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. Motivation

This seminar addresses the following issues:

o How to carry out decentralized parameter estimation via WSNs.

To define new network performance criteria: estimation accuracy.
How accurate can an estimate be?

Impact of WSN-related constraints on performance and network
design of: energy consumption and computational complexity
constraints, decentralization, scalability properties, etc.

o How to exploit channel fading and and opportunistic scheduling to
save energy/improve estimation?

o Impact of quantized observations on performance?
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Wiley & Sons Ltd., 2007.

o Fundamentals of Statistical Signal Processing: Estimation Theory.
S. M. Kay, Prentice Hall Signal Processing Series, 1993.

o Elements of Information Theory. T. M. Cover and J. A. Thomas,
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o Fundamentals of Wireless Communications, D. Tse, P.Wiswanath,
Cambridge University Press, 2005.

o Several articles by Slepian & Wolf, Ribeiro & Giannakis, Gesbert &
Alouini, Goldsmith, etc.
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. Outline |
o Introduction
o WSNs: Definition and practical considerations
o Typical applications for WSNs
o Network topologies

© Background Material

o Basic concepts on estimation theory
o Classical estimation: design criteria, CRLB
@ Bayesian Estimation: design criteria

o Multi-user diversity and Opportunistic Scheduling

© Decentralized Estimation with Analog Transmission
o Amplify & Forward approach
o Optimal power allocation schemes
o Opportunistic power allocation schemes

@ Decentralized Estimation with Digital Transmission
o One-bit quantization
o Quantization-estimation trade-offs in WSNs
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. Outline II

e Concluding Remarks
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. What is a WSN?

A network with a number of resource-constrained nodes, densely (and
often randomly) deployed for one specific purpose, such as sensing or
detecting a given phenomenon.

Unknown Parameter

. Sensors
o Typically, measurements are con-

veyed over wireless channels to a
Fusion Center (FC), where data is
processed.

Fusion Center

Estimate
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. Some practical considerations on WSNs

o Sensor nodes with limited sensing,
processing and transmission capabilities.

o Sensors are inexpensive devices prone to
failures.

o Need for energy-efficient operation

o A means to maximize network lifetime

o Sensor nodes are equipped with finite batteries which are
difficult/impossible to replace

o Performance-energy efficiency tradeoffs

o Network size and scalability issues:

o Do protocols/algorithms/... scale well with the number of nodes?
o Same software running on all nodes?

o Deployment: massive/random? pre-designed sensor location?
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. Typical tasks for WSNs

Detection: To determine whether an event has occurred or not

o Applications: earthquake/fire detection, military surveillance,...

o Performance metrics: probability of detection, probability of false
alarm, latency, etc.
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. Typical tasks for WSNs

Localization/tracking: To determine and/or track the position of
goods/people/.. of interest.

o Applications: border control, inventory tracking, logistics and
transportation,...

o Performance metrics: positioning accuracy, coverage area, number
of simultaneous targets, etc.
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. pical applications of WSNs
Notes

Estimation: To accurately represent the observed phenomenon

o Applications: environmental/disaster area monitoring, patient
monitoring, pollution measurements,...

o Performance metrics: distortion in the estimates, distortion vs.
latency, etc.
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. Parameter estimation with WSNs: a good deal?
Notes

Pros:

o Increased sensing/monitoring area

o Ability to track spatial variations

Cons:

o Communication with the fusion center/other sensor nodes: fading,

path-loss.
o Node reliability: what if 1/4 nodes stop working?

Challenges:
o Need for decentralized estimation techniques - centralized ones to

act as a benchmark!

o Availability of local channel state information (CSI) only at the

sensor nodes: channel gains, residual energy, etc.

o Energy consumption to acquire channel state information.

o A priori information on the parameter... and how to use it
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. Network Topologies

Notes

Infrastructure-based networks: A central device (FC) gathers and

processes the sensor measurements.

o Infrastructureless Networks: Homogeneous network

o Consensus Networks

7

Issues: Sensors operate autonomously (no FC coordination),
synchronization, belief propagation through P2P communications,

stability and convergence time,...
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. Classical Estimation
Notes

Problem Statement:
o Parameter to estimate: 6, deterministic, unknown, scalar (or vector

0)
o Observation vector: x = [x1,...,xn]” with x € X a N x 1 random

vector

o Probability density function: p(x;6), known, parameterized by 6.
o Estimator: 0(x) = g(x)

Example: Estimation of DC level in AWGN (o2)

xk=0+n k=1,...,N

o Estimator: e.g. : O(x) = % Zszl Xk

o Variance: Var (é(x)) =E, [(é (x) — Ex [é (X)DZ} =2
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Design Criteria For Classical Estimators

= Classical Estimation

Notes
Minimum Mean Squared Error (MMSE):
~ . 2
MSE (o (x)) = E [(9 (x) — 0) }
~ N 2 ~ 2
= E [(9 (x) — Ex [e (x)]) ] + (]EX [9 (x)] - o)
—_—
Var(@(x)) bias term
Intuitive ... but often not feasible !
Minimum Variance Unbiased Estimator (MVU):
o Impose unbiasedness: Ey [é (x)] = fX@(x) p(x;0) =0
o Design estimator with minimum variance:
~ . 2
0(x) = argminE [(0(x) - 0) :|
6(x)
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Cramer-Rao Lower Bound
= Classical Estimation Notes
Definition: Cramer-Rao Lower Bound
An absolute benchmark for any unbiased estimator:
d?log p(x; 0) - A
CRLB(6) = (—]E [TD < var (6(x))
—
..... ,
Definition: Efficient Estimator
If it attains the CRLB... for all 4!
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Cramer-Rao Lower Bound
= Classical Estimation Notes

Example: Estimation of DC level in AWGN noise

o Estimator: 0(x) = % 22’:1 Xk

. . _ N 2
o PDF: p(x;0) = (2”;%)%exp [72%% > okey (= 0) ]

o CRLB(6) = 02/N
o Var (é(x)) =02/N

.. so this estimator is the best we can do (MVU)!!

If the minimum variance estimator exists, it attains the CRLB!
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Some problems associated to MVU estimation

Classical Estimation

Notes
Problems:
o Maximum Likelihood Estimator (MLE): Straightforward & popular
Oy (x) = arg mgaxp(x; )
T 9
o
o Best Linear Unbiased Estimator (BLUE): For linear/linearized data
models
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Best Linear Unbiased Estimator (BLUE)
*  Classical Estimation
Notes
For linear/linearized vector (p x 1) observations
x=HO+n n~CN(0,Cp,)
hT 0 m BLUE—) &
X = : o+
hl7\l— 6'p nn

BLUE estimator is linear in the observations and given by

~ -1
OsLUE = (HTC;]'H) HTC;IX

o Only requires first & second order moments of the observation
o Same as MVU if linear data & gaussian noise
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Classical Estimation

Best Linear Unbiased Estimator (BLUE)

Particular case: Scalar parameter (i.e. p = 1) in uncorrelated noise

Notes
@ Scalar: 6 - 0, H—h
oﬁl 0
@ Uncorrelated noise: C, =
0 2

o BLUE estimator:

. Y\ (R B
e (1) e (S187) (3
k=1 © Mk n

N 2\ !
o with distortion (variance) given by: Var(d) = (Z |k|>

ERN)

N . . N
o In case of identical noise variances (02, = 02): Var(f) =
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. Bayesian Estimation
Notes

Problem Statement:

o Parameter to estimate: 6, random, unknown, scalar (or vector )

o Observation vector: x = [xi,... ,XN]T with x € X a N x 1 random

vector
o Probability density function: p(x,#), known, joint distribution of x

and 6.
p(x,0) = p(0) p(xl6)

—~—
prior pdf

Pros & cons

o Additional (prior) knowledge to improve estimation
o Risk of mismatched/unknown pdf ... CRITICAL!

Design Criteria:
o MAP(Maximum a Posteriori), MMSE (Minimum MSE)
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Bayesian MMSE Estimator
= Bayesian Estimation
Notes

o Mean Squared Error (MSE)

MSE (é(x))

Eyo [(9 (x) — 9)2}

/x /0 (é(x)—e))2 p(x,0)dxdd (1)

o Bayesian Minimum Mean Squared Error (BMMSE) estimator: The
posterior mean

Osmmse (x) = Eqgix [0]
with

p(x[0)p(9) _ p(xI0)p(0)

p(0lx) =

T Jop(x,0)d0  p(x)
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Bayesian MMSE estimator
= Bayesian Estimation
Notes

For linear (or linearized) observations

x=HO +n BLUE 0

n~CN(0,Cp)
0 ~ CN(0,Cq)

The Bayesian (linear) MMSE estimator is:

N -1
Bammse (x) = (HTCIH+ C,1)  HTC,

with covariance (distortion) matrix given by,

Cox = (HTc;lﬂ n c;l)_1
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Multi-user Diversity and Opportunistic Scheduling

Scenario:  Wireless data network, multiple-access (uplink) chan-
nel, K users, independent fading for user-BS channels (|m|?,..., |hk|?)

R .
—_

Performance metric: Sum-rate
. . Plhgo|?
o Round-robin scheduling: r; rr = log, <1 + L;é"—')

. . P honl?
o Opportunistic Scheduling: r;opp = log, (1 + %““)‘)
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Multi-user Diversity and Opportunistic Scheduling

T =
5 —+ Rayleigh
SNR Z0dB
-
i _—
i i
%
H -
bl i
i }/
? K 15 P 2
R

o Multi-user diversity: E[r opp] ~ loglog K (Rayleigh Fading)
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Selective Multi-user Diversity
= Multi-user Diversity and Opportunistic Scheduling

Problem: large amount of feedback (from all users)

Solution: Selective Multi-user Diversity (SMUD) [Gesbert-Alouini’04]

@ Algorithm:
@ Only a subset of users feedback their channel gains: |hx|? >
@ BS schedule the user with highest gain out of those above the
threshold
@ Scheduling Outage: No feedback from sensors - e.g. random selection

Pr(Outage) = Pr (\hmax\z < 'Yth)
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Selective Multi-user Diversity (cont’

®  Multi-user Diversity and Opportunistic Scheduling

b = T T
: N -
74 _
08| // 7 7}( 28
) K=22
os /l 2%
’//,’1’, B K=16
2" 77 i =T
g A b4
gnﬁ / / ’#p/r g o
H K ] ) e s K=a
os 4 I I S
: ANy i I
£ | H P
Sos f 2 -
i / 7 e’,’/ 2 i
of /. h
777
//
o
R R S ] L B ¥ B T T R 7}
etz ascklons

W
Thiesho (48)

o Average SNR = 5dB
o Interplay threshold < feedback load < performance
o For K > 25 users, 10% of users reporting SNRs suffices.
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Multi-user Diversity wit

= Multi-user Diversity and Opportunistic Scheduling

Problem: channel gains feedback in “analog” form
Solution: use quantized channel gains [Nosratinia’07]

@ Algorithm:
@ Users: just notify if above/below threshold 1{|hx|? > v}
@ BS: select at random out of those above the threshold
@ Performance: Sum-rate
o If k users report:
k

T = ZPr [ the i* best user is selected] r; =
i=1

x| =

k
D
i=1
o For any number of users (k =1...K):

T= PkTk
k=1
o Need for optimized choice of the threshold (th)
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Multi-user Diversity with Quantized Feedback

= Multi-user Diversity and Opportunistic Scheduling

Sum-rate capacity

|
e

oit St
o~ Full CSi, SNR=10 o

Spectral efficiency (Nats/bits/Hz)

—— bt 8l
—— FulCSi, SNR=0 B
—— 1-bil_. SNR=0 0B
70 w0 w0 o0

o w0 a0
Number of users

o Same growth-rate as with “analog” feedback (K — c0)

o Small penalty wrt “analog” feedback

Decentralized parameter estimation with WSNs C. Antén-Haro and J. Matamoros

Opportunistic Scheduling and WSNs

= Multi-user Diversity and Opportunistic Scheduling

o Differences: The goal now is to maximize estimation accuracy
(rather than sum-rate)

o Similarities: To opportunistically schedule sensors results into
enhanced performance
Example: Two sources of “randomness”
o Observation noise: xx = 6 + ni; nx ~ CN(0, o%k)
o Sensor-FC channels: |h|?

Intuition: Distortion minimized for sensors with high |hy|? and low
observation noise.
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Opportunistic Scheduling & Network Lifetime

= Multi-user Diversity and Opportunistic Scheduling

o Extending Network Lifetime (LT) is crucial in WSNs
o Definitions: time elapsed until first sensor dies/part of the WSN is
not reachable/estimation quality cannot be achieved/...
o Scheduling with Residual Energy Information (REI)[Chen-Zhao’05]
o Let e1,e7,...,&, be the residual energies.
o New scheduling rule:

-
REI & CSI i* = argmax —————
& i Epacket(lhf|2)
CSlonly i* = argmax|h;|?

I

REl only  i* = argmaxe;
1

Notes

Notes

Notes

Notes

Combined use of REI & CSI maximizes lifetime (1st sensor dies)
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Decentralized Estimation

with Analog Transmission

System and Signal Model: Amplify & Forward

®  Decentralized Estimation with Analog Transmission

Consider a WSN composed of one Fusion Center (FC) and a large
population of Ny energy-constrained sensors aimed at estimating a scalar,
slowly-varying and spatially-homogeneous parameter 6.
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System and Signal Model: Amplify & Forward

= Decentralized Estimation with Analog Transmission

o Each sensor observes x; =0 +n; ; i=1,...,Np
o Then, it re-transmits a scaled version to the FC:
T
h=[\/Prct, ..., /PR, ) 5 G = |hil?
y=ho+z z~CN(0,C,)
diag [C.] = [prc1og + 0. PR CNo 07 + 03]

o The FC uses a Best Linear Unbiased Estimator (BLUE) to
reconstruct 6:

0= (th;lh) Tty
with distortion given by:
D — Var(f o PiCi -
= Var(9) = (Z M)

i=1

Decentralized parameter estimation with WSNs C. Antén-Haro and J. Matamoros

A benchmark

®  Decentralized Estimation with Analog Transmission

@ Minimization of Distortion:

PLy-sPNg

No
min D s.t. Zp; < P;
i=1
o Solution: Waterfilling-like [Goldsmith et al]
o Ve *
;= -1 i=1...,N
Pr= e [m"'w ] ! ’
o Drawback: Extensive signalling sensors < FC required

o Fix: Opportunistic Power Allocation (OPA) [Matamoros & Antén-Haro]

o Let only a subset of sensors N < N participate on average in the
estimation process and keep FC-sensor signalling low
o Performance loss??
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Comparison of Power Allocation Schemes

Decentralized Estimat alog

Notes

P

ot Ny,

Pr | Py [Py | Pe o | Po | e | Py

12 3 4 5 6 N,

i oPA

u/N

23 LN N N,

@ OPA vs. WF-like and Uniform Power Allocation (UPA)
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Opportunistic Power Allocation (OPA)

*  Decentralized Estimation with Analog nsmission

Notes

Q Initialization: Compute the channel gain threshold .

Q Identification of the active sensor set: In each time-slot, each
sensor node notifies the FC whether it will participate in the

estimation process or not.

@ Power Allocation and Transmission: The N active sensor nodes

send their observations to the FC.
Q Go to Step 2.
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OPA - Threshold Computation

®  Decentralized Estimation with Analog nsmission

Notes

o Power Allocation Rule: Uniformly allocated to the subset of
active sensors, that is,

pi = P/ N; i=1...N

o Threshold Computation:
The threshold +;;, which minimizes the bound is given by,

+
1 [ Ngo2e
L= 2uWo | =4/ =% | —
Vth [ e Wo (2 Pt"'%ﬂc) ;uc:|

where Wo(-) is the Lambert function, i.e. the inverse function of

F(W) = We.
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A Sanity Check on the Lower Bound...

®  Decentralized Estimation with Analog Transmission

Notes

— Actual value
= = Lower bound

0.6 L L L L L " L L

@ The lower bound is convex and tight !
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OPA - Performance Results

= Decentralized Estimation with Analog Transmission

Notes

L OPA )
+  OPA (optimal)

L L L L L
0 100 200 300 400 500 600 700

No

o OPA outperforms Uniform Power Allocation and very close to WF.

o Almost no penalty for using the approximate threshold
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Decentralized Estimation

with Digital Transmission

Distortion with centralized observations

®  Decentralized Estimation with Digital Transmission

Notes

o 6: deterministic, scalar

o xk=0+ng; k=1,...,N
o ng ~N(0,02)

SOURCE
0

@ Sample mean estimator (BLUE & MVU):

Xk Var(e):”Té 2)

MHZ

OBLUE = N
k=1

o What can we expect with decentralized estimation and 1 bit per
sensor (bandwidth constraints)?
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Quantization with 1 Bit per sensor

®  Decentralized Estimation with Digital Transmission

Notes

@ Sensors: Send indicator variable b, € {0,1}... a set of 1-bit

quantizers!! [Ribeiro-Giannakis’05]
o by: Bernoulli random variable
with parameter

N ' @(8) = F(r — 6)

pix)

u o F: Complementary CDF of
noise

@ 7.: design parameter

o FC: Produces an ML estimate

N
~ 1
OvL = 7c — F1 (NZ bk>
k=1

with § = L S0, b
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Quantization with 1 Bit per sensor

®  Decentralized Estimation with Digital Transmission

Notes

o Cramer-Rao Lower Bound: CRLB(0) = Var(f) for large N

] -

oo 2380,

oot Bt iy 200
*4355, Siwlation: 7. 0 1 &

9990y,

= oo ; \”"2795’???9?9

CRLB(7 = )

o CRLBpin = 1.57% Variance of the centralized MVU estimator
o To attain CRLBpyin, we need 7. = 6 (... but 6 is unknown!)

o For7c € [0 —0pn,0 + 0] , Var (éML) < 2.521,\,%

o Performance loss wrt centralized & 7. = 6
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Quantization-Estimation Trade-offs in WSNs

®  Decentralized Estimation with Digital Transmission

Notes

Problem setup and assumptions:

o Parameter: 6, deterministic and scalar.
o Observations: xx =6 4 n, with k=1... N

o n: zero-mean, variance o3 , = o7 (different observation qualities!)
o Noise PDF unknown.
o Finite dynamic range: xx € [-W, W]

o Digital sensor-FC communications: uncoded M-QAM modulation

o Uniform Lg-bit quantizers in each sensor node (k)
@ BLUE estimator at the FC

Goal: Optimal number of quantization levels (2t — 1) in each sensor
node?

N 2
o Target distortion constraint: D = [, [(Q(x) - 9) } < Dy

o Minimum power consumption.
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Quantization-Estimation Trade-offs in

®  Decentralized Estimation with Digital Transmission

Notes
Benchmark: Centralized BLUE with analog observations

A N1 T X
gBLUE:<ZO_2> Z:

k=1 "k k=1 %k

. 1
with Var(§) = (ZQI:I a%)

Quantizer: uniform intervals

o Divide [~ W, W] into 2t — 1 intervals, of length A = 2W /(2 —1)

L [ | I 1 J
-w A @ (+DA W—A W

o Quantize x, with an Ly-bit message, my(xk, Lx), while fulfilling

E [m(xi, Li)] = xi
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Quantization-Estimation Trade-offs in WSNs

®  Decentralized Estimation with Digital Transmission

Notes
Case #1: Distortion without errors in sensor-FC channels:
o The message sent is

mk(xk,Lk):0+nk+ Vi
—~

Quant. Noise
with
W2

Var () < 02 = m

o Quasi-BLUE estimate at the FC:

N 1 -1/ N my
fq-sLUE = ol ol
; o7 + 62 ; o7 + 62
with distortion lower-bounded by:

" 1
~ 1
D = Var(fq. >
r(fq-BLUE) > (; 0i+5£>
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Quantization-Estimation Trade-offs in

= Decentralized Estimation w igital Transmission

Notes

Case #2: Distortion with errors in sensor-FC channels:

o Bit Error Rate (BER) of the k-th link: pf
o Received and sent messages differ:

mi(xk, L) # mk(x, Lk) = increased estimation variance

o Distortion of the quasi-BLUE estimate:

N 1 -1
D<(1+p) (Y 52

)
= ok + 95

with

aw [nsf

= max ——
Po= T2 ok 3
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uantization-Estimation Trade-offs i

®  Decentralized Estimation with Digital Transmission

Notes

Optimal bit and power allocation:

o For a given distortion target D, and BER, minimize transmit power

o Optimal number of quantization bits (sensor-wise):

B 0 if excessive attenuation ay
L,

°pt = ) log <1 + ?M: Ia% - 1) otherwise

o Transmit power required:

Pk ~ ak (2Lk - 1)

and Pioral = 221:1 Pk
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uantization-Estimation Trade-offs in

®  Decentralized Estimation with Digital Transmission

Notes

70|~ m- Compared to uniform quantization
-4~ Compared to uniform power allocation
60 W
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Energy saving in percentage
Y

e
o
-

-
e

0.2 0.3 0.4 05 0.6 0.7
Normalized deviation of sensor noise variances

" Uniform quantization /power allocation”: Same number of quantization bits/transmit power in all sensors (to meet D,)

o The larger the spread in sensor noise variances, the higher the

savings.
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uantization-Estimation Trade-offs in

®  Decentralized Estimation with Digital Transmission

Notes

-

70 | =®= Compared to uniform quantization
== Compared to uniform power scheduling |

60

50

40

30

20

Energy saving in percentage

.4

0.2 0.3 04 05 06 0.7
Normalized deviation of channel pass losses

" Uniform quantization/power allocation”: Same number of quantization bits/transmit power in all sensors (to meet D,)

o The larger the spread in channel path-losses, the higher the savings.
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. Concluding Remarks
Notes

o General observations:

o BLUE and Maximum-Likelihood (ML) estimators are often used in
decentralized settings.
o Benchmarks: centralized estimator and Cramer-Rao Lower Bound.

o Maximization of sum-rate vs. maximization of estimation accuracy.
o Decentralized Estimation with Analog Transmission (A&F):

o Opportunistic Power Allocation (OPA) performs close to Optimal
Power Allocation (i.e. waterfilling-like solutions) with less complexity
and feedback requirements.

o OPA neatly outperforms Uniform Power Allocation approaches.
o Decentralized Estimation with Digital Transmission:

o With 1 bit per sensor, ML estimation and rough knowledge on
quantization threshold, the distortion is close to the "analog” system.

o With Ly bits (variable) per sensor, power allocation, and BLUE
estimation substantial energy savings w.r.t. the cases with fixed
quantization levels/fixed power allocation (for a given distortion).
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Notes

THANKS FOR YOUR KIND ATTENTION !!

Questions?
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