Laurea Magistrale in Control Systems Engineering

Ruggero Carli

Angelo Cenedese

Alessandro Chiuso

Augusto Ferrante

Gian Antonio Susto

Francesco Ticozzi

Maria Elena Valcher

Welcome

Presentation of the master program in

Control Systems Engineering

- bearing the cultural inheritance of the LM in "Ingegneria dell'Automazione"
- proposing a rich spectrum of courses (with few compulsory exams)
- offering 4 new paths in the most modern and active areas of control
- featuring a final thesis project of 30 cfu
- entirely taught in English

Success Stories

- Our students found rewarding and important technical positions both in local and international companies in heterogeneous sectors, such as:
 - Automotive;
 - Automation and Robotics;
 - Home Appliances;
 - Power and Energy;
 - O ...
- Several of our fellow students are faculties/hold positions at prestigious universities around the world.

Success Stories: Industrial

Marco Todescato - Research Scientist @ Bosch Center for Artificial Intelligence

Thanks to the skillset in 'Control of Dynamical Systems and Optimization' developed during my graduate studies at DEI, I currently develop cutting-edge research solutions in the field of **Artificial Intelligence** in one among the top German industrial research centers.

Laura Dal Col - Senior Research Engineer @ Scania Group

I believe that my education, and especially my master degree program has given me the tools to succeed in my career: the technical knowledge and the critical mindset to attack the tasks at hand, the formalism and the logical thinking, and last but not least the international network to find support and opportunities.

Success Stories: Industrial

Diego Romeres - Research Scientist @ Mitsubishi Electric Research Laboratories

Thanks to the studies in control engineering I became a researcher in the prominent world of Artificial Intelligence. I develop **machine learning** technologies for **robotic** systems in a cutting-edge research laboratory.

Michele Luvisotto - R&D Scientist @ ABB Power Grids

Thanks to the Master degree and PhD in Control Systems Engineering I've acquired the competences in **industrial communication systems** that I employ every day to build intelligent and more sustainable electric networks.

Success Stories: Industrial

Elisa Feltre - Software Development Engineer @ Skilled Group

I found a welcoming and exciting environment where new ideas are always encouraged and developed. The wide range of subjects allowed me to follow all my inclinations, which, together with my international experience, gave me the perfect set of skills for the job I love.

Giuliano Zambonin - Control Systems Engineer @ Electrolux Italia

Thanks to my studies in Control Systems Engineering I had the opportunity to become a Control Algorithms Engineer at Electrolux to develop the new generation of **household smart major** appliances improving the consumer experience.

Success Stories: Academic

Francesca Parise - Postdoctoral Research Fellow @ Massachusetts Institute of Technology

The Master in Control Engineering at UNIPD offered me the perfect combination of **theoretical training** and **applied experiences**. Advanced **research projects** inspired me and gave me the confidence to pursue an academic career after graduation.

Alberto Padoan - Research Associate @ University of Cambridge

The Department of Information Engineering is an incredibly fertile environment where to grow. The Control group is internationally recognised as one of the best Control Engineering schools in Europe. The degree in Control Systems Engineering taught me that theory has a very practical influence on key engineering questions.

Success Stories

- Average monthly salary one year after the graduation: 1614 €
- Several students starting collaborating with the hiring company thorugh the thesis or the applied PhD
- Areas of focus in the discipline of Control:
 - Robotics
 - Machine Learning
 - Industrial Automation
 - Complex Systems

Specializations

Robotics

Machine Learning

Industrial Automation

Complex Systems

Course Catalogue

Design philosophy:

Technology is important but rapidly changing, methodology changes much slowlier.

⇒ Optimal balance between technological competences and deep understanding of the methods.

Course Catalogue

Common courses and activities:

```
SYSTEMS THEORY 9 cfu (Year 1, Semester 1)

MACHINE LEARNING 9 cfu (Year 1, Semester 1)

DIGITAL CONTROL 6 cfu (Year 1, Semester 1)

ESTIMATION AND FILTERING 6 cfu (Year 1, Semester 2)

CONTROL LABORATORY 9 cfu (Year 1, Semester 2)
```

FINAL THESIS + INTERNSHIP 21+9=30 cfu ITALIAN/ENGLISH LANGUAGE: 3 cfu

Course Catalogue

Choices (with very mild constraints)

Mathematical Methods for Optimization

Convex Optimization

Mathematical Physics

Digital Signal Processing

Quantum Information and Computing

Neural Networks and Deep Learning

Measurement Architectures for Cyber-physical Systems

Learning Dynamical Systems

Electric Drives for Automation

Industrial Automation

Robotics and Control I

Robotics and Control II

Intelligent Robotics

Robotics Laboratory

Industrial Robotics

Computer Vision

Adaptive and Model Predictive Control

Reinforcement Learning

Nonlinear Systems and Control

Big Data Computing

Learning from Networks

Game Theory

Embedded Real-Time Control

Network Systems

Information Security

Automata, Languages and Computation

Systems Biology

Control of Biological Systems

Smart Grids

Automotive and Domotics

Stochastic Processes

Robotics

Robots **today** are making a *considerable impact* from industrial manufacturing to healthcare, transportation, and exploration of the deep space and see...

...tomorrow, robots will become pervasive and touch upon many aspects of modern life

Goal: to provide the main mathematical competencies in the field of robotics

Main topics:

- basic concepts of robotics, kinematic and dynamic models
- advanced control schemes for industrial and mobile robots

Robotics Path

Core Courses (33cfu)

Robotics and Control 1

Robotics and Control 2

Convex Optimization

Computer Vision

... followed by "elective" courses (15cfu), e.g. centered on emerging subfields:

"Learning"

Learning Dynamical Systems
Reinforcement Learning

"Applied"

Industrial Robotics
Intelligent Robotics
Robotics Laboratory

"Industrial"

Electric Drives for Automation
Embedded Real-Time Control
Measurement Architectures for
CPS

"Advanced Control"

Nonlinear Systems & Control Network Systems

Machine Learning

TWO FACTS

- (1) Unprecedented quantity and/or quality of data
- (2) Modern Control Systems quest for flexibility, adaptability and robustness

- merge physical *modeling*/insight with data driven methods
- exploit *data* to design *control* architectures/algorithms

<u>Control</u> meets <u>Machine Learning</u>

Machine Learning Path

Core Courses (30 cfu)

Convex Optimization
Learning Dynamical Systems
Reinforcement Learning
Computer Vision

... followed by "elective" courses (18 cfu), e.g. centered on emerging subfields:

"Advanced Control"

Nonlinear Systems & Control
Robotics and Control 1
Adaptive and Model Predictive
Control

"Methods and Models"

Game Theory
Neural Networks and DL
Mathematical Methods for
Optimization

"Computation and measurements"

Big Data Computing

Measurements architectures for cyber-physical systems

Industrial Automation

Modern Industrial Engineering is a powerful blend of **Automation – Computer Science – Telecommunication**

Challenges and **stars** of the Industrial Revolution 4.0:

- *Cyber Physical Systems*: physical quantities are translated into data and information...
- *Human is in the loop*: the barrier between man and machine dissolves...
- Resilience and autonomicity: systems gain ability to recover from or adjust easily to misfortune or change...

Industrial Automation Path

Core Courses (30cfu)

Convex Optimization
Embedded Real-Time Control
Industrial Automation
Electric Drives for Automation

... followed by "elective" courses (18cfu), e.g. centered on emerging subfields:

"Applied"

Industrial Robotics
Computer Vision*
Measurement Architectures
for CPS

"Disruptive"

Reinforcement Learning
Information Security
Computer Vision**
Adaptive & MPControl

"Methodological"

Learning Dynamical Systems
Robotics and Control 1

Complex Systems

A lesson from the Covid emergency:

Raw data are the starting point, **models** (of suitable structure) are needed to **interpret** them, effectively **predict** evolution and optimize **intervention strategies**!

Focus on tools to understand, model and control real-world systems and emerging technologies: Nonlinear, Networked, Biological and Quantum Systems. Learn:

How to build models from data and first principles.

How to design controls tailored to the application.

Oriented to concepts and methods, ideal preparation to work developing cutting-edge technologies and to pursue a PhD.

Complex Systems Path

Core Courses (27cfu)

Learning Dynamical Systems

Mathematical Methods for Optimization

Mathematical Physics

... followed by "elective" courses (21cfu), centered on emerging subfields. *Examples:*

"Advanced Control"

Nonlinear Systems & Control
Network Systems
Robotics and Control 1
Learning from Networks

"Algorithms"

Automata, Languages and Computation

Quantum Information & Computing

Game Theory

"System Biology"

System Biology

Control of Biological Systems

Sistemi Ecologici*

Research topics

The next slides give a brief oversight of the current research interests of our group.

This may be of interest to you for various reasons:

- Topics for possible Master Theses/Stage
- Future work opportunities
- Why not a PhD in Systems and Control?

The Control and Systems Group: Faculty

A.Beghi

M.Bisiacco

R.Carli

A.Cenedese

A.Chiuso

G. Baggio

M. Rampazzo

A.Ferrante

E.Fornasini

G.Picci

G.Pillonetto

S.Pinzoni

L.Schenato

G. Michieletto

G.A. Susto

F.Ticozzi

M.E.Valcher

S.Vitturi

S.Zampieri

M.Zorzi

G. Pin

The Control and Systems Group: PhD students

PH.D. STUDENTS

Advisor

Subject

	Advisor	Subject
Daniele Alpago	A. Ferrante	Reciprocal Processes, Optimal Transport, Riccati Equations
Fabio Amadio	R. Carli	Reinforcement Learning
Luca Ballotta	L. Schenato	Estimation and Control over Processing Networks
Tommaso Barbariol	G.A. Susto	Anomaly and fault detection in Oil & Gas Application
Marco Barbiero	L. Schenato	Smart Building Automation Systems
Nicola Bastianello	R. Carli	Distributed and time-varying optimization
Mattia Carletti	G.A. Susto	Interpretability in Machine Learning and Industry 4.0
Valentina Ciccone	A. Ferrante	Factor Analysis, dynamical graphical models, matrix decomposition
Daniel Cunico	A. Cenedese	Dynamic modeling and soft sensing for industrial motion control
Alberto Dalla Libera	R. Carli	Robotics and Machine Learning
Delle Pezze Davide	G.A. Susto	Data-driven approaches for Industry 4.0
Giulia De Pasquale	M.E. Valcher	Positive systems with application to social networks
Alessandro Fabris	G.A. Susto	Fairness in Machine Learning
Marco Fabris	A. Cenedese	Control of multi-agent and robotic networks
Riccardo Fantinel	A. Cenedese	Computer Vision and Machine Learning for the industry
Federica Fabiana Ferro	A. Beghi	
Luca Fregonese	S. Vitturi	Time-sensitive networking for real-time communication in industrial automation
Natalie Gentner	A. Beghi	Industrial Ph.D @Infineon Munich
Michele Lionello	A. Beghi	Modeling and control of Computer Room Air Conditioning systems
Lissandrini Nicola	A. Cenedese	
Marco Maggipinto	G.A. Susto	Deep and reinforcment Learning, Industry 4.0
Alberto Morato	S. Vitturi	Internet-of-Things for the connections of electrical drives
Enrico Mion	A. Beghi	MPC-based control strategies for human-machine interaction systems
Giovanni Peserico	S. Vitturi	Distributed systems for functional safety
Fabio Peterle	A. Beghi	Fault detection and isolation for HVAC systems
Matthias Pezzutto	L. Schenato	Cross leyer communication/control design for Drive-by-Wi-Fi
Alberto Purpura	G.A. Susto	Machine Learning for Infromation Retrival
Alessandro Rossi	R. Carli	DeepLearning for Vision and Control
Enrica Rossi	L. Schenato	Distributed MPC over wireless for robotic manipulation
Anna Scampicchio	G. Pillonetto	System Identification and Machine Learning
Matteo Terzi	G.A. Susto	Machine Learning
Luca Varotto	A. Cenedese	Camera Networks for the Smart City
Alessandra Zampieri	A. Cenedese	Traffic Estimation and Lighting Control for Smart Mobility
Luca Zancato	A. Chiuso	Stochastic optimization for Deep Learning
Francesco Zanini	A. Chiuso	

The Control and Systems Group: PostDocs

POST-DOCS & COLLABORATORS

	Advisor	Subject
Enrico Picotti	A. Beghi	Model Predictive Control for Automotive Applications
Tommaso Barbariol	G.A. Susto	Machine Learning Approaches for Multi-Phase Flow Meters
Francesco Branz	L. Schenato	Rate adaptation for control over WI-Fi
Mattia Bruschetta	A. Beghi	Motion-cueing algorithms for driving simulators
Mattia Carletti	G.A. Susto	Deep Learning for Industry 4.0
Chiara Favaretto	A. Cenedese	Biological networks dynamics
Francesco Simmini	R. Carli	Control for Smart Grids
Bin Zhu	M. Zorzi	Systems identification
Irene Zorzan	L. Schenato	Multi-cell system biology

Multiagent Systems & Mobile Robotics

Research on methodologies and systems

- Ground (AGVs) Aerial (multirotors) –
 Space (nanosats) vehicles
- Design, modeling, control of new-concept platforms for improved *maneuverability* and *fail-safe* behavior
- Extero-perception and Ego-estimation: transform data streams into information
- Formations and swarms: *cooperation* with heterogeneous systems
- *Full-package*: theory, simulation and experiment

Smart Camera Networks

Research on active vision methodologies

- Multicamera systems are *pervasive* in everyday life (from industry to leisure)
- Controllability and observability issues:
- How to control and coordinate the *information acquisition process*?
- How to *sense the environment* with a finite number of sensors?
- How to *maximize* quality of information and *minimize* target loss probability?
- How to improve *system resilience* to failure or attack?

Modeling Dynamic Systems and Machine Learning

Development and analysis of novel tools for data driven modeling, with applications in several application domains, among which:

Neuroscience - effective connectivity Robotics - inverse dynamics

Computer Vision

Making Machine/Deep Learning viable in Engineering

Applications

- Machine Learning (ML)-based applications are pervasive and it is foreseen that this trend will increase dramatically
- Many limitations are still in place (ie. adversarial examples, need for huge datasets, etc.)
- Development of approaches for ensuring ML systems with important traits like:
 - Robustness
 - Interpretability
 - Fairness
 - ...

Machine Learning and Industry 4.0

- Industry 4.0 is characterized by **data**
- Machine Learning (ML)-based technologies in industry 4.0:

Predictive Maintenance
Fault/Anomaly Detection
Virtual Sensors

...

 Many interesting aspects on a ML perspective: complex data format, data unbalancing, implementation constraints, need for interpretability, domain adaptation...

 Research fostered by many collaborations in various manufacturing areas: home appliances, machine tools, oil and gas, packaging, pharmaceutical, semiconductor, steel and foundries,

...

Industrial Automation:

from Computer Integrated Manufacturing to Industry 4.0, Industrial Internet of Things, and more...

Hot topics:

- Real-Time Industrial Communication Systems (wired, wireless, hybrid)
- Time sensitive networking (TSN)
- Open Platform Communication Unified Architecture (OPC - UA)
- 5G Ultra reliable Low Latency Communication (LLC)
- Industrial Software Defined networking (SDN)
- Functional Safety Protocols

Quantum Information and Control

- New frontier of ICT...
 - **Quantum Technologies:**
 - Communication systems and computers based on atoms, photons, electrons;
- New computational paradigm and new information theory leads to *secure* communication and faster algorithms!
- EU quantum flagship: billion of euros for research;
- Google, IBM, NASA, Microsoft, ...
 all investing heavily.
- New control methods and tools needed!

Research on:

- Noise suppression and quantum encodings;
- Feedback and switching control;
- Modeling, estimation and simulation;
- Machine Learning & Quantum

Large-Scale Systems

Dynamical systems which can be modeled as an interconnection of a large number of subsystems (transportation systems, electric smart-grids, brain, groups of animals, etc.)

- the subsystems exhibit *simple dynamics*
- the overall behavior is *complex*, depending on the way the interconnection is built up (local interactions)

Conventional **centralized** techniques of modeling and control fail to give reasonable solutions

Need of **distributed solutions** for control, optimization, estimation and computation

Network Control Systems

Classical centralised architecture

Smart Power Grids

HOT TOPICS:

- HARMONIC COMPENSATION
- VOLTAGE STABILISATION
- LOAD PROGRAMMING
- MINIMIZATION OF POWER LOSSES

A gene regulatory network in mouse embryonic stem cells (PNAS 2007)

Genes can only exhibit two states: active (expressed) or inactive (not expressed).

The status of a gene can be coded by a Boolean variable.

Each gene influences the status of other genes and the interaction may be described by a logic state space model.

Gene regulatory networks can be modeled through Boolean Control Networks

$$\begin{array}{rcl} X(t+1) & = & F(X(t),U(t)) \\ Y(t) & = & H(X(t)) \end{array}$$

X(t), U(t), Y(t) Boolean vectors

Collaborative Network

Collaborative Network - Advanced Control Applications

Complex industrial systems (e.g. HVAC&R - wafer prod.):

- Virtual Metrology in process control
- Soft Sensing integration and Run-to-Run control
- Fault D-I-M: predictive maintenance
- Multiphysics modeling of components and plants

Vehicle modeling, control and simulation:

- Motion cueing for dynamic driving simulators
- Virtual vehicle driving algorithms

Collaborative Network - Advanced Control Applications

Cubesats applications:

- Proximity maneuvering, rendez-vous and docking
- Design of pointing laser mechanism
- Attitude estimation and control

Control of large experimental devices (e.g. Tokamak):

- Modeling and model reduction of physics experiments
- Design and optimization of devices and apparatuses
- Real-time estimation and control of phenomena

Laboratories

Industrial Applications Laboratory:

- Home appliances: learning & control
- Motors: parameter estimation & control
- PTZ camera network: cooperative control
- Driving simulator: motion cueing & control

SPARCS Laboratory:

- Mobile robotics laboratory
- Multirotor platforms: design, simulation, estimation/perception, control, experiments

Laboratories

Industrial Application Laboratory:

- Home appliances: learning & control
- Motors: parameter estimation & control
- PTZ camera network: cooperative control
- Driving simulator: motion cueing & control

SPARCS Laboratory:

- Mobile robotics laboratory
- Multirotor platforms: design, simulation, estimation/perception, control, experiments

Thank you for your attention!

Questions?

More info at:

https://lauree.dei.unipd.it/lauree-magistrali/control-systems-engineering/

