

INTERNATIONAL MOBILITY @DEI

A presentation of the Department of Information Engineering for International Partners

November 8, 2021 – 10.00 AM

Prof. Maria Elena Valcher, Dept. Coordinator of International Mobility

The Goals of this Meeting

The main goals of this meeting are two:

To provide some information about our most recent **study offer**, with special focus on the degrees and classes **taught in English.**

To address **possible questions** you may have about our classes, degrees, welcoming procedures for incoming students, available services etc..

As a result, we also hope to **know each other better** and possibly strengthen our collaborations, in the interest of our students.

The Program of this Meeting

☐ Brief presentation of the goals and the program of the online meeting, as well as of the Faculty and Staff who is attending the meeting
☐ Short video presenting Padova, the University of Padova and the Department of Information Engineering (DEI)
☐ Presentation of DEI, its research areas and the English degrees and courses, as well as of the International Mobility programs we are currently involved in
□ Q&As
☐ Short video with Veronica Costa presenting the International of Office and 3 international students talking about their experience at DEI
☐ Final Q&As
☐ Concluding remarks

Dowtown Padova & Our Department

Our Department: Brief History

In 1903 the Chair of Electrical Engineering was established at the Engineering Faculty of Padova University's. Subsequently the group of researchers and staff working with the Chair formed the Institute of Electrical and Electronics Engineers.

The Institute later split into two Departments:

The Department of Electrical Engineering and the

Department of Electronics and Informatics (1987-2002), know as DEI.

In 2002 the Department changed name becoming the **Department of Information Engineering** but we decided to keep the acronym DEI.

Our Department: Faculty & Graduate Students

undergraduate and postgraduate students

Ph.D. students

post-doctoral fellows

The Department is one of the highest earners of income for the University and it was classified as

«Department of Excellence» by the Italian
Ministery for University.

Our Department: Research Areas

Our focus: Information Engineering

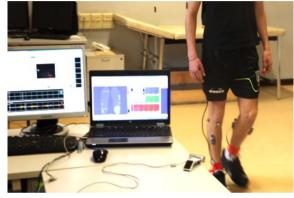
Including the areas of

- Electronics
- System Theory and Automation
- Telecommunications
- Computer Engineering
- Bioengineering
- Measurement Techniques
- Physics and Operation Research

Our Department: Staff

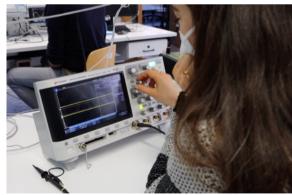
Administrative and technical staff

They are divided among administrative offices, the library, secretaries (didactic secretaries and the Department head's secretaries), educational laboratories services, information technology services, general services, and safety services.



Our Department: Labs

Research Labs



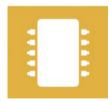
Teaching Labs

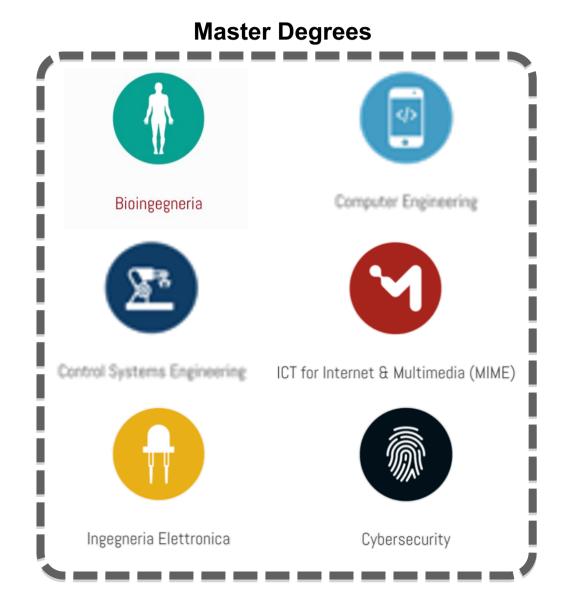
Our Department: Women

We take pride in the fact that our Department has lots of female Faculties, Staff and Graduate Students

Bachelor and Master Degrees

Bachelor Degrees


Ingegneria dell'Informazione (2 tracks: 1 in Italian and 1 in English)


Ingegneria Biomedica

Ingegneria Informatica

Ingegneria Elettronica

Information Engineering

(Bachelor's Degree)

First Bachelor Study Track completely held in English in the Engineering School @UniPD.

The Bachelor's degree is distinguished by a methodological and multidisciplinary training.

It provides in-depth training in both the physical/mathematical fundamentals and in the disciplines characterizing Information Engineering:

- Control systems
- Electronics
- Telecommunications
- Computer science
- Bioengineering

Information Engineering English track - (Bachelor's Degree)

Compulsory Classes

Elective Classes

Fundamentals	Information Engineering	Course list 1	Course list 2 - Laboratories
Calculus 1	Probability theory		
Foundations of computer	Signals and systems	Systems and models	Computer engineering
science	Electric circuits	Finite state systems	Internet and multimedia
Linear algebra and geometry	Introduction to machine	Introduction to computer	Signals and measurements
	learning	networks	Bioengineering
Physics 1	Year 3	Internet and security	Control systems
Digital systems	Electronics	Digital signal processing	Microelectronics
English (reception skills B2)	Telecommunications	Microcontrollers and DSP	
Year 2	Control theory	Selected topics in ICT	Optics and photonics
Calculus 2	Algorithms in engineering		
Physics 2	And/Or		
Data structures and algorithms	Information transmission media		

Bioingegneria (Master's Degree)

INDUSTRIAL BIOENGINEERING (enterely in Italian)

BIOMEDICAL DATA ANALYSIS AND MODELING

BIOENGINEERING FOR NEUROSCIENCE

REHABILITATION BIOENGINEERING

Bioingegneria (Master's Degree)

DIGITAL HEALTH AND CLINICAL ENGINEERING

BIOMEDICAL DATA ANALYSIS AND MODELING

Mandatory

- Meccanica dei Tessuti Biologici
- Metodi statistici per la bioingegneria
- Elaborazione di segnali biologici
- Machine learning for bioengineering
- Biomedical wearable technologies for healthcare and wellbeing
- Bioimmagini
- Analisi di dati biologici
- Clinical engineering and health technology assessment

Mandatory

- Modeling Methodology for Physiology and Medicine
- Metodi Statistici per la Bioingegneria
- Elaborazione dei Segnali Biologici
- Machine Learning for Bioengineering

- Bioimmagini
- Meccanica dei Tessuti Biologici
- Analisi di Dati Biologici
- Control of Biological Systems

Elective & Optional

- Biosensori
- Cardiovascular flows modelling

- Innovation, entrepreneurship and finance
- Medical Big Data Sources and Clinical **Decision Support Systems**
- Neurorobotics and Neurorehabilitation

Elective & Optional

- Medical Biothecnologies
- Biosensori
- Sistemi Ecologici
- Innovation, Entrepreneurship and Finance
- Medical Big Data Sources and Clinic **Decision Support Systems**

Bioingegneria (Master's Degree)

BIOFNGINFFRING FOR NEUROSCIENCE

REHABILITATION BIOFNGINEERING

Mandatory

- Modeling Methodology for Physiology and Medicine
- Metodi Statistici per la Bioingegneria
- Elaborazione dei Segnali Biologici
- Imaging for Neuroscience

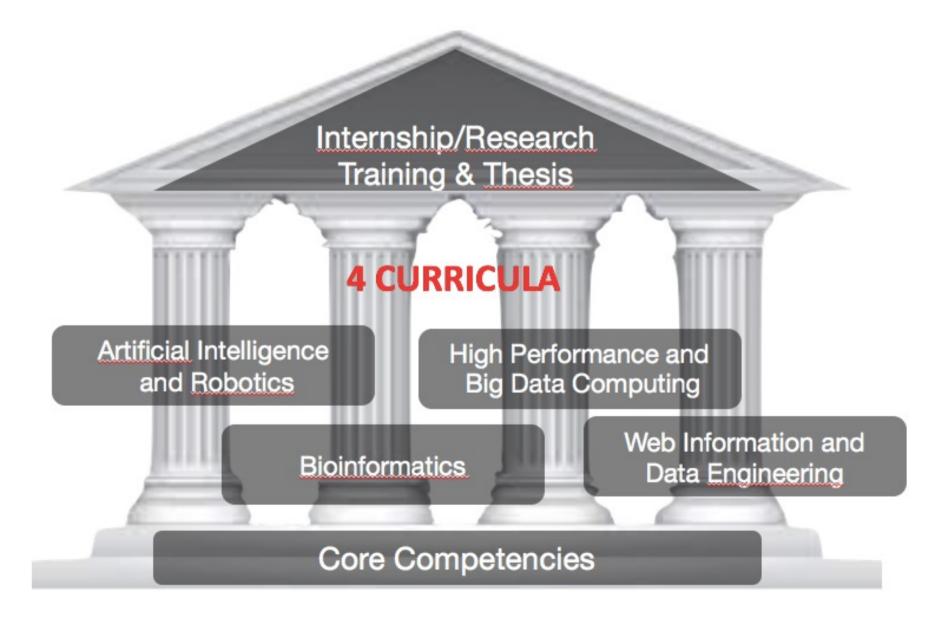
- Bioimmagini
- Neurophysiology, neural computation and neurotechnologies
- Biomarkers, precision medicine and drug development
- Mathematical Cell Biology

Mandatory

- Meccanica dei Tessuti Biologici
- Metodi Statistici per la Bioingegneria
- Organi Artificiali
- Bioimmagini
- Biomedical wearable technologies for healthcare and wellbeing
- Sports Engineering and Rehabilitation Device
- Neurorobotics & Neurorehabilitation
- Robotica Medica
- Control of Biological Systems
- Metodi Ingegneristici nella Progettazione di Dispositivi e Procedure Clinico-Chirurgiche

Elective & Optional

Neurorobotics & Neurorehabilitation


- Biosensori
- Robotica Medica
- Bioingegneria cellulare e dei tessuti
- Deep learning applied to neuroscience and rehabilitation
- Biomedical wearable technologies for healthcare and wellbeing

Elective & Optional

- Machine Learning for Bioengineering
- Deep learning applied to neuroscience an rehabilitation
- Biomedical wearable technologies for healthcare and wellbeing

Computer Engineering (Master Degree)

Computer Engineering (Master's Degree)

MANDATORY COURSES					
Course	CFU	Period			
Automata, Languages and Computation	9	Y1.1			
Machine Learning	6	Y1.1			
Operations Research 1	9	Y1.1			

COMMON TO ALL CURRICULA

OTHER ACTIVITIES						
Activity	CFU					
English Language/Italian Language	3					
Internship/Research Training	9	Y2				
Final Project	21	Y2				

COMMON TO ALL CURRICULA

Computer Engineering Artificial Intelligence and Robotics Track

ARTIFICIAL INTELLIGENCE AND ROBOTICS

MANDATORY COURSES					
Course	CFU	Period			
Artificial Intelligence	6	Y1.2			
Computer Vision	9	Y1.2			
Intelligent Robotics	9	Y2.1			

ELECTIVE COURSES: AT LEAST 27 CFU		OTHER CHOIC	CES		
Course	CFU	Period	Course	CFU	Period
Deep Learning	6	Y1.2	Neurorobotics and Neurorehabilitation	6	Y2.1
Robotics and Control 1	9	Y1.2	Quality Engineering	6	Y1.1
Big Data Computing	6	Y1.2	Innovation, entrepreneurship	9	Y2.1
Learning from Networks	6	Y2.1	and finance		
Industrial Robotics	6	Y2.1	Operation Research 2	6	Y2.2
3D Data Processing	6	Y2.2	C.E. for Music and Multimedia	6	Y2.2
Natural Language Proc.	6	Y2.2	Game Theory	2	Y2.1

Computer Engineering BioInformatics Track

BIOINFORMATICS

MANDATORY COURSES					
Course	CFU	Period			
Inferential Statistics	6	Y1.1			
Bioinformatics	9	Y1.2			
Computational Genomics	6	Y2.1			
Learning from Networks	6	Y2.1			

ELECTIVE COURSES: AT LEAST	Γ 24 CF	U	OTHER CHOICES		
Course	CFU	Period	Course	CFU	Period
Foundations of databases	6	Y1.1	Imaging for Neuroscience	9	Y1.2
Artificial Intelligence	6	Y1.2	Structural Bioinformatics	6	Y1.2
Big Data Computing	6	Y1.2	Operations Research 2	6	Y2.2
Web applications	6	Y1.2	Genomics and NGS data	9	Y2.2
Distributed Systems	9	Y2.1	analysis		
Advanced Algorithm Design	9	Y2.1			
Computers and network security	6	Y2.2			

Computer Engineering

High Performance and Big Data Computing Track

HIGH PERFORMANCE AND BIG DATA COMPUTING

MANDATORY COURSES				
Course	CFU	Period		
Inferential Statistics	6	Y1.1		
Parallel Computing	9	Y1.2		
Big Data Computing	6	Y1.2		
Advanced Algorithm Design	9	Y2.1		

ELECTIVE COURSES: AT LE	AST 21 (CFU	OTHER CHOICES		
Course	CFU	Period	Course	CFU	Period
Artificial Intelligence	6	Y1.2	Cryptography	6	Y1.1
Bioinformatics	9	Y1.2	Computational Genomics	6	Y2.1
Search Engines	9	Y1.2	Game theory	6	Y2.1
Deep Learning	6	Y1.2	Natural Language Processing	6	Y2.2
Distributed Systems	9	Y2.1	Stochastic Processes	6	Y2.2
Learning from Networks	6	Y2.1	Operations Research 2	6	Y2.2

Computer Engineering

Web Information and Data Engineering Track

WEB INFORMATION AND DATA ENGINEERING

MANDATORY COURSES						
Course	CFU	Period				
Computer Networks	9	Y1.2				
Search Engines	9	Y1.2				
Web Applications	6	Y1.2				
Database 2	9	Y2.1 (F)				

OTHER CHOICES						
Course	CFU	Period				
Geographic Information Systems	6	Y1.2				
Digital Forensics	6	Y1.1				
Quality Engineering	6	Y1.1				
Information security	6	Y2.1				
Operations Research 2	6	Y2.2				

ELECTIVE COURSES: AT LEAST 18 CFU			
Course	CFU	Period	
Foundations of databases	6	Y1.1	
Software platforms	6	Y1.1	
Inferential Statistics	6	Y1.1	
Big Data Computing	6	Y1.2	
Distributed Systems	9	Y2.1	
Concurrent and Real Time Programming	6	Y2.1	
Computers and Network Security	6	Y2.2	
Computer Engineering for Music and Multimedia	6	Y2.2	
Natural Language Processing	6	Y2.2	

Control Systems Engineering (Master's Degree)

Common Core: Systems Theory, Machine Learning, Digital Control, Estimation and Filtering, Control Laboratory;

to be completed with courses in key areas, e.g.

ROBOTICS

MACHINE LEARNING

INDUSTRIAL

COMPLEX SYSTEMS

Robotics and Control 1

Robotics and Control 2

Robotics Lab

Computer Vision

Intelligent Robotics

Convex Optimization

Learning Dynamical Systems

Reinforcement Learning

Deep Learning

Embedded Real-Time Control

Industrial Automation

Electric Drives for Automation

Industrial Robotics

System Biology

Network Systems

Nonlinear Systems & Control

Quantum Information & Computing

Includes a rich offering of theory and lab courses (all in English):

optimization, math. physics, adaptive & predictive control, network science, big data computing, information theory and security, smart grids, domotics & automotive.

Control Systems Engineering (Master's Degree)

In addition to the 5 mandatory courses, we offer:

Electric Drives for Automation (6cfu CORE+3cfu)

Industrial Automation (3cfu CORE+6cfu)

Mathematical Methods for Optimization (3cfu CORE+6cfu)

Learning Dynamical Systems (9cfu, CORE)

Robotics and Control 1 (9cfu, CORE)

Robotics and Control 2 (9cfu, CORE)

Adaptive and Model Predictive (6cfu, CORE)

Reinforcement Learning (6cfu, CORE)

Nonlinear Systems and Control (6cfu, CORE)

Embedded Real-Time Control (6cfu, CORE)

Network Systems and Dynamics (6cfu, CORE)

Network Systems (6cfu, CORE)

Systems Biology (6cfu, CORE)

Robotics laboratory (6cfu, CORE)

Sistemi Ecologici (in Italian) (6cfu, CORE)

Industrial Robotics (9cfu, CORE)

Convex Optimization (6cfu)

Mathematical Physics (9cfu)

Digital Signal Processing (6cfu)

Quantum Information and Computing (6cfu)

Neural Networks and Deep Learning (6cfu)

Measurement Architectures for Cyber-physical

Systems (9cfu)

Computer Vision (9cfu)

Computer Vision (6cfu)

Intelligent Robotics (9cfu)

Big Data Computing (6cfu)

Learning from Networks (6cfu)

Game Theory (6cfu)

Information Security (6cfu)

Automata, Languages and Computation (9cfu)

Control of Biological Systems (6cfu)

Smart Grids (6cfu)

Automotive and Domotics (9cfu)

Stochastic Processes (6cfu)

Electronic Engineering

MANDATORY COURSES	CFU	PERIOD
MICROWAVE DEVICES	6	Y1-S1
ANALOG ELECTRONICS	6	Y1-S1
ELECGTRONIC MEASUREMENTS	9	Y1-S1
MICROELECTRONICS	9	Y1-S2
ANALOGUE INTEGRATED CIRCUITS DESIGN	6	Y1-S2
POWER ELECTRONICS	9	Y1-S2
OTHER ACTIVITIES		
INTERNSHIP/RESEARCH TRAINING	9	Y2
FINAL PROJECT	21	Y2

NANOELECTRONICS AND PHOTONICS

ELECTRONICS FOR ENERGY

INTEGRATED CIRCUITS

BIOMEDICAL AND HEALTH CARE

CONSUMER ELECTRONICS AND DOMOTICS

SMART INDUSTRY AND AUTOMOTIVE

Electronic Engineering

NANOELECTRONICS AND PHOTONICS

Mandatory Course		i
OPTOELECTRONIC AND PHOTOVOLTAIC DEVICES	9	Y2-S1
CFU: min 9, MAX 18		
NANOPHOTONICS	6	Y2-S1
BIOPHOTONICS	6	Y2-S2
QUALITY AND RELIABILITY IN ELECTRONICS	9	Y2-S1
MICROELECTRONICS AND GLOBALIZATION	9	Y1-S2
OPTICAL NETWORKS	6	Y2-S2
CFU: min 12, MAX 21		
QUANTUM OPTICS AND LASER	6	Y2-S1
NANOSTRUCTURED MATERIALS	6	Y2-S1
PHYSICS OF NANOMATERIALS	6	Y1-S1
QUANTUM TECHNOLOGIES	6	Y2-S2
INDUSTRIAL APPLICATIONS OF IONIZING RADIATION SOURCES	6	Y2-S2

INTEGRATED CIRCUITS

Mandatory Course		
INTEGRATED CIRCUITS FOR SIGNAL PROCESSING	9	Y2-S1
RADIOFREQUENCY INTEGRATED CIRCUITS DESIGN	9	Y2-S1
CFU: 9		
ELECTROMAGNETIC COMPATIBILITY	9	Y2-S1
DIGITAL CIRCUITS FOR NEURAL NETWORKS	9	Y2-S2
ANTENNAS AND WIRELESS PROPAGATION	9	Y2-S2
ANALOG ELECTRONICS DESIGN	9	Y2-S1
CFU: min 12, MAX 15		
5G SYSTEMS	6	Y1-S1
DIGITAL SIGNAL PROCESSING	6	Y1-S1
DIGITAL CONTROL	6	Y1-S1
SYSTEMS THEORY	9	Y1-S1
WIRELESS NETWORKS	6	Y1-S1

BIOMEDICAL AND HEALTH CARE

Mandatory Courses		
POWER ELECTRONICS DESIGN	9	Y2-S1
SMART GRIDS	6	Y2-S2
CFU: 9		
ELECTROMAGNETIC COMPATIBILITY	9	Y2-S1
OPTOELECTRONIC AND PHOTOVOLTAIC DEVICES	9	Y2-S1
ANALOG ELECTRONICS DESIGN	9	Y2-S1
CFU: min 15, MAX 18		
ELECTROCHEMICAL ENERGY STORAGE TECHNOLOGIES	6	Y2-S2
INDUSTRIAL AUTOMATION	9	Y1-S2
SYSTEMS THEORY	9	Y1-S1
MODELLING AND CONTROL OF ELECTRIC DRIVES	9	Y2-S1

BIOMEDICAL AND HEALTH CARE

Mandatory Course		
INTEGRATED CIRCUITS FOR SIGNAL PROCESSING	9	Y2-S1
CFU: min 9, MAX 18		
ELECTROMAGNETIC COMPATIBILITY	9	Y2-S1
DIGITAL CIRCUITS FOR NEURAL NETWORKS	9	Y2-S2
BIOPHOTONICS	6	Y2-S2
CFU: min 12, MAX 21		
IMAGING FOR NEUROSCIENCE	6	Y2-S1
BIOINFORMATICS	9	Y1-S2
DIGITAL SIGNAL PROCESSING	6	Y1-S1

Electronic Engineering

CONSUMER ELECTRONICS AND DOMOTICS

Mandatory Courses	I	
INTEGRATED CIRCUITS FOR SIGNAL PROCESSING	9	Y2-S1
AUTOMOTIVE AND DOMOTICS	9	Y2-S1
CFU: min 0, MAX 9		
RADIOFREQUENCY INTEGRATED CIRCUITS DESIGN	9	Y2-S1
OPTICAL NETWORKS	6	Y2-S2
MEASUREMENT ARCHITECTURES FOR CYBER-PHYSICAL SYSTEMS	9	Y2-S1
ANTENNAS AND WIRELESS PROPAGATION	9	Y2-S2
QUALITY AND RELIABILITY IN ELECTRONICS	9	Y2-S1
DIGITAL CIRCUITS FOR NEURAL NETWORKS	9	Y2-S2
OPTOELECTRONIC AND PHOTOVOLTAIC DEVICES	9	Y2-S1
CFU: min 12, MAX 21		
DIGITAL SIGNAL PROCESSING	6	Y1-S1
5G SYSTEMS	6	Y1-S1
INTERNET	6	Y2-S1
3D AUGMENTED REALITY	6	Y2-S1
INTERNET OF THINGS AND SMART CITIES	6	Y2-S1
COMPUTER VISION	9	Y1-S2
COMPUTER VISION	6	Y1-S2
ROBOTICS AND CONTROL 1	9	Y2-S2
ICT FOR INDUSTRIAL APPLICATIONS	6	Y1-S2
BIG DATA COMPUTING	6	Y1-S2

SMART INDUSTRY AND AUTOMOTIVE

Mandatory Course		
OPTOELECTRONIC AND PHOTOVOLTAIC DEVICES	9	Y2-S1
CFU: min 0, MAX 18		
MEASUREMENT ARCHITECTURES FOR CYBER-PHYSICAL SYSTEMS	9	Y2-S1
POWER ELECTRONICS DESIGN	9	Y2-S1
ELECTROMAGNETIC COMPATIBILITY	9	Y2-S1
INTEGRATED CIRCUITS FOR SIGNAL PROCESSING	9	Y2-S1
AUTOMOTIVE AND DOMOTICS	9	Y2-S2
INDUSTRIAL APPLICATIONS OF IONIZING RADIATION SOURCES	6	Y2-S2
SMART GRIDS	6	Y2-S2
CFU: min 12, MAX 30		
MACHINE LEARNING	6	Y1-S1
DIGITAL CONTROL	6	Y1-S1
SYSTEMS THEORY	9	Y1-S1
CONTROL ENGINEERING LABORATORY	9	Y2-S2
DIGITAL SIGNAL PROCESSING	6	Y1-S1
COMPUTER VISION	6	Y1-S2
COMPUTER VISION	9	Y1-S2
MODELING AND CONTROL OF ELECTRIC DRIVES	9	Y2-S1
INDUSTRIAL AUTOMATION	9	Y1-S2
ROBOTICS AND CONTROL 1	9	Y2-S2
BIG DATA COMPUTING	6	Y1-S2
COMPUTER NETWORKS	9	Y1-S2
ICT FOR INDUSTRIAL APPLICATIONS	6	Y1-S2

ICT for Internet and Multimedia (Master's Degree)

4 curricula, 2 tracks each

- Telecommunications
- Industry 4.0

- Photonics
- Quantum information

- Cybersystems
- Digital Arts

- Life and health
- ML for healthcare

Full course list available at: http://mime.dei.unipd.it/

ICT for Internet and Multimedia (Master's Degree)

(teaching semester between parentheses)

Wireless Networks (1), Programming for Telecommunications (1), Internet (1), 5G Systems (1), Information Security (1), Optical and Quantum Communications (1), Quantum Cryptography and Security (1), Digital Communications (2), Network Coding (2), Satellite Communication Systems (2), Communication Network Design (2), Network Analysis and Simulation (2)

TLC/ Networks

Fiber Optics (1), Photonic Devices (1), Nanophotonics (1), Optimal and Quantum Communications (1), Quantum Optics and Laser, Optical Networks (2), Antennas (2), Biophotonics (2), Visibile Light and Metasurfaces Communications (2)

Quantum Photonics

Digital Signal Processing (1), Game Theory (1), Network Science (1), Machine Leaning (1), Neural Networks and Deep Learning (1), Information Theory (2), Network Analysis and Simulation (2), Stochastic Processes (2)

Theory

Human Data Analytics (1), e-Health (2), Secure Digital Healthcare (2), Biometrics (2), Natural Language Processing (2)

Life & Health

Multimedia Coding (1), 3D Augmented Reality (1), Digital and Interactive Multimedia (1), Digital Forensics (2), Computer Vision (2)

Multimedia

ICT for Industrial Applications (2), Internet of Things and Smart Cities (2)

Industry

Project Management (1), Public Speaking lab (1), Non verbal communication (1)

Soft-skills

Further information about all Degrees and Courses is available at https://degrees.dei.unipd.it

INTERNATIONAL MOBILITY @ DEI

Our Department is involved in several agreements with International Partners for students exchange. For instance

- ✓ Erasmus + for Study
- Erasmus + for Traineeship
- ✓ SEMP (Swiss European Mobility Program)
- ✓ T.I.M.E. Double Degree Program
- ✓ Ulisse Program University and Department Bilateral Agreements (e.g., BU, New South Wales, Sydney,....) click here-for details and venues
- ✓ DECAMP Virtual Mobility
- ✓ Double Degree Programs for ICT for Internet and Multimedia Students

Looking forward to host you and your students @DEI!

