applications (in inglese): progettazione e sviluppo di applicazioni e servizi Web (Web Engineering)



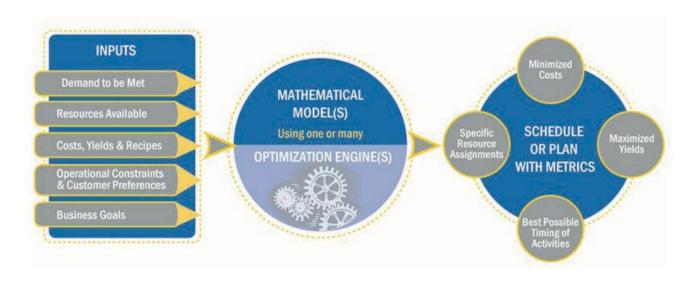
Reti, sistemi distribuiti e sicurezza

(Ferrari, Migliardi, Nanni, Peserico)

Pervasive computing, cloud, mobile, Internet of things

Malware detection

Biometria


- Reti di calcolatori: conoscenze di base e strumenti matematici per la progettazione e l'analisi delle prestazioni delle reti
- Sistemi distribuiti: elementi di progettazione di un sistema distribuito, con particolare attenzione alla eterogeneità, scalabilità e condivisione delle risorse

Ricerca operativa

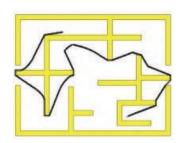
(Fischetti, Salvagnin)

Ottimizzazione traffico ferroviario

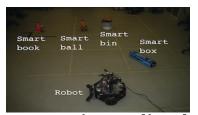
Controllo traffico aereo

Scheduling e instradamento di veicoli

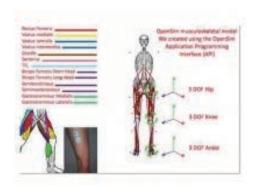
- Ricerca operativa 1: fondamenti delle tecniche di ottimizzazione e loro applicazione a casi reali
- Ricerca operativa 2: progettazione e implementazione di algoritmi avanzati di ottimizzazione


Robotica autonoma

(Ghidoni, Menegatti, Moro)



Pianificazione del moto e navigazione per robot


Robotica educativa

Integrazione di robot e reti di sensori

Robocup

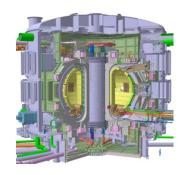
Integrazione uomo-robot con il tatto e la visione

 Computer Vision (in inglese): principi e strumenti della visione computazionale. Elaborazione e analisi automatica delle immagini al fine di estrarne diversi tipi di informazione

 Robotica autonoma: architetture software per la programmazione e la pianificazione del movimento di robot (con ruote e umanoidi)

Sistemi operativi e territoriali

(Dalpasso, Fantozzi, Ferrari, Moro)


Robotica industriale

Informazione geografica

Video Streaming

Impianti sperimentali di fusione nucleare (Real time)

- Sistemi operativi: organizzazione interna, file system e gestione risorse
- Sistemi informativi territoriali: progettazione e realizzazione di sistemi per la gestione e fruizione dell'informazione geografica

Insegnamenti con Laboratorio e/o Progetti

- Molti insegnamenti prevedono la realizzazione di un progetto e/o attività di laboratorio
 - Algoritmi per la bioinformatica
 - Big data computing
 - Calcolo parallelo
 - Compilatori
 - Computer vision
 - Database management systems
 - Informatica per la musica e il multimedia
 - Machine learning
 - Progettazione avanzata di algoritmi
 - Reperimento dell'informazione
 - Robotica autonoma
 - Sistemi informativi territoriali
 - Sistemi intelligenti
 - Web applications

LA LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

a.a. 2018-2019

OFFERTA DIDATTICA E STRUTTURA:

IL "MANIFESTO"

Prof. Maristella Agosti

Iscrizione al corso (1/2)

- Il documento di riferimento da consultare è l' "Avviso di ammissione, anno accademico 2018-2019":
 - attenzione, ad oggi il documento non è ancora online nel sito dell'Ateneo, vi informeremo via email quando sarà disponibile
- □ Voto minimo di laurea triennale: 84
- Laureati in Ingegneria dell'Informazione e in Ingegneria Informatica
 - Nessun vincolo
- Laureati in altri corsi di laurea di Ingegneria dell'Informazione a Padova e in altre sedi
 - Requisiti minimi: da valutare e valutazione preventiva del curriculum triennale

Iscrizione al corso (2/2)

- Per i laureati dopo <u>il mese di dicembre 2018</u>, non è prevista l'immatricolazione in corso d'anno: scompare l'immatricolazione in corso d'anno, chi si laurea a febbraio 2019 può immatricolarsi solo nell'aa 2019-2020
- La procedura di immatricolazione per l'aa 2018-2019 prevede la presentazione obbligatoria della domanda di valutazione preventiva indipendentemente dalla triennale di provenienza
- Raccomandazione: occorre procedere con la preimmatricolazione il prima possibile, anche se non ancora laureati - preimmatricolazioni possibili dal 18 giugno al 1 ottobre 2018 - Ulteriori periodi di preimmatricolazione via web e la procedura di immatricolazione saranno disponibile a breve nel link seguente: http://www.unipd.it/avvisi-ammissione-corsi
 - Questo contribuisce anche al funzionamento fluido del sistema

Manifesto degli Studi 2018-2019

- □ **Insegnamenti obbligatori** tutti al primo anno
 - \Box 5 × 9 CFU = **45 CFU**
- Insegnamenti di informatica "a scelta vincolata" (30 CFU da un ampio spettro di possibilità)
- □ 1 insegnamento affine dal gruppo "a scelta vincolata" (6 CFU)
 - corso di Telecomunicazioni o di Ing. Economico-gestionale
- Insegnamento a scelta dal manifesto (9 CFU)
- Crediti a scelta libera (9 CFU)
- □ Prova finale (21 CFU) scelta importante
- □ Totale = 120 CFU

Manifesto: "ossatura"

PRIMO ANNO

PRIMO SEMESTRE

Automi linguaggi computazione **9CFU O**

Ricerca operativa 1 9CFU O

Computer networks - in inglese 9CFU O

Machine learning - *in inglese* (\rightarrow 30)

SECONDO SEMESTRE

DBMS - in inglese 9CFU O

Sistemi Operativi 9CFU O

Computer Vision - *in inglese* (→30)

Big Data Computing - *in inglese* (→30)

Calcolo parallelo (→30)

Sistemi intelligenti (→30)

SECONDO ANNO

PRIMO SEMESTRE

Progettazione avanzata degli algoritmi (→30)

Reperimento dell'informazione (→30)

Sistemi distribuiti (→30)

Gestione strategica dell'impresa 6CFU

Wireless communications in inglese 6CFU

SECONDO SEMESTRE

Algoritmi per la bioinformatica (\rightarrow 30)

Compilatori (→30)

Informatica per la musica e multimedia (→30)

Network modeling - in inglese 6CFU

Manifesto degli Studi 2017-2018

- Insegnamenti offerti per la scelta:
 - ■Game Theory (in inglese) (II / 1)
 - ■Ricerca operativa 2 (II / 2)
 - ■Robotica autonoma (II / 1)
 - Sistemi Informativi territoriali (II / 2)
 - ■Web applications (in inglese) (11 / 2)
 - Digital Signal Processing (in inglese) (I / 1)
 - ■Information Security (in inglese) (II / 1)
 - ■Internet of things and smart cities (in inglese) (II / 2)
 - ■Ingegneria della qualità (I / 1)
 - Innovation, entrepreneurship and finance (in inglese) (II / 2)

Organizzazione del CdS

- Commissione didattica
 - piani di studio
 - valutazione learning agreement per mobilità internazionale
 - valutazioni preventive
 - stage
- □ Altre commissioni e gruppi di lavoro
- Contatti sempre attraverso la Segreteria didattica
 - <u>segredei@dei.unipd.it</u>

Link utili

- □ Elenco e descrizione dei corsi a manifesto
 - http://didattica.unipd.it/off/2018/LM/IN/IN0521
- Presentazioni Corsi di Studio Magistrali
 - https://www.dei.unipd.it/node/1653
 - percorso: Home sito DEI > CORSI > Orientamento >Orientamento per Corsi di Laurea Magistrali
- □ Sito Web del dipartimento
 - http://www.dei.unipd.it/

LA LAUREA MAGISTRALE IN DI PADOVA INGEGNERIA INFORMATICA

a.a. 2018-2019

SBOCCHI OCCUPAZIONALI
Prof.ssa Maria Silvia Pini

Perché scegliere Ingegneria Informatica

- Buoni motivi per scegliere la laurea magistrale in Ingegneria Informatica
- □ Sbocchi occupazionali

Buoni motivi per scegliere Ingegneria Informatica

- Informatica pervade ogni attività della vita di tutti i giorni
 - Tutti i servizi hanno bisogno di sistemi informatici
- 2. Sbocchi occupazionali
 - Lavoro sicuro dopo la laurea
- 3. Internazionalizzazione
 - Dopo la laurea ci sono molte opportunità di lavoro all'estero

Buoni motivi ... a Padova

1. Qualità del corso di Laurea Magistrale

 Gli studenti hanno valutato il corso come uno dei migliori di Ingegneria a Padova

2. Qualità della ricerca

- Docenti: ricercatori di fama internazionale
- Collaborazioni con prestigiose istituzioni di ricerca internazionali e nazionali

3. Terza missione

- Trasferimento tecnologico
- Divulgazione

4. Spirito imprenditoriale e professionale

- Spin-off
- Premi a Start Cup Veneto e Progetto Impresa

1. Qualità del corso di Laurea

Valutazione degli studenti AA. 2016-2017 (ultima disponibile)

- Soddisfazione complessiva
 - Media 7,76 (prec 7,55)
- Aspetti organizzativi
 - Media 8,35 (prec 8,12)
- Azione didattica
 - Media 7,99 (prec 7,78)

2. Qualità della ricerca

- Ricercatori di fama internazionale
- Collaborazioni con prestigiose istituzioni di ricerca internazionali

- Corsi: Metodi e modelli scientifici nuovi e avanzati
- □ Tesi di laurea innovative
 - Su temi all'avanguardia con strumenti informatici elevato contenuto tecnologico
 - □ In laboratori con attrezzature specifiche

Laboratori di ricerca in Informatica@DEI

- Basi di dati (DEI-G, III piano)
- Bioinformatica strutturale (DEI-G, III piano)
- Calcolo avanzato (DEI-G, IV piano)
- Informatica musicale (DEI-P, piano terra)
- Intelligenza artificiale (DEI-G, IV piano)
- Robotica autonoma (DEI-O, piano terra)
- Servizi Internet e sistemi informativi (DEI-G, IV piano)
- Sistemi autonomi intelligenti (DEI-O, piano terra)
- Sistemi distribuiti (DEI-G, IV piano)
- Sistemi real-time e GIS (DEI-G, IV piano)
- Tecnologie innovative per l'educazione scientifica (DEI-G, IV piano)

3. Terza missione

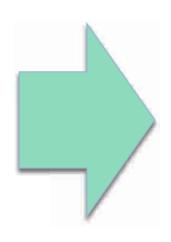
Trasferimento tecnologico

- Brevetti
- Contratti commerciali con
 - Imprese
 - Istituzioni pubbliche
 - Istituzioni private

Divulgazione

- International Jazz Day
- La banconata tra tecnologia e creatività (Banca d'Italia)
- La bellezza nei libri

4. Spirito imprenditoriale e professionale


- Premi e riconoscimenti per idee imprenditoriali innovative
 - Start Cup Veneto
 - Progetto Impresa
 - Premio Lamarck
 - Premio Creative Clusters

Sbocchi occupazionali

Lingua inglese

 Ingegneri informatici magistrali molto ricercati dalle aziende

 □ Lingua inglese discriminante per la progressione di carriera

□ All'Università di Padova:

Centro Linguistico di Ateneo

http://www.cla.unipd.it/

Dati AlmaLaurea sull'occupazione

- Indagine del 2016, tre anni dopo aver conseguito la laurea magistrale
- □ Percentuale di laureati che lavorano
 - □ Laureati in Italia: 72%
 - □ Ingegneri (qualsiasi) in Italia: 81,7%
 - □ Ingegneri Informatici a Padova: 92,3%

Dati scaricati dal sito di Almalaurea il 14/05/2018 (prossimo aggiornamento giugno 2018)

Dati AlmaLaurea sull'occupazione

- Indagine del 2016, tre anni dopo aver conseguito la laurea magistrale in <u>Ingegneria Informatica</u> a Padova (24 intervistati)
- □ Durata degli studi: 3 anni
- □ Percentuale di laureati che lavorano: 92,3%
- Percentuale dei laureati impegnati in ulteriori
 attività di formazione: 4,2%
- □ Tasso di occupazione ISTAT: 100,0%

Dati AlmaLaurea sull'occupazione

- Indagine del 2016, un anno dopo aver conseguito la laurea magistrale in <u>Ingegneria Informatica</u> a Padova (30 intervistati)
- □ Durata degli studi: 2,5 anni
- □ Percentuale di laureati che lavorano: 83,3%
- Percentuale dei laureati impegnati in ulteriori attività di formazione: 3,3%
- □ Tasso di occupazione ISTAT: 93,3%

Formazione post-lauream: il dottorato

□ Corso di dottorato @DEI

- Numerose aree di ricerca di ottimo livello attive nell'indirizzo di Ingegneria Informatica
- Dopo il dottorato: Università, Istituti di ricerca, R&D in multinazionali, attività imprenditoriale, aziende

□ Il dottorato all'estero: casi di successo

MIT, Stanford, Urbana, Berkeley, GeorgiaTech, Brown, Purdue, Irvine, Boston University, ETH, Max Plank Institute, KTH

Visita guidata nei laboratori

Vuoi capire cosa si fa nei nostri laboratori di ricerca?

- Prenota il tuo tour inviando una mail entro il 9
 giugno 2018 per avere le visite in giugno a
 - sergio.canazza@unipd.it
 (per visitare il Lab. di Informatica Musicale)
 - □ giorgiomaria.dinunzio@unipd.it (per visitare il Lab. di Basi di Dati)
 - emanuele.menegatti@unipd.it
 (per visitare il Lab. di Robotica Autonoma)

Fondazione Luciano Iglesias

- Fondazione fondata nel 2011 da un lascito di Luciano Iglesias per favorire, sostenere e promuovere l'istruzione, la cultura e gli studi
- Premio Iglesias per studenti meritevoli di Ingegneria Informatica dell'Università degli Studi di Padova
 - Assegnato per promuovere e sostenere l'attività di giovani e meritevoli laureati nei corsi di laurea triennale/magistrale in Ingegneria Informatica nell'anno solare 2017
- □ Premi assegnati per l'anno solare 2017
 - 20 Premi di Studio a favore di
 - 5 Laureati triennali (Euro 3.500 ciascuno)
 - 15 Laureati magistrali (Euro 3.000 ciascuno)

Fondazione Luciano Iglesias: premiazione dei 20 laureati e laureati magistrali in Ingegneria Informatica UNIPD del 2017

I vincitori laureati nell'anno solare 2017:

https://www.fondazioneiglesias.it/news/vincitori-n-21-borse-di-studio-universita-degli-studi-di-padova-anno-solare-2017.html

