
II — Algebraic Foundations of Network Coding
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Why an “algebraic” characterization?

• Graph-theoretic proofs are cumbersome

• Generalizations are possible

• Equations are easier managed than graphs

• Powerful tools available
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Problem Description
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A network

Vertices: V

Edges: E ⊆ V × V , e = (v, u) ∈ E

Edge capacity: C(e)

Network: G = (V, E)

Source nodes: {v1, v2, . . . , vN} ⊆ V

Sink nodes: {u1, u2, . . . , uK} ⊆ V
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µ input random processes at v:
� (v) = {X(v,1), X(v,2), . . . , X(v, µ(v)}

ν Output random processes at u:

� (u) = {Z(u,1), Z(u,2), . . . , Z(u, ν(u))}

Random processes on edges: Y (e)

A connection:
c = (v, u, � (v, u)), � (v, u) ⊆ � (v)

A connection is established if � (u) ⊃ � (v, u)

Set of connections: �

The pair (G, � ) defines a network coding problem .
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Is the problem (G, � ) solvable?

How do we find a solution?

This is fairly idealized (synchronization, protocol, dynamic

behaviour, error free,...) but gives insights into possible limits and

opportunities.
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Is the problem (G, � ) solvable?

How do we find a solution?

This is fairly idealized (synchronization, protocol, dynamic

behaviour, error free operation,...) but gives insights into possible

limits and opportunities.
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An Example

Receiver 1 Receiver 2

Sender 1 Sender 2

[1] Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
Information Flow”, IEEE-IT, vol. 46, pp. 1204-1216, 2000

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai “Linear Network Coding”,
preprint, 2000
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More Simplifications — Linear Network Codes

C(e) = 1 (links have the same capacity)
H(X(v, i)) = 1 (sources have the same rate)
The X(v, i) are mutually independent.
Vector symbols of length m elements in F2m.

(F2m is the finite field with m elements we can add, subtract, divide
and multiply elements in F2m without going crazy!)

This is necessary to define linear operations.
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More Simplifications — Linear Network Codes

All operations at network nodes are linear!

e e
X(v,i)

Y(e )Y(e )
21

e3 Y(e )3

21

Y (e3) =
∑

i

αiX(v, i) +
∑

j=1,2

βjY (ej)



At a receiver (terminal) node:

e e
Y(e )Y(e )

n1

e3 3

n1

Z(e )

Z(v, j) =
n∑

j=1

εjY (ej).
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A simple example
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Y (e1) = α1,e1X1 + α2,e1X2

Y (e2) = α1,e2X1 + α2,e2X2

Y (e3) = βe1,e3Y (e1)

Y (e4) = βe1,e4Y (e1)

Y (e5) = βe2,e5Y (e2) + βe3,e5Y (e3)

Z1 = εe4,1Y (e4) + εe5,1Y (e5)

Z2 = εe4,2Y (e4) + εe5,2Y (e5)
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In matrix form (after solving the linear system)
(

Z1

Z2

)

=

(
εe4,1 εe5,1

εe4,2 εe5,2

)

︸ ︷︷ ︸
B

(
βe1,e4

0
βe1,e3βe3,e5 βe2,e5

)

︸ ︷︷ ︸
G

(
α1,e1

α1,e2

α2,e1
α2,e2

)

︸ ︷︷ ︸
A

(
X1

X2

)

We define three matrices A, G, B

The main question becomes: Is G invertible?
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The transfer matrix

Let a matrix F be defined as an |E|×|E| matrix where fi,j is defined
as βei,ej, i.e. the coefficient with which Y (ei) is mixed into Yej .
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2 F =








0 0 βe1,e3
βe1,e4

0
0 0 0 0 βe2,e5

0 0 0 0 βe3,e5

0 0 0 0 0
0 0 0 0 0








Summing the “path gains”:

P = I + F + F 2 + . . . = (I − F )−1 =








0 0 βe1,e3
βe1,e4

βe1,e3
βe3,e5

0 0 0 0 βe2,e5

0 0 0 0 βe3,e5

0 0 0 0 0
0 0 0 0 0








Observe that G = (I − F )−1 is polynomial
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A linear system

X(v,1)

X(w,1)

X(w,2)

X(v’,1)

Z(u,1)

Z(u,2)

Z(u,3)

Z(u’,1)

A linear network

Input vector: xT = (X(v,1), X(v,2), . . . , X(v′, µ(v′)))

Output vector: zT = (Z(u,1), Z(u,2), . . . , Z(u′, ν(u′)))

Transfer matrix: M , z = Mx = B · G · A x

ξ = (ξ1, ξ2, . . . , ) = (. . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .)
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z = Mx = B · (I − F T)−1
︸ ︷︷ ︸

GT

·A x

ξ = (ξ1, ξ2, . . . , ) = (. . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .)

For acyclic networks the elements of G (and hence M)

are polynomial functions in variables ξ = (ξ1, ξ2, . . . , )

⇒ an algebraic characterization of flows....
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An algebraic Min-Cut Max-Flow condition

Let network be given with a source v and a sink v′ . The following
three statements are equivalent:

1. A point-to-point connection c = (v, v′, � (v, v′)) is possible.

2. The Min-Cut Max-Flow bound is satisfied for a rate R(c) =

| � (v, v′)|.

3. The determinant of the R(c)×R(c) transfer matrix M is nonzero
over the ring of polynomials F2[ξ]

3. ⇒ We have to study the solution sets of polynomial equations.
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An innocent looking Lemma

Let F[X1, X2, . . . , Xn] be the ring of polynomials over an infinite

field F in variables X1, X2, . . . , Xn . For any non-zero element

f ∈ F[X1, X2, . . . , Xn] there exists an infinite set of n-tuples

(x1, x2, . . . , xn) ∈ Fn such that f(x1, x2, . . . , xn) 6= 0 .

(x6 − x4 − x2 + x) does not have have a non-solution in F2, F3, F4

but in F5 we have 26 − 24 − 22 + 2 = 46 ≡ 1(mod 5).
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Another Example:
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X(v,1) 

X(v,2)

X(v,3)

Z(v’,1)

Z(v’,2)

Z(v’,3)

a) b)
e
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� = (v1, v4, {X(v1,1), X(v,2), X(v1,3)})

A =





αe1,1 αe2,1 αe3,1

αe1,2 αe2,2 αe3,2

αe1,3 αe2,3 αe3,3



 , B =





εe5,1 εe5,2 εe5,3

εe6,1 εe6,2 εe6,3

εe7,1 εe7,2 εe7,3



 .

M = A





βe1,e5 βe1,e4βe4,e6 βe1,e4βe4,e7

βe2,e5
βe2,e4

βe4,e6
βe2,e4

βe4,e7

0 βe3,e6
βe3,e6



 BT .

det(M) = det(A)det(B)

(βe1,e5βe2,e4 − βe2,e5βe1,e5)(βe4,e6βe3,e7 − βe4,e7βe3,e6)

Choose the coefficients so that det(M) 6= 0!
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Multicast:
� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}
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(I−F)

=

B
−1

M

M is a | � (v)| × K| � (v)| matrix.
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Multicast:
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System Transfer matrix 

� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}

M is a | � (v)| × K| � (v)| matrix.

mi(ξ) = det(Mi(ξ))

Choose the coefficients in F̄ so that all mi(ξ) are unequal to zero.

Find a solution of
∏

i mi(ξ) 6= 0
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The main Multicast Theorem:

Theorem Let (G, � ) be a multicast network coding problem. There

exists a linear network coding solution for (G, � ) over a finite field

F2m for some large enough m if and only if there exists a flow of

sufficient capacity between the source and each sink individually.

(We will see later how large m will have to be — it's not too bad)
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Other (derived) problems: Multisource — Multicast
� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}
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Other (derived) problems: Multisource — Multicast

Theorem Let a linear, acyclic, delay-free network G be given with a

set of desired connections � = {(vi, uj, � (vi)) : i = 0,1, . . . N, j =

1,2, . . . K} . The network problem (G, � ) is solvable if and only

if the Min-Cut Max-Flow bound is satisfied for any cut between all

source nodes {vi : i = 0,1, . . . N} and any sink node uj .
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Other (derived) problems: One source — Disjoint Muticasts
� = {(v, uj, � (v, uj)) : j = 1,2, . . . K}, � (v, uj) ∩ � (v, ui) = ∅
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One source — Disjoint Muticasts + Multicasts
� = {(v, uj, � (v, uj)) : j = 1,2, . . . K} ∪ {(v, u`, � (v)) : j = K + 1, K +

2, . . . K + N}, � (v, uj) ∩ � (v, ui) = ∅
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Multisource — Disjoint Muticasts + Multicast

Theorem Let a linear, acyclic, delay-free network G be given with a

set of desired connections � = {(v, uj, � (v, uj)) : j = 1,2, . . . K}∪

{(v, u`, � (v)) : j = K +1, K +2, . . . K +N} such that collection

of random processes � (v, uj), � (v, uj) are mutually disjoint for

i, j < K , i.e. � (v, uj) ∩ � (v, ui) = ∅ for i 6= j, i, j ≤ K . The

network problem is solvable if and only if the Min-Cut Max-Flow bound

is satisfied between v and the set of sink nodes {u1, u2, . . . , uK}

at a rate | � (v)| and between v and u`, ` > K also at a rate

| � (v)| .
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Other (derived) problems: Two level Multicasts
� = {(v, u1, � (v, u1))} ∪ {(v, u2, � (v)}

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �

� �� �� �� �
� �� �� �� �

� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �

(I−F) B
−1

A

X

X

X 1

X

X

2

3

4
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Other (derived) problems: Two Level Multicast

Theorem(“Two-level multicast”) Let an acyclic network G be given

with a set of desired connections

� = {(v, u1, � (v, u1)), (v, u2, � (v))

The network problem is solvable if and only if the Min-Cut Max-Flow

bound is satisfied between v and u1 at a rate | � (v, u1)| and be-

tween v and u2 at a rate | � (v)|.

28



So far so good!

What about networks with cycles?

What about networks with delays?

What about robustness?

Do we really need network coding for multicast?
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So far so good!

What about networks with cycles?

What about networks with delays?

What about robustness?

Do we really need network coding for multicast? YES
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Robust multicast:

Links in the network may fail. (non-ergodic). Set of failure patterns: �

A network solution is static w.r.t. � if the operations in the network interior are
oblivious to the particular failure in � .

Theorem Let (G, � ) be a multicast network coding problem and let � be the set
of failure patterns such that the problem is solvable. There exists a common
static solution to all failure patterns in � .

Proof sketch: All we have to do is to guarantee that the product of all determi-
nants of all scenarios in � evaluates to a non zero value.

Theorem Let (G, � ) be a multicast network coding problem and let � be the set
of failure patterns such that the problem is solvable.. There exists a solution for
(G, � ) over a finite field F2m with m ≤ dlog2(| � |NR + 1)e.
...
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Linear Networks with Delays

We transmit random processes in a delay variable D on links, i.e.

X(v, j)(D) =
∞∑

`=0

X`(v, j)D`,

Z(v, j)(D) =
∞∑

`=0

Z`(v, j)D`,

Y (e)(D) =
∞∑

`=0

Y`(e)D
`.

Conceptually, we consider an entire sequence in D as one symbol and

work over the field of formal power series.
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(D)

(D)
(D)

(D)
e e

X(v,i)
Y(e )

21

e3 Y(e )

2

3

Y(e )1

Y (e3)(D) =
∑

i

αiDX(v, i)(D) +
∑

j=1,2

βjDY (ej)(D)

(other functions with memory are possible but not necessary)
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At a receiver (terminal) node we have to allow for “rational” func-
tions:

(D)

(D)(D)
e e

Y(e )
n1

e3 3

n

Z(e )

Y(e )1

Y (e)(D) =
∑∞

`=0 Y`(e)D
`, Z(v, j)(D) =

∑∞
`=0 Z`(v, j)D`

Z`(v, j) =
n∑

j=1

µ
∑

k=0

εj,kY`−k(ej) +
µ

∑

k=1

λkZ`−k(v, j)

or Z(v, j)(D) =
∑n

j=1
εj,k(D)

λ(D)
Y (ej)(D)
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The transfer matrix with delays

e

e

e

e

e

X
Z

X Z

1

2

1

2

3

4

5

1

2 F =








0 0 Dβe1,e3 Dβe1,e4 0
0 0 0 0 Dβe2,e5

0 0 0 0 Dβe3,e5

0 0 0 0 0
0 0 0 0 0








Summing the “path gains”:

P = I+DF+D2F 2+. . . = (I−DF )−1 =








0 0 Dβe1,e3
Dβe1,e4

D2βe1,e3
βe3,e5

0 0 0 0 Dβe2,e5

0 0 0 0 Dβe3,e5

0 0 0 0 0
0 0 0 0 0








Observe that G = (I − DF )−1 is polynomial over F2(D).
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An algebraic Min-Cut Max-Flow condition with delays

Let network be given with a source v and a sink v′ . The following

three statements are equivalent:

1. A point-to-point connection c = (v, v′, � (v, v′)) is possible.

2. The Min-Cut Max-Flow bound is satisfied for a rate R(c) =

| � (v, v′)|.

3. The determinant of the R(c)×R(c) transfer matrix M is nonzero

over the ring of polynomials F2(D)[ξ] with coefficients from

the field of rational functions.
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It is only that....

We have to study the solution sets of polynomial equations over

F2(D).

At receiver nodes we have to allow for memory and the possibility

of implementing rational functions!

This is neccessary since now we have to invert a transfer matrix

which has as elements polynomials over F2(D).
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The transfer matrix with delays and cycles

e

e

e

e

e

X
Z

X Z

1

2

1

2

3

4

5

1

2

e6

F =










0 0 Dβe1,e3
Dβe1,e4

0 0
0 0 0 0 Dβe2,e5 0
0 0 0 0 Dβe3,e5

0
0 0 0 0 0 Dβe4,e6

0 0 0 0 0 Dβe5,e6

Dβe6,e1
Dβe6,e2

0 0 0 0










Summing the “path gains”:

P = I+DF+D2F 2+. . . = (I−DF )−1 =
(
6 × 6 matrix with rational coefficients

)

Now G = (I − DF )−1 is rational over F2(D).
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Delays and cycle - or really nothing has happened....

Let network be given with a source v and a sink v′ . The following

three statements are equivalent:

1. A point-to-point connection c = (v, v′, � (v, v′)) is possible.

2. The Min-Cut Max-Flow bound is satisfied for a rate R(c) =

| � (v, v′)|.

3. The determinant of the R(c)×R(c) transfer matrix M is nonzero

over the ring of polynomials F2(D)[ξ] with coefficients from

the field of rational functions.
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Multicast:
� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}
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Z
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Multicast network
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� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� �� �� �� �
� �� �� �� �

� �� �� �� �
� �� �� �� �

� �� �� �
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� �� �� �� �
� �� �� �� �

A

(I−F)

=

B
−1

M

M is a | � (v)| × K| � (v)| matrix.
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Multicast:

� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �
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System Transfer matrix 

� = {(v, u1, � (v)), (v, u2, � (v)), . . . , (v, uK, � (v))}

M is a | � (v)| × K| � (v)| matrix.

mi(ξ) = det(Mi(ξ))

Choose the coefficients in F̄ so that all mi(ξ) are unequal to zero.

Find a solution of
∏

i mi(ξ) 6= 0
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The main Multicast Theorem:

Theorem Let (G, � ) be a multicast network coding problem on a

graph which may have a cyclic structure. There exists a linear net-

work coding solution for (G, � ) over a finite field F2m for some

large enough m if and only if there exists a flow of sufficient ca-

pacity between the source and each sink individually.
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Theorems, Theorems.....
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Summary

• Connecting network information flow problems to algebraic equa-
tions yields powerful tools for analysis of networks.

• Multicast especially well suited for the approach since we have

to find “non solutions” to equations, which can easily be accom-

plished in large fields.

• Many network scenarios can be derived from the multicast setup.

• The general non multicast setup will be treated later (much less

is known).
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• Field size?

• How do we find solutions?

• Is network coding really helpful or just a singular occurrence?


