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Wireless Ad Hoc Networks
WAHNs (Wireless Ad Hoc Networks) are formed dynamically 
by an autonomous system of nodes connected via wireless links without using 
an existing network infrastructure or centralised administration.

Nodes are connected through “ad hoc” topologies, 
set up and cleared according to user needs
and temporary conditions.

Main Features

Fixed infrastructure is not needed
Unplanned and highly dynamical

Nodes are “smart” terminals (laptops, …)
Real-time or non real-time data, multimedia, voice, …
Every node can be either source or destination of information
Every node can be a router toward other nodes
Energy is not the most relevant matter
Capacity is the most relevant matter
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Application Examples:

• Tactical Networks (military application) – nodes are mobile over battle field
• Emergency Services – nodes are mobile over large areas
• Home and Enterprise Networks – nodes are nomadic, palmtops or laptops
• …

Wireless Ad Hoc Networks
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WSNs vs Wireless Ad Hoc Networks (WAHNs)

WAHNs:

Fixed infrastructure is not needed
Unplanned

Nodes are “smart” terminals (laptops, …)
Real-time or non real-time data, multimedia, voice, …
Every node can be either source or destination of information
Every node can be a router toward other nodes
Energy is not the most relevant matter
Capacity is the most relevant matter

no
no

no

no

no

no



WiLab at the WiLab at the 
University of BolognaUniversity of Bologna

WSNs are NOT a special case 
of Ad Hoc Networks:

Communication Strategies 
and Protocols 

should be very different
(do not re-use IEEE 802.11 as it is!).
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Topology Control versus Connectivity Control

Topology Control aims at controlling the set of links that connect couples of nodes,
in order to simplify routing of messages / allow routing of messages between all pairs
of nodes. 

The physical topology of a network can be controlled through physical layer,
in most cases power control techniques are used.

The logical topology of a network is controlled by entities working at layer 2 and 3,
and is based on a reduced set of links wrt the physical topology.

Logical topologies can be flat or hierarchical according to the roles assigned to nodes.

Connectivity Theory aims at describing the potential topologies of a networks,
assuming nodes are randomly distributed over space.

It deals mainly with physical topologies, but can be extended 
to some aspects of logical topologies taking non-electromagnetic aspects into account
like for instance capacities, interference, etc.
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Outline 

1. Network Topologies in WSNs

2. Connectivity Theory: Preliminaries

3. Small Worlds

4. Critical Transmission Range

5. Connectivity Over an Unlimited Region

6. Connectivity for WSNs

7. Connectivity Over Limited Regions for WSNs
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Background: Elements of Graph Theory

Graph
A set of items connected by edges. Each item is called a vertex or node. 
Formally, a graph is a set of vertices and a binary relation between them, adjacency. 
Formal Definition: A graph G can be defined as a pair (V,E), 
where V is a set of vertices, and E is a set of edges between the vertices 
E = {(u,v) | u, v in V}. 

If the graph is undirected, the adjacency relation defined by the edges is symmetric, 
or E = {{u,v} | u, v in V} (sets of vertices rather than ordered pairs). 

edge
(link)vertex

(node)
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Background: Elements of Graph Theory
Geometric Graph (GG)
Vertices have a geometric location in Rd. In the following we assume d=2.

Random Graph
Edges between pairs of nodes exist according to random statistics.

Geometric Random Graph (GRG)
Random Graph where edges exist according to proximity relation between nodes
and nodes are in unknown positions.
In GRGs, the set of nodes is normally finite, and their number deterministically known.
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Background: Elements of Graph Theory
Complete Graph
An undirected graph with an edge between every pair of vertices

Acyclic Graph
A graph with no path that starts and ends at the same vertex.

Not complete
Not acyclic
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Background: Elements of Graph Theory
Connected Graph
An undirected graph that has a path between every pair of vertices. 

Edge Connectivity
The smallest number of edges whose deletion 
will cause a connected graph to not be connected. 

Node Connectivity
The smallest number of vertices whose deletion 
causes a connected graph to not be connected. 

Connected
EC=1
NC=1
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Background: Elements of Graph Theory
The Communication Graph
A Network is a pair (N,L)
N is a set of wireless nodes, of size n. Assume they are located in an unit square.
L is the function mapping every node u to a position L(u).

A Range Assignment is a function assigning to every node u a transmit range RA(u).

The Communication Graph is the directed graph (G,E) where the directed edge (u,v)
exists if the Euclidean distance between u and v is less or equal than RA(u).
In this case v is neighbour to u. If u is also neighbour to v for all pairs (u,v), the
Communication Graph is undirected and all links are symmetrical.

A RA for a Network is connecting if the correspondent CG is connected.

A RA where all nodes have the same transmit range is said homogeneous.
If the value of the transmit range R is relevant, than the RA is said R-homogeneous.
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Background: Elements of Graph Theory
The Communication Graph: Example
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Background: Elements of Graph Theory
Tree
A connected, undirected, acyclic graph.
It is a data structure accessed beginning at the root node, where
each node is either a leaf or an internal node. 
An internal node has one or more child nodes and is called the parent
of its child nodes. All children of the same node are siblings. 
Contrary to a physical tree, the root is usually depicted at the top of the structure, 
and the leaves are depicted at the bottom.

root

parent

child

Level 1

Level 0

Level N
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Background: Elements of Graph Theory
Weighted Graph
A graph having a weight, or number, associated with each edge

Euclidean Tree 
A tree in a weighted GG where weights are assigned to edges 
based on Euclidean distances.

1.5

1.7

2

1.51.5
1

1
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Background: Elements of Graph Theory
Spanning Tree
A connected, acyclic subgraph containing all the vertices of a graph

Minimum Spanning Tree (MST)
A minimum-weight tree in a weighted graph which contains all of the graph's vertices.

Steiner Tree
A minimum-weight tree connecting a designated set of vertices, called terminals, 
in an undirected, weighted graph. The tree may include non-terminals, 
which are called Steiner vertices.

MST

Steiner Tree

1.5

1.7

2

1.51.5
1

1
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Section 1
Network Topologies in WSNs

802.15.4
Trees
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IEEE 802.15.4 - MAC

Beacon-Enabled Mode

CSMA/CA

Non Beacon-Enabled Mode

Maximum 7 GTSs
(Granted Time Slots)

16 slots, 96 * 2SO цs  each

Only CAP, with CSMA/CA

SO = 0, 1, …, 14
[Superframe Order]

Superframe

Approx. duration:  15 ms – 250 s
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IEEE 802.15.4 – Network Topologies

PAN Coordinator
Full Function Device
Reduced Function Device

Mesh

Tree

Star
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Beacon

CFPCAP

G
T
S

G
T
S

G
T
S

G
T
S

G
T
S

G
T
S

G
T
S

Inactive part

Superframe duration

Beacon Interval

Beacon

16 slots, 960 * 2SO цs  each
SO = 0, 1, …, 14
[Superframe Order]

A number NGTS (maximum 7) of
Guaranteed Time Slots (GTSs)

IEEE 802.15.4 - MAC (BE Mode) 

BO = 0, 1, …, 14
[Beacon Order]
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IEEE 802.15.4 - Trees 

Beacon Tx offset

Superframe duration

Baecon Interval
Parent

Child

Beacon tracking
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IEEE 802.15.4 - Trees

Level 1 nodes
NR

routers

PAN Coordinator

Level 2 nodes

Level 3 nodes

Level 4 nodes

Sink
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Trees

Pros

Routing is simple
Local Addressing is a simple task
Few parameters allow control of the topology
Data aggregation strategies are simplified

Cons

Large average delays
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Section 2
Connectivity Theory: Preliminaries

What does it aim to
Link Connectivity
Full Connectivity

Critical Transmission Range
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What does it aim to
In networks formed by large numbers of nodes distributed 
according to some statistics over a limited or unlimited region of Rd,
Connectivity Theory aims at describing the potential set of links
that can connect nodes to each other, subject to some constraints
from the physical viewpoint (power budget, or radio resource limitations). 

It studies network properties
d = 2 is considered here.
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Poisson Point Process (PPP)
Given a (sub-)region A, the number of nodes in A, nA, is Poisson, with mean NA = ρ A
where ρ is node density. 
This is equivalent to random and uniform independent positions of nodes.

Prob (nA = n) = e-ρA (ρA)n / n! = e-ΝA (NA)n / n!
The probability that the region is empty is Prob (nA = 0) = e-ρA = e-ΝA

PPPs may be considered either on bounded or unbounded regions.

A
nA = 3
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What does it aim to
Examples
What is the probability that the network is fully connected
(i.e. every node can reach any other node through any number of hops)
when nodes are distributed in the region according to a PPP with intensity ρ.

Relevant in ad hoc nets.
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What is the probability that a node is isolated
when nodes are distributed in the region according to a PPP with intensity ρ.

Relevant in WSNs.

What does it aim to
Examples
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How many nodes are “heard” (i.e. a packet is captured) by a given node 
when nodes are distributed in the region according to a PPP with intensity ρ.

Does a “Magic Number” exist to have a fully connected network?

Overhearing can be controlled.

What does it aim to
Examples
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What are the statistics of the distance between a node and the k-th closest node
when nodes are distributed in the region according to a PPP with intensity ρ.

What does it aim to
Examples
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Connectivity Theory can be useful to the study of
Network Lifetime
Network Capacity 

(see Gupta and Kumar, IEEE Trans. - IT, March 2000)

What does it aim to
Examples
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Regions

In the literature, typically three types of statistical scenarios are considered:

- Square of unit side (or disk of unit radius) with nodes
distributed in the region according to a PPP with intensity ρ;
- A PPP with intensity ρ over an unbounded region;
- Square of unit side (or disk of unit radius) with N (N is given) nodes
uniformly distributed at random in the region.
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Regular or Quasi-Regular Scenarios

• PPP and regular topologies are two extreme cases
• Sensors on a regular square grid turn out to be more efficient but are 

of no practical interest
• Q-Regular networks are based on a Gaussian deviation about an 

ideal grid point (type A)
• Tradeoff between performance and deployment cost
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Link Connectivity
To study (network) connectivity, one has to define link connectivity properties.

Different models in the literature, all considering narrowband systems.

Can be used for 802.15.4, Bluetooth.
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Link Connectivity
Model 1 (deterministic distance - dependent model). The most widely used.

Rx is connected to Tx if SNR is above minimum threshold α, i.e.
if received power Pr is above minimum threshold Prmin, i.e. 
if power loss L is smaller than maximum value Lth

and L = k0 + kd log r     i.e.
if distance r is below a given maximum value R

R is the transmitting range.Tx

Rx
R
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Link Connectivity
Model 2 (random distance - dependent model). Used in the following.

Rx is connected to Tx if SNR is above minimum threshold α, i.e.
if received power Pr is above minimum threshold Prmin, i.e. 
if power loss L is smaller than maximum value Lth

and L = k0 + kd log r + s
kd = 10 β
β is the propagation exponent
s is a link-dependent r.v. Tx

Rx
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Link Connectivity
We adopt Model 2, with s modelled as zero mean Gaussian r.v. with variance σ2.

L = k0 + k1 ln r + s k1 = kd / ln10

When variance of s is zero, Model 2 converges to Model 1.

Tx

Rx
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Link Connectivity

R is the 
ideal transmission range

Plink

R r

σ = 0

σ > 0
0

1

0.5

Tx

Rx
R

R = exp((Lth – k0)/k1)
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Full Connectivity

Traditional definition:

A network is fully connected if there exists any path (sequence of hops)
between every pair of nodes.

Note that a clustered network is not fully connected if there are no gateways
connecting different clusters.

Cluster 1

Cluster 2

Cluster 3

Cluster 4
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On the definitions of full connectivity

This definition is compliant with the objective of ad hoc networks, i.e.
to allow every node being in contact with any other node.

But this is not the goal of a WSN.

In WSNs, nodes (sensors) want to transmit their samples to a given node,
namely, the sink (or any node in a given set, in the case of multi-sink networks).

Definition more suitable for WSNs:

A WSN is fully connected if all nodes can report their samples to a sink
through any path.

Traditional definition:

A network is fully connected if there exists any path (sequence of hops)
between every pair of nodes.
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On the definitions of full connectivity

Note that under such new definition, a WSN can be fully connected 
even if some nodes can not reach other nodes, in a multi-sink scenario. 

In other words, a WSN can be fully connected even if clustered. 

The difference is relevant for finite (and small) densities.

sink

Cluster 1

Cluster 2

Cluster 3

Cluster 4
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Section 3
Small Worlds
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Small Worlds

Sets of nodes geometrically distributed in a region, connected through a set of links,
can sometime behave like small worlds:

the mean number of hops (“separation degree”) needed to reach a destination node 
from any source node is finite and low, regardless of the number of nodes, even
if tending to infinity

S. Milgram
“The Small world problem”.
Psycology Today, 1967

M. Buchanan
“Nexus”.
Mondadori, 2004  [IT]

D.J. Watts and S.H. Strogatz
“Collective Dynamics of Small Word Networks”.
Nature vol. 393, 1998
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Small Worlds

Sets of nodes geometrically distributed in a region, connected through a set of links,
can sometime behave like small worlds:

the mean number of hops (“separation degree”) needed to reach a destination node 
from any source node is finite and low, regardless of the number of nodes, even
if tending to infinity

Keeping the mean number of hops low whatever the size of a network, 
is a relevant property for a large network (scalability)

Do all small worlds have the same type of topology?

No. There exists several types of small worlds.
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Small Worlds

The mean clustering coefficient (measuring the ratio between the mean number of 
links between pairs of neighbors to a node, and its maximum value, 
averaged over all nodes) can be high or low depending on the type of small world. 

cl. coeff for node i = (1+1) / (4*3 / 2) = 0,33
cl. coeff for node j = (1) / (2*1 / 2) = 1

Understanding the properties of small worlds can help understanding 
the way to build Topologies.

A small value of the mean clustering coefficient represents a more efficient topology
(e.g. broadcasting makes more sense).

i
j

k

m

p
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Small Worlds
Numerical evaluation of the mean clustering coefficient (with Model 1)

The dashed area should be averaged over the distribution of d:

mcc (b) = int(d/2, R) sqrt( R2 - x2) dx / 0.25 π R2 =
= 1 – (2 / π)(b sqrt(1 - b2) + arcsinb) b = d / 2R

mcc = int(0, 0.5) mcc(b) pb(b) db =
= 1 – 3 sqrt(3) / 4 π ~ 0.59

It does not depend on R

x

y

R
d

d < R pd(d)

d0 R

R
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Small Worlds
Example
A square Q of side L = 1000 m is given
and N = 1000 nodes uniformly and randomly distributed in Q,
and a transmission range R = 90 m.
Link connectivity is based on Model 1.
Links between far nodes are impossible.

Now, a given percentage x of links is modified, 
choosing randomly destination and source regardless of distances (“rewiring”).
The graph tends to be more random and links between far nodes are possible.

x mean number of hops mean clustering coefficient

x = 0 % 7,26 0,62

x = 9 % 4,16 0,61
x = 20 % 3,70 halved! 0,60 unchanged
x = 40 % 3,36 0,58
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Small Worlds
Example

Model 2

N = 1000

x = 0

R
L

BE = π R2 / L2

R
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Model 2

N = 1000

x = 0

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,005 0,013 0,025 0,502

BE

m
ea

n
cl

us
te

rin
g

co
ef

f.

sigma=0 sigma=4

BE = π R2 / L2

Small Worlds
Example

Still fully connected
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Model 2

N = 1000

x = 0

Small Worlds
Example

BE

Still fully connected
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Model 2
ideal 
transm. range
set to 90 m.
L = 1000.
N = 1000.
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std deviation

x = 0% x = 9% x = 20% x = 40%

Small Worlds
Example
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x = 0% x = 9% x = 20% x = 40%

Model 2
ideal 
transm. range
set to 90 m.
L = 1000.
N = 1000.

Small Worlds
Example
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Small Worlds

So, random rewiring is an efficient way to reduce the mean number of hops.

However, having a random transmission range is even more efficient.
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Small Worlds

A different way to achieve a small world is through the concept of Hub.

Hubs are nodes with a much larger number of neighbours than the average
(think at the concept of Hub in airway systems).

Consider a square Q of side L = 1000 m,
and N = 1000 nodes uniformly and randomly distributed in Q,
and a ideal transmission range R = 90 m.
Model 2 is used.

Assume a percentage x of nodes has ideal transmission range of 400 meters.
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Model 2

L = 1000.
N = 1000.

0

2

4

6

8

std deviation

m
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n
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m
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fh

op
s

hub=0 hub=100 hub=200 hub=400

hub=0 7,26 4,83
hub=100 3,58 3,13
hub=200 3,28 2,84
hub=400 2,94 2,53

sigma=0 sigma=4

Small Worlds
Example
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Model 2

L = 1000.
N = 1000.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7

std deviation

m
ea

n
cl
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g
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f.

hub=0 hub=100 hub=200 hub=400

hub=0 0,617 0,489
hub=100 0,598 0,479
hub=200 0,601 0,488
hub=400 0,633 0,527

sigma=0 sigma=4

Small Worlds
Example
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Model 2

L = 1000.
N = 1000.

0
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rewired hubs

Small Worlds
Example
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Small Worlds

The same mean number of hops can be obtained from an ordered graph,
as rewiring a percentage x of links,  
by giving to a percentage x of nodes a transmission range of 400 meters.

The first option (rewiring) involves twice as much nodes wrt the latter (hubs).
In the latter case, the clustering coefficient remains constant for sigma zero
as it does not depend on the transmitting range (apart from border effects).
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To Sum Up

Hubs are better than long, random links.

Random fluctuations of received power 
decrease the mean clustering coefficient.

When link loss variance is low, 
the mean clustering coefficient is large under PPP assumptions
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Section 3
Critical Transmission Range

Critical Transmission Range
The Giant Component
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Critical Transmission Range

Critical Transmission Range:
The minimum value of R for a Network s. t. the network is fully connected.

If the nodes in the Network are randomly distributed, the CTR is a random variable.

Theorem:

The CTR for connectivity Rc of a Network equals the length of the longest edge 
of the Euclidean MST of the corresponding Communication Graph

MST

1.5

1.7

2

1.51.5
1

1

Rc

Rc = 1.7
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Critical Transmission Range

n  number of nodes

node density is n / 1 = n

R transmission range

Unit square

R
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Unit square

Critical Transmission Range

n = 49

Regular grid as reference



WiLab at the WiLab at the 
University of BolognaUniversity of Bologna

Unit square

Critical Transmission Range

R R R R
CTR:

R s.t. R [sqrt(n) + 1 ]  = 1

CTR = 1 / [ sqrt(n) + 1 ]

In a square of side L

CTR = L / [ sqrt(n) + 1 ]

R R R
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Critical Transmission Range

L

R

n  number of nodes

node density is n / L2

n = ρ L2

R transmission range
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Theorem (Penrose 1997):

Given the unit square and n nodes distributed randomly and uniformly, then
the limit for n tending to infinity of
Prob [ nπ (Rc)2 – logn ≤ b]
is
1 / exp(exp(-b))
for any b in R where Rc is the CTR.

As a corollary, for n tending to infinity we have (choose b tending to infinity)
Prob [ Rc ≤ sqrt ( (b + logn) / nπ )] = 1.

In other words, sqrt ( (b + logn) / nπ )] is an upper bound to Rc for n tending to infinity 
and since it tends to zero for proper selections of b, it is a very tight upper bound.

For finite values of n, this expression does not necessarily represent an upper bound.

Critical Transmission Range
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For which values of n are the predicted values of Rc accurate?

For instance, with b = loglogn

n Rc (Penrose) Rc (sim., 99% conf) Rc=1 / [ sqrt(n) + 1 ]

10 0.32 0.66 0.24
100 0.14 0,23 0.09
1000 0.05 0.08 0.03

Not very accurate for practical values of n.

Considerations for n tending to infinite are often unrealistic for practical values
of node densities

Critical Transmission Range
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The Giant Component

Consider a given graph, and let R increase starting from 0.

For R = 0 the graph is not connected.
When R increases, nodes group together in clusters.
When R = Ri the last isolated node disappears.
When R = Rc the graph becomes connected.

Clearly, Ri < Rc as for some Ri < RA < Rc there might be a communication graph
not connected even in the absence of isolated nodes (a “clustered” network with
isolated clusters).

RRi Rc0
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Full connectivity and giant component
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Full connectivity and giant component
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The giant component is a phenomenon appearing also for practical values of n.

Therefore, it can be claimed that, approximately, for any value of n

the probability of a Communication Graph to be connected equals 
the probability of no isolated nodes. 

However, this approximation has not been investigated mathematically for finite n. 

The Giant Component
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Continuum Percolation Theory
Given a realisation of a PPP, a disk of radius Rn is centered at each node n, and a
graph is formed where an edge exists between two nodes if the corresponding disks
intersect. The radii can be different, and random.

It can be seen as a special case of Stochastic Geometry, which deals with 
geometrical objects of given form, whose positions are random.

With respect to GRG Theory, the number of nodes is not deterministically known.
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Limitations of these Approaches

GRGs and Continuum Percolation:

Disks, possibly of random radius
Normally used with Link Connectivity Model 1.

GRGs:

Node densities tending to infinity in finite regions (dense networks)
Properties of networks with finite densities not perfectly understood.
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Disk Model widely used
Approaches with density tending to infinity

Relevance of border effects
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Section 4 
Connectivity Over an Unlimited Region

John Orriss
Orriss’ First Result

Modification
Orriss’ Second Result

Corollary
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PPP over unbounded region
omnidirectional antennas

[1]

John Orriss
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Orriss’ First Result



WiLab at the WiLab at the 
University of BolognaUniversity of Bologna

Orriss’ First Result
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Modification

Orriss: where

Correct expression (still unpublished):

where denotes the complementary error function.
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Modification
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Orriss’ Second Result
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Orriss’ Second Result
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The number of nodes heard by a given node is Poisson, with mean 

Nm = ρ π exp(2 (l1 - k0) / k1) exp(2σ2 / k1
2)

Then, the probability of a node to be isolated is P(iso) = exp (-Nm).

isolated

n = 4
n = 0

Orriss’ Second Result
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Nm

σ
0

Nm

0
l1 [dB]

Note: Nm is linearly proportional to node density

Nm is quadratically proportional to the ideal transmission range R:

Nm = ρ π R2 exp(2σ2 / k1
2)

Nm is exponentially proportional to the variance of shadowing

Nm is exponentially proportional to transmit power: l1 = Pt - Prmin

Channel fluctuations may significantly increase network connectivity

Orriss’ Second Result
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Corollary
The number of nodes heard by a given node is Poisson, with mean

Nm = ρ π exp (2 (l1 - k0) / k1) exp(2σ2 / k1
2)

Do randomly directed directional antennas help increasing connectivity?
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The number of nodes heard by a given node is Poisson, with mean

Nm = ρ π exp (2 (l1 - k0) / k1) exp(2σ2 / k1
2)

Do randomly directed directional antennas help increasing connectivity?

Denoting Nm = Nm (G) the mean as a function of antenna gain, 
implicitly included in ko, then with directional antennas

Nm(G) = (1 / G) ρ π exp (2 (l1 - k0 + 10logG) / k1) exp(2σ2 / k1
2) 

= Nm(1) exp (20logG) / k1) / G

Therefore the ratio Nm(G) / Nm(1) = exp (20logG) / k1) / G measures the advantage
of using directional antennas.

For example: 
G = 4 [6 dB], k1 = 13.3 Nm(G) / Nm(1) = 0.62 connectivity is decreased!

Corollary
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Section 5
Connectivity for WSNs



WiLab at the WiLab at the 
University of BolognaUniversity of Bologna

Full Connectivity

Traditional definition:

A network is fully connected if there exists any path (sequence of hops)
between every pair of nodes.

This definition is compliant with the objective of ad hoc networks, i.e.
to allow every node being in contact with any other node.

But this is not the goal of a WSN.

In WSNs, nodes (sensors) want to transmit their samples to a given node,
namely, the sink (or any node in a given set, in the case of multi-sink networks).

Definition more suitable for WSNs:

A WSN is fully connected if all nodes can report their samples to a sink
through any path.



WiLab at the WiLab at the 
University of BolognaUniversity of Bologna

Full Connectivity

A WSN is fully connected if all nodes can report their samples to a sink
through any path.

No difference in a single-sink scenario

Cluster 1

Cluster 2

Cluster 3

Cluster 4
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Full Connectivity

A WSN is fully connected if all nodes can report their samples to a sink
through any path.

No difference in a single-sink scenario

Difference in a multi-sink scenario

But not for large (but finite) 
densities!

Cluster 1

Cluster 2

Cluster 3

Cluster 4
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Full connectivity: approximated analysis
Probability of a network of area A, given no nodes in A, being fully connected:

P(con | no)       P(no isolated nodes in A | no)        (1 – P(iso)) no

Dense network: ρ A >> 1
P(iso) small: P(iso) << 0.001

(1) (2)

(1) If network is dense: indeed, P(con) < P(no isolated nodes in A) 
(2) If P(iso) is small and network is dense

A
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Full connectivity: approximated analysis
Probability of a network of area A being fully connected:

P(con) = E no[ P(con | no) ] = E no [(1 – P(iso)) no] = …

= exp [ - ρ A exp(- Nm) ] [Lth = l1]

Note: A must be large A >> π R2

A
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Full connectivity: approximated analysis
Probability of a network of area A = L2 being fully connected

P(con)

ρ
0

1

1 / F π
F = 

σ > 0 σ = 0
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Full connectivity: approximated analysis
Probability of a network of area A = L2 being fully connected.TR is ideal trans. range

Channel fluctuations significantly reduce the number of required nodes
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Full Connectivity

In multi-sink scenarios both sinks and sensors can be considered distributed 
according to two independent PPPs with different densities.

Sinks density ρ0

Sensors density ρ
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Section 6
Connectivity Over Limited Regions 

for WSNs

Connectivity in Squares
Full Connectivity in Squares – Single Hop

Reachability in Squares – Single Hop
Reachability in Squares – Multiple Hops, Tree Topologies
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Connectivity in Squares
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S

Connectivity in Squares
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Number of sinks heard from a node in (x,y) is Poisson with mean

Connectivity in Squares
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Channel fluctuations increase network connectivity only in unlimited region

σ

σ

Connectivity in Squares
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q(x,y) = 1 - exp(- μ(x,y))

Full Connectivity in Squares – Single Hop
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Full Connectivity in Squares – Single Hop

R
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Reachability in Squares – Single Hop

In some applications, Full Connectivity is not required

A sufficient degree or reachability is requested i.e. a given minimum number
of sensors needs to reach the sinks



WiLab at the WiLab at the 
University of BolognaUniversity of Bologna

Reachability in Squares – Single Hop
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Reachability in Squares – Multiple Hops, Tree Topology
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Rectangles



WiLab at the WiLab at the 
University of BolognaUniversity of Bologna

Tassellations
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Thank You

Topology Control and Connectivity
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