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Motivation

This seminar addresses the following issues:

How to carry out decentralized parameter estimation via WSNs.

To define new network performance criteria: estimation accuracy.
How accurate can an estimate be?

Impact of WSN-related constraints on performance and network
design of: energy consumption and computational complexity
constraints, decentralization, scalability properties, etc.

How to exploit channel fading and and opportunistic scheduling to
save energy/improve estimation?

Impact of quantized observations on performance?
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What is a WSN?

A network with a number of resource-constrained nodes, densely (and
often randomly) deployed for one specific purpose, such as sensing or
detecting a given phenomenon.

Typically, measurements are con-
veyed over wireless channels to a
Fusion Center (FC), where data is
processed.

Raw data

Sensors

Processing

Unknown Parameter

Estimate

Fusion Center
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Some practical considerations on WSNs

Sensor nodes with limited sensing,
processing and transmission capabilities.

Sensors are inexpensive devices prone to
failures.

Need for energy-efficient operation

A means to maximize network lifetime
Sensor nodes are equipped with finite batteries which are
difficult/impossible to replace
Performance-energy efficiency tradeoffs

Network size and scalability issues:

Do protocols/algorithms/... scale well with the number of nodes?
Same software running on all nodes?

Deployment: massive/random? pre-designed sensor location?
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Typical tasks for WSNs

Detection: To determine whether an event has occurred or not

Applications: earthquake/fire detection, military surveillance,...

Performance metrics: probability of detection, probability of false
alarm, latency, etc.
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Typical tasks for WSNs

Localization/tracking: To determine and/or track the position of
goods/people/.. of interest.

Applications: border control, inventory tracking, logistics and
transportation,...

Performance metrics: positioning accuracy, coverage area, number
of simultaneous targets, etc.
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Typical applications of WSNs

Estimation: To accurately represent the observed phenomenon

Applications: environmental/disaster area monitoring, patient
monitoring, pollution measurements,...

Performance metrics: distortion in the estimates, distortion vs.
latency, etc.

Decentralized parameter estimation with WSNs C. Antón-Haro and J. Matamoros 13 / 60

Parameter estimation with WSNs: a good deal?

Pros:

Increased sensing/monitoring area

Ability to track spatial variations

Cons:

Communication with the fusion center/other sensor nodes: fading,
path-loss.

Node reliability: what if 1/+ nodes stop working?

Challenges:

Need for decentralized estimation techniques - centralized ones to
act as a benchmark!

Availability of local channel state information (CSI) only at the
sensor nodes: channel gains, residual energy, etc.

Energy consumption to acquire channel state information.

A priori information on the parameter... and how to use it
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Network Topologies

Infrastructure-based networks: A central device (FC) gathers and
processes the sensor measurements.

Infrastructureless Networks: Homogeneous network

Consensus Networks

θ

Issues: Sensors operate autonomously (no FC coordination),
synchronization, belief propagation through P2P communications,
stability and convergence time,...
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Classical Estimation

Problem Statement:

Parameter to estimate: θ, deterministic, unknown, scalar (or vector
θ)

Observation vector: x = [x1, . . . , xN ]T with x ∈ X a N × 1 random
vector

Probability density function: p (x; θ), known, parameterized by θ.

Estimator: θ̂(x) = g(x)

Example: Estimation of DC level in AWGN (σ2
n)

xk = θ + nk k = 1, . . . ,N

Estimator: e.g. : θ̂(x) = 1
N

∑N
k=1 xk

Variance: Var
(
θ̂ (x)

)
= Ex

[(
θ̂ (x)− Ex

[
θ̂ (x)

])2
]

=
σ2

n

N
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Design Criteria For Classical Estimators
Classical Estimation

Minimum Mean Squared Error (MMSE):

MSE
(
θ̂ (x)

)
= Ex

[(
θ̂ (x)− θ

)2
]

= Ex

[(
θ̂ (x)− Ex

[
θ̂ (x)

])2
]

︸ ︷︷ ︸
Var(θ̂(x))

+
(
Ex

[
θ̂ (x)

]
− θ
)2

︸ ︷︷ ︸
bias term

Intuitive ... but often not feasible !
Minimum Variance Unbiased Estimator (MVU):

Impose unbiasedness: Ex

[
θ̂ (x)

]
=
∫
X θ̂ (x) p(x; θ) = θ

Design estimator with minimum variance:

θ̂ (x) = arg min
θ̂(x)

E
[(

θ̂(x)− θ
)2
]
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Cramer-Rao Lower Bound
Classical Estimation

Definition: Cramer-Rao Lower Bound

An absolute benchmark for any unbiased estimator:

CRLB(θ) =

(
−E

[
d2 log p(x; θ)

dθ2

])−1

≤ var
(
θ̂(x)

)

Definition: Efficient Estimator

If it attains the CRLB... for all θ !
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Cramer-Rao Lower Bound
Classical Estimation

Example: Estimation of DC level in AWGN noise

Estimator: θ̂(x) = 1
N

∑N
k=1 xk

PDF: p(x; θ) = 1

(2πσ2
n)

N
2
exp

[
− 1

2σ2
n

∑N
k=1 (xk − θ)2

]
CRLB(θ) = σ2

n/N

Var
(
θ̂ (x)

)
= σ2

n/N

... so this estimator is the best we can do (MVU)!!

If the minimum variance estimator exists, it attains the CRLB!
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Some problems associated to MVU estimation
Classical Estimation

Problems:

Maximum Likelihood Estimator (MLE): Straightforward & popular

θ̂ML (x) = arg max
θ

p(x; θ)

Best Linear Unbiased Estimator (BLUE): For linear/linearized data
models
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Best Linear Unbiased Estimator (BLUE)
Classical Estimation

For linear/linearized vector (p × 1) observations

x = Hθ + n n ∼ CN (0,Cn)

x =

 hT
1
...

hT
N


 θ1

...
θp

+

 n1
...

nN

 θ θBLUE

Nn

1
Th

T
Nh

1n

1x

Nx

BLUE estimator is linear in the observations and given by:

θ̂BLUE =
(
HTC−1

n H
)−1

HTC−1
n x

Only requires first & second order moments of the observation

Same as MVU if linear data & gaussian noise
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Best Linear Unbiased Estimator (BLUE)
Classical Estimation

Particular case: Scalar parameter (i.e. p = 1) in uncorrelated noise

Scalar: θ → θ, H → h

Uncorrelated noise: Cn =

 σ2
n1

0
. . .

0 σ2
nN


BLUE estimator:

θ̂BLUE =
(
hTC−1

n h
)−1

hTC−1
n x =

(
N∑

k=1

|hk |2

σ2
nk

)−1( N∑
k=1

hkx

σ2
nk

)

with distortion (variance) given by: Var(θ̂) =

(
N∑

k=1

|hk |2

σ2
nk

)−1

In case of identical noise variances (σ2
nk

= σ2
n): Var(θ̂) =

σ2
n

N
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Bayesian Estimation

Problem Statement:

Parameter to estimate: θ, random, unknown, scalar (or vector θ)

Observation vector: x = [x1, . . . , xN ]T with x ∈ X a N × 1 random
vector

Probability density function: p (x, θ), known, joint distribution of x
and θ.

p(x, θ) = p(θ)︸︷︷︸
prior pdf

p(x|θ)

Pros & cons

Additional (prior) knowledge to improve estimation

Risk of mismatched/unknown pdf ... CRITICAL!

Design Criteria:

MAP(Maximum a Posteriori), MMSE (Minimum MSE)
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Bayesian MMSE Estimator
Bayesian Estimation

Mean Squared Error (MSE)

MSE
(
θ̂ (x)

)
= Ex,θ

[(
θ̂ (x)− θ

)2
]

=

∫
x

∫
θ

(
θ̂ (x)− θ

)2
p(x, θ)dxdθ (1)

Bayesian Minimum Mean Squared Error (BMMSE) estimator: The
posterior mean

θ̂BMMSE (x) = Eθ|x [θ]

with

p(θ|x) =
p(x|θ)p(θ)∫
θ p(x, θ)dθ

=
p(x|θ)p(θ)

p(x)
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Bayesian MMSE estimator
Bayesian Estimation

For linear (or linearized) observations

x = Hθ + n

n ∼ CN (0,Cn)

θ ∼ CN (0,Cθ)

θ θBLUE

Nn

1
Th

T
Nh

1n

1x

Nx

The Bayesian (linear) MMSE estimator is:

θ̂BMMSE (x) =
(
HTC−1

n H + C−1
θ

)−1
HTC−1

n x

with covariance (distortion) matrix given by,

Cθ|x =
(
HTC−1

n H + C−1
θ

)−1
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Multi-user Diversity and Opportunistic Scheduling

Scenario: Wireless data network, multiple-access (uplink) chan-
nel, K users, independent fading for user-BS channels (|h1|2, . . . , |hK |2)
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Performance metric: Sum-rate

Round-robin scheduling: rt,RR = log2

(
1 +

P|hk(t)|2
σ2

w

)
Opportunistic Scheduling: rt,opp = log2

(
1 +

P maxk(t) |hk(t)|2
σ2

w

)
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Multi-user Diversity and Opportunistic Scheduling

Multi-user diversity: E [rt,opp] ∼ log log K (Rayleigh Fading)
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Selective Multi-user Diversity
Multi-user Diversity and Opportunistic Scheduling

Problem: large amount of feedback (from all users)

Solution: Selective Multi-user Diversity (SMUD) [Gesbert-Alouini’04]

Algorithm:

1 Only a subset of users feedback their channel gains: |hk |2 ≥ γk

2 BS schedule the user with highest gain out of those above the
threshold

Scheduling Outage: No feedback from sensors - e.g. random selection

Pr (Outage) = Pr
�
|hmax|2 ≤ γth

�
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Selective Multi-user Diversity (cont’d)
Multi-user Diversity and Opportunistic Scheduling

Average SNR = 5dB

Interplay threshold ⇔ feedback load ⇔ performance

For K ≥ 25 users, 10% of users reporting SNRs suffices.
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Multi-user Diversity with Quantized Feedback
Multi-user Diversity and Opportunistic Scheduling

Problem: channel gains feedback in “analog” form
Solution: use quantized channel gains [Nosratinia’07]

Algorithm:

1 Users: just notify if above/below threshold 1{|hk |2 ≥ γth}
2 BS: select at random out of those above the threshold

Performance: Sum-rate

If k users report:

rk =
k∑

i=1

Pr
[

the i th best user is selected
]
ri =

1

k

k∑
i=1

ri

For any number of users (k = 1 . . .K ):

r =
n∑

k=1

pk rk

Need for optimized choice of the threshold (γth)
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Multi-user Diversity with Quantized Feedback
Multi-user Diversity and Opportunistic Scheduling

D. Extension to MIMO Systems

The effectiveness of multiple antennas at both transmit and
receive side has been demonstrated in the past few years [10].
MIMO systems lead to increased capacity and/or the reliability
of a wireless link. However, as mentioned in [6], increasing
the number of antennas at transmit or receive side hardens the
channel, meaning that the channel will have little variability. It
is further shown that the statistics of the mutual information
is Gaussian in the asymptote of large number of antennas,
and a scheduling algorithm is proposed to achieve multiuser
diversity gain. In this scheduling mechanism the users send
their instantaneous channel capacity to the base-station, which
then offers a wireless link to the user with the highest capacity.
In [7] a scheduling mechanism based on random beamforming
has been proposed for MIMO broadcast channel, which is
a generalization of opportunistic beamforming of [5]. In this
scheme, only the signal to interference plus noise ratio of each
user (instead of full CSI) is sufficient to achieve the double
logarithmic growth of sum-rate capacity of a fully informed
multiuser network. However in both these methods, a real
number must be sent to the base-station, requiring substantial
rate.

We conjecture that, similar to the method presented in this
paper, quantizing each of the above parameters (instantaneous
capacity in [6] and signal to interference plus noise ratio in
case of [7]) by an optimally chosen threshold can still capture
a significant part of the multiuser diversity gain. Further
investigation of this conjecture is a subject of future research.

IV. ASYMPTOTIC ANALYSIS

In order to explore the asymptotic behavior of the sum-rate
capacity we first need to prove some preliminary results:

Lemma 1: Let {Xi}n
i=1 be a sequence of positive iid ran-

dom variables with finite mean µn and finite variance σ2
n, also

E[log2(Xn)] < ∞, if limn→∞ σn

µn
= 0 , then:

log(µn)− E[log(Xn)] −→ 0
as n →∞ .

Proof: See the appendix.
Lemma 1 states that if the probability measure associated

with the random variable Xn is well concentrated around its
mean value for large n, then Jensen’s inequality for log() is
asymptotically tight. Note that Xn can be either a discrete or
a continuous random variable.

When channel state information is fully available at the base
station, the base station only transmits to the user with the best
channel, hence the ergodic sum-rate capacity of the network
can be calculated by the following formula:

Cfull CSI = C1 =
∫ ∞

0

log(1 + ρx)dF1

= n

∫ ∞

0

log(1 + ρx)e−x(1− e−x)n−1dx

Let µ1 =
∫∞
0

xdF1 and σ2
1 =

∫∞
0

(x − µ1)2dF1, then it is
known [9] that: µ1 =

∑n
i=1

1
i and σ2

1 =
∑n

i=0
1
i2 , therefore

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7
Sum−rate capacity

S
pe

ct
ra

l e
ffi

ci
en

cy
 (

N
at

s/
bi

ts
/H

z)

Number of users

Full CSI, SNR=20 dB 
1−bit    , SNR=20 dB
Full CSI, SNR=10 dB 
1−bit    , SNR=10 dB
Full CSI, SNR=0 dB  
1−bit    , SNR=0 dB 

Fig. 1. Comparison of sum-rate capacity for 1-bit and full CSI
scheduling for different values of SNR

σ1
µ1
→ 0 as n →∞. Combined with Lemma 1, it follows that:

Cfull CSI
◦= log(1 + ρµ1)
◦= log(log n) + log ρ. (8)

where
◦= indicates asymptotic equivalence, as defined earlier.

We are interested to investigate the behavior of the sum-
rate capacity of the 1-bit feedback scheduling proposed in
Section III in the asymptote of large number of users. This
is accomplished via the following result.

Theorem 1: The sum-rate capacity of a wireless network
with 1-bit feedback and optimal choice of threshold, behaves
as O(log(log n) + log ρ), exactly the same as the sum-rate
capacity of a fully informed network.
Proof: See the appendix.

V. SIMULATION RESULTS

Fig. 1 shows the simulation results for sum-rate capacity of
a SISO network. As it can be seen in the figure, our proposed
scheduling, with only 1-bit feedback, has the same double
logarithmic growth rate as the fully informed network. The
capacity loss is minimal. Scheduling with 1-bit feedback also
captures most of the capacity of the fully informed network
for a wide range of SNR, thus the scaling law proved in
Theorem 1 is verified by the simulation. Fig. 2 shows the
optimal threshold for various of SNR values. It can be seen
that the optimal threshold scales logarithmically with number
of users (in Fig. 2 the x-axis is in logarithmic scale).

VI. CONCLUSION AND FUTURE WORK

In this paper we investigate the asymptotic sum-rate capac-
ity of the downlink multiuser network. We show that reducing
the CSI feedback to one bit does not have an impact on
the scaling law of the sum-rate capacity. Simulation results
show the capacity loss is negligible; most of the multiuser
diversity gain is retained by a single bit of CSI fed back to
the base station. Future work includes the extension of these
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Same growth-rate as with “analog” feedback (K →∞)

Small penalty wrt “analog” feedback
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Opportunistic Scheduling and WSNs
Multi-user Diversity and Opportunistic Scheduling

Differences: The goal now is to maximize estimation accuracy
(rather than sum-rate)

Similarities: To opportunistically schedule sensors results into
enhanced performance

Example: Two sources of “randomness”

Observation noise: xk = θ + nk ; nk ∼ CN (0, σ2
nk

)

Sensor-FC channels: |hk |2

Intuition: Distortion minimized for sensors with high |hk |2 and low
observation noise.
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Opportunistic Scheduling & Network Lifetime
Multi-user Diversity and Opportunistic Scheduling

Extending Network Lifetime (LT) is crucial in WSNs
Definitions: time elapsed until first sensor dies/part of the WSN is
not reachable/estimation quality cannot be achieved/...
Scheduling with Residual Energy Information (REI)[Chen-Zhao’05]

Let ε1, ε2, . . . , εn be the residual energies.
New scheduling rule:

REI & CSI i∗ = arg max
i

εi

Epacket(|hi |2)
CSI only i∗ = arg max

i
|hi |2

REI only i∗ = arg max
i

εi

Theorem 2 Assume thar realizable channel gains are bounded 
below'. We have, 

lim E[&] = E", (9) Eo-= 

where E* is the average reporting energy achieved by en- 
. abling the Sensor with the best channel fur transmission in 

each data collection. 

A proof of Theorem 2 can be found in [15]. As shown in 
the simulation examples in Section 4, the convergence of the 
average reporting energy IE[E,.] in DPLM to the minimum 
value E* is fast. The average reporting energy in DPLM 
approaches E* even for small EO that allows a sensor to 
transmit, on the average, only 5 to 10 times (see Fig. 3). 

4. SIMULATION EXAMPLES 

This section compares the performance of different distributed 
transmission protocols [ 131. The "arbitrary" protocol ran- 
domly picks a sensor €or transmission in each data collec- 
tion. The REI-only protocol selects the sensor with the most 
residual energy in each data collection. In all the figures, we 
normalize the required reporting energy in the absence of 
channel fading ( g  = 1) and assume the (normalized) trans- 
mitter circuitry energy consumption is E, = 0.01. We have 
also included the energy E,, = 0.001 consumed in channel 
acquisition for protocols utilizing CSI. The channel fading 
is assumed to be i.i.d. Rayleigh distributed. 

Fig. 2: Comparison of the average network lifetime of 
different transmission protocols with different 
number of sensors. Eo =. 5. 

'This is equivalem IO say !hat the transmission power of sensors is 
bounded above. 

Fig. 2 compares the network lifetime E[L] of different 
transmission protocols. As the number N of sensors in- 
crease, the network lifetime E[L] increases, but the rate at 
which E[C] increases diminishes. As expected, the random 
protocol performs the worst. The transmission protocols ex- 
ploiting CSI (such as the CSI-only, Max-Min and DPLM 
protocols) outperform those without CSI (such as the ran- 
dom and REI-only protocols). DPLM outperfoms all the 
available schemes and i ts  performance gain increases as AT 
increases. 

0.55 t 

r 05 -  

6 g (1.45 - 

8 

2 0.35- 
i 0 4 -  
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02 I 
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Number 01 Sensors 

Fig. 3: Comparison of the average transmission energy 
consumed in each data collection of different 
transmission protocols. Eo = 5 , l O .  

Fig. 3 compares the average reporting energy E[E,] of 
different transmission protocols with CSI. As the number 
of sensors increases, the average reporting energy decreases 
and so does the rate of decreasing. As the initial energy EO 
increases, the average reporting energy E[E,] of Max-Min 
and CSI-only protocols remains almost the same while that 
of DPLM decreases. The Max-Min protocol requires more 
energy in each data collection than CSI-only and DPLM. 
The average reporting energy E[E,] of DPLM approaches 
the minimum value E* when the initial energy Eo increases. 
We notice that the IE[E,] of DPLM is close to the minimum 
value E" even when EO i s  small: a sensor can only transmit, 
on the average, 5 or 10 times until it dies. 

Fig. 4 demonstrates the dynamic nature of DPLM. As 
the age of the network (in terms of number of data collec- 
tions performed) increases, the probability that DPLM picks 
the sensor with the best channel decreases while the prob- 
ability of picking the sensor with the most residual energy 
increases. That is, DPLM is more opportunistic by favor- 
ing the sensor with the best channel for transmission when 
the network is young and more conservative by favoring the 
sensor with the most residual energy when the network is 

898 

Combined use of REI & CSI maximizes lifetime (1st sensor dies)
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Decentralized Estimation
with Analog Transmission

System and Signal Model: Amplify & Forward
Decentralized Estimation with Analog Transmission

Consider a WSN composed of one Fusion Center (FC) and a large
population of N0 energy-constrained sensors aimed at estimating a scalar,
slowly-varying and spatially-homogeneous parameter θ.

θ
1n 1p

θFC

1c

0Nc

0Nw

1w

0Nn 0Np
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System and Signal Model: Amplify & Forward
Decentralized Estimation with Analog Transmission

Each sensor observes xi = θ + ni ; i = 1, . . . ,N0

Then, it re-transmits a scaled version to the FC:

h =
[√

p1c1, . . . ,
√

pN0cN0

]T
; ci = |hi |2

y = hθ + z z ∼ CN (0,Cz)
diag [Cz] =

[
p1c1σ

2
n + σ2

w , . . . , pN0cN0σ
2
n + σ2

w

]
The FC uses a Best Linear Unbiased Estimator (BLUE) to
reconstruct θ:

θ̂ =
(
hTC−1

z h
)−1

hTC−1
z y

with distortion given by:

D = Var(θ̂) =

(
N0∑
i=1

pici

piciσ2
n + σ2

w

)−1
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A benchmark
Decentralized Estimation with Analog Transmission

Minimization of Distortion:

min
p1,...,pN0

D s.t.

N0∑
i=1

pi ≤ Pt

Solution: Waterfilling-like [Goldsmith et al]

p∗i =
σ2

w

σ2
nci

� √
ci√

λ0σw

− 1

�+

i = 1 . . . , N0

Drawback: Extensive signalling sensors ↔ FC required

Fix: Opportunistic Power Allocation (OPA) [Matamoros & Antón-Haro]

Let only a subset of sensors N ≤ N0 participate on average in the
estimation process and keep FC-sensor signalling low
Performance loss??
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Comparison of Power Allocation Schemes
Decentralized Estimation with Analog Transmission

pi
* pi

*

pi
*

1 2 3 4 5 6

...

�o

λo

1/c1 1/c2 1/c3 1/c4 1/c5 1/c6 1/c�o

p1 p2 p3 p4 p6p5

1 2 3 4 5 6

...

�o

p1 p2 p3 p4 p6 p�

Ptotal /No

p5

1 2 3 N N+1

...

�o

p1 p2 p3 p�

Ptotal /N

... ...

WF-LIKE UPA

OPA

OPA vs. WF-like and Uniform Power Allocation (UPA)
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Opportunistic Power Allocation (OPA)
Decentralized Estimation with Analog Transmission

1 Initialization: Compute the channel gain threshold γth.

2 Identification of the active sensor set: In each time-slot, each
sensor node notifies the FC whether it will participate in the
estimation process or not.

N
1S

2S

0N
S

FCN

N

3 Power Allocation and Transmission: The N active sensor nodes
send their observations to the FC.

4 Go to Step 2.
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OPA - Threshold Computation
Decentralized Estimation with Analog Transmission

Power Allocation Rule: Uniformly allocated to the subset of
active sensors, that is,

pi = Pt/N; i = 1 . . .N

Threshold Computation:
The threshold γ∗th which minimizes the bound is given by,

γ∗th =

[
2µcW0

(
1

2

√
N0σ2

we

Ptσ2
nµc

)
− µc

]+

where W0(·) is the Lambert function, i.e. the inverse function of
f (W ) = WeW .
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A Sanity Check on the Lower Bound...
Decentralized Estimation with Analog Transmission

0 0.5 1 1.5 2 2.5 3 3.5 4
0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−3

γ
th

D

Actual value
Lower bound

The lower bound is convex and tight !

Decentralized parameter estimation with WSNs C. Antón-Haro and J. Matamoros 44 / 60

Notes

Notes

Notes

Notes



OPA - Performance Results
Decentralized Estimation with Analog Transmission

0 100 200 300 400 500 600 700
0.5

1

1.5

2

2.5

3
x 10

−3

N
0

D

300
9.2

9.25

9.3

9.35

x 10
−4

UPA

OPA (γ*
th

)

OPA (optimal)
WF

OPA outperforms Uniform Power Allocation and very close to WF.
Almost no penalty for using the approximate threshold γ∗th
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Decentralized Estimation
with Digital Transmission

Distortion with centralized observations
Decentralized Estimation with Digital Transmission

SOURCE
θ

FC

1n

2n

Nn

θ: deterministic, scalar

xk = θ + nk ; k = 1, . . . ,N

nk ∼ N (0, σ2
n)

Sample mean estimator (BLUE & MVU):

θ̂BLUE =
1

N

N∑
k=1

xk ; Var(θ) = σ2
n

N (2)

What can we expect with decentralized estimation and 1 bit per
sensor (bandwidth constraints)?
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Quantization with 1 Bit per sensor
Decentralized Estimation with Digital Transmission

Sensors: Send indicator variable bk ∈ {0, 1}... a set of 1-bit
quantizers!! [Ribeiro-Giannakis’05]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(
x k)

θ τ
c

bk : Bernoulli random variable
with parameter

qk(θ) = F (τc − θ)

F : Complementary CDF of
noise

τc : design parameter

FC: Produces an ML estimate

θ̂ML = τc − F−1

(
1

N

N∑
k=1

bk

)

with q̂ = 1
N

∑N
k=1 bk .
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Quantization with 1 Bit per sensor
Decentralized Estimation with Digital Transmission

Cramer-Rao Lower Bound: CRLB(θ) = Var(θ̂) for large N

CRLBmin ≈ 1.57σ2

N Variance of the centralized MVU estimator

To attain CRLBmin, we need τc = θ (... but θ is unknown!)

For τc ∈ [θ − σn, θ + σn] , Var
(
θ̂ML

)
≤ 2.52σ2

n
N

Performance loss wrt centralized & τc = θ
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Quantization-Estimation Trade-offs in WSNs
Decentralized Estimation with Digital Transmission

Problem setup and assumptions:

Parameter: θ, deterministic and scalar.

Observations: xk = θ + nk with k = 1 . . .N

nk : zero-mean, variance σ2
n,k = σ2

k (different observation qualities!)
Noise PDF unknown.
Finite dynamic range: xk ∈ [−W ,W ]

Digital sensor-FC communications: uncoded M-QAM modulation

Uniform Lk -bit quantizers in each sensor node (k)

BLUE estimator at the FC

Goal: Optimal number of quantization levels (2Lk − 1) in each sensor
node?

Target distortion constraint: D = Ex

[(
θ̂(x)− θ

)2
]
≤ D0

Minimum power consumption.
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Quantization-Estimation Trade-offs in WSNs
Decentralized Estimation with Digital Transmission

Benchmark: Centralized BLUE with analog observations

θ̂BLUE =

(
N∑

k=1

1

σ2
k

)−1 N∑
k=1

xk

σ2
k

with Var(θ̂) =
(∑N

k=1
1
σ2

k

)−1

Quantizer: uniform intervals

Divide [−W ,W ] into 2Lk − 1 intervals, of length ∆ = 2W /(2Lk − 1)XIAO et al.: UNIVERSAL DECENTRALIZED ESTIMATION IN SENSOR NETWORKS 415

functions linearly with weights decided by both the observation
noise and the quantization noise. We will optimally choose
quantization and transmit power levels at local sensors so as to
minimize the total transmit power, while ensuring a targeted
mse performance.

A. Probabilistic Quantization of a Bounded Random Variable

Suppose is the signal range that sensors can ob-
serve, that is, , where is a known
parameter decided by the sensors’ dynamic range, and is the
unknown signal to be estimated. The noise has zero mean
and variance , but is otherwise unknown. Suppose we want
to quantize into bits regardless of the probability distribu-
tion of . This can be achieved by uniformly dividing
into intervals of length , and rounding

to the neighboring endpoints of these small intervals in a
probabilistic manner (see Fig. 2). More specifically, suppose

where , then is
quantized to according to

with . Notice that is
chosen so that the quantization is unbiased,
namely, , where denotes expectation
taken with respect to the probabilistic quantization noise.
It is easy to see that assumes discrete values

which can be represented in bits. The quantization noise
can be viewed as a Bernoulli random

variable taking values at and , i.e.,

In terms of the quantization noise can be
written as

(4)

where and are independent. Next lemma, whose proof
can be found in [15], shows that this message function is an
unbiased estimator of with a variance approaching at an
exponential rate as increases.

Lemma 1: Let be an -bit quantization of
as defined. Then is an unbiased estimator of

and

where the expectation is taken with respect to both the sensor
observation noise and quantization noise.

Now suppose the bit budget for sensor is for .
With the strategy described above, we design local independent
quantizers , where is a

Fig. 2. A probabilistic uniform quantization scheme.

discrete message of bits. According to (4), can be repre-
sented as

(5)

where the quantization noise across sensors
are independent because quantizations are performed locally
at each sensor without coordination. By Lemma 1, we have

and

(6)

where

denotes an upper bound of the quantization noise variance.
These message functions are then transmitted to the fusion
center where they are combined to generate a final estimate
of .

B. Fusion Function: Quasi-BLUE

Our goal is to construct a linear estimator of from
such that the mse is minimized. Recall

from the property of BLUE (2) that the optimal weight of
is proportional to . Therefore, according to (6) we
can set the weight for as , giving rise to the
following estimator

(7)

Notice that is an unbiased estimator of since every is
an unbiased quantization of . Moreover, it has an mse

where the third step follows from the fact that
and [see (5)] are uncorrelated for , and

for all as shown in Lemma 1, while the final

Quantize xk with an Lk -bit message, mk(xk , Lk), while fulfilling
E [m(xk , Lk)] = xk
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Quantization-Estimation Trade-offs in WSNs
Decentralized Estimation with Digital Transmission

Case #1: Distortion without errors in sensor-FC channels:

The message sent is

mk(xk , Lk) = θ + nk + νk︸︷︷︸
Quant. Noise

with

Var (νk) ≤ δ2
k =

W 2

(2Lk − 1)
2

Quasi-BLUE estimate at the FC:

θ̂Q-BLUE =

(
N∑

k=1

1

σ2
k + δ2

k

)−1( N∑
k=1

mk

σ2
k + δ2

k

)
with distortion lower-bounded by:

D = Var(θ̂Q-BLUE) ≥

(
N∑

k=1

1

σ2
k + δ2

k

)−1
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Quantization-Estimation Trade-offs in WSNs
Decentralized Estimation with Digital Transmission

Case #2: Distortion with errors in sensor-FC channels:

Bit Error Rate (BER) of the k-th link: pk
b

Received and sent messages differ:

m′
k(xk , Lk) 6= mk(xk , Lk) =⇒ increased estimation variance

Distortion of the quasi-BLUE estimate:

D ≤ (1 + po)

(
N∑

k=1

1

σ2
k + δ2

k

)−1

with

po = max
1≤k≤N

8W

σk

√
Npk

b

3
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Quantization-Estimation Trade-offs in WSNs
Decentralized Estimation with Digital Transmission

Optimal bit and power allocation:

For a given distortion target Do and BER, minimize transmit power

Optimal number of quantization bits (sensor-wise):

Lk
opt =

{
0 if excessive attenuation ak

log
(
1 + W

σk

√
η0
ak
− 1
)

otherwise

Transmit power required:

pk ∼ ak

(
2Lk − 1

)
and Ptotal =

∑N
k=1 pk
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Quantization-Estimation Trade-offs in WSNs
Decentralized Estimation with Digital TransmissionXIAO et al.: UNIVERSAL DECENTRALIZED ESTIMATION IN SENSOR NETWORKS 419

Fig. 5. Percentage of energy saving increases when sensor noise variances
become more heterogeneous.

Fig. 6. Percentage of energy saving increases when channel path losses
become more heterogeneous.

quantization scheme as well as an uncoded QAM transmission
scheme. Our design minimizes the total energy consumption
subject to the constraint that the worst distortion is within a
given level. We show that the optimal quantization level and
transmission power for each sensor can be determined jointly
in terms of the channel path losses and the local observation
noise levels. When the channel quality is below a (computable)
threshold, the corresponding sensor will be completely shut off
to save energy. In contrast, when the channel quality is good
and the observation noise is low, the corresponding sensor
will be active: it will first quantize its observation to a specific
(computable) number of bits and then transmit them to the fu-
sion center using an appropriate amount of transmission power.
Numerical examples show that in an inhomogeneous sensing
environment, our design can achieve a significant amount of
energy saving when compared to the uniform quantization
strategy in which each sensor generates the same number of
bits regardless of its channel quality.

To obtain the desired quantization and transmit power levels,
we have assumed in this paper that the fusion center knows

. This assumption is reasonable
in cases where the network condition and the signal being
estimated change slowly in a quasistatic manner. Thus, once

are acquired by the fusion center,
they can be used for a reasonably long period of time. Also,
our approach can be generalized to the estimation of a memo-
ryless discrete-time random process . Due to the temporal
memoryless property of the source and sensor observations, we
can impose sample-by-sample estimation without significant
estimation performance loss, but obtain important features such
as easy implementation and no coding and estimation delay.

For future work, we wish to extend the current work to the
vector signal model: , for all , where is
the vector of unknown parameters, is the vector of sensor
observations. Our initial investigation shows the corresponding
energy minimization problem becomes nonconvex, which
makes the optimal power scheduling difficult to compute. We
also plan to explore tighter universal source coding bounds and
other energy-efficient coded transmission schemes for decen-
tralized estimation in wireless sensor networks. It is likely that
joint source and channel coding approaches can achieve higher
energy efficiency than the strategy considered in this paper.
Moreover, designing a completely distributed algorithm for
optimal power scheduling which does not require local sensor
information at the fusion center
is also part of our future work.

APPENDIX

A. Proof of Lemma 2

The quantized message has bits and can be written as

where is the first most significant
bit (MSB) of , and is the second MSB, etc.

Suppose the BER of sensor is , and are the decoded
version of at the fusion center. Let , then the
estimator based on the received messages
is

Notice that we may have for some . In this case,
, indicating that the corresponding

weight of such message is . Therefore, such
sensors do not participate the estimation in order to save energy,
and will have no contribution in the final mse.

We now analyze the mse of by taking into account the
bit error caused by the channel. To transmit , the binary bits

must be sent. Suppose the decoded bits at the
fusion center are . Let denote the event that
the first bit decoded incorrectly is , i.e., , but

”Uniform quantization/power allocation”: Same number of quantization bits/transmit power in all sensors (to meet Do )

The larger the spread in sensor noise variances, the higher the
savings.
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Quantization-Estimation Trade-offs in WSNs
Decentralized Estimation with Digital Transmission
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Fig. 5. Percentage of energy saving increases when sensor noise variances
become more heterogeneous.

Fig. 6. Percentage of energy saving increases when channel path losses
become more heterogeneous.

quantization scheme as well as an uncoded QAM transmission
scheme. Our design minimizes the total energy consumption
subject to the constraint that the worst distortion is within a
given level. We show that the optimal quantization level and
transmission power for each sensor can be determined jointly
in terms of the channel path losses and the local observation
noise levels. When the channel quality is below a (computable)
threshold, the corresponding sensor will be completely shut off
to save energy. In contrast, when the channel quality is good
and the observation noise is low, the corresponding sensor
will be active: it will first quantize its observation to a specific
(computable) number of bits and then transmit them to the fu-
sion center using an appropriate amount of transmission power.
Numerical examples show that in an inhomogeneous sensing
environment, our design can achieve a significant amount of
energy saving when compared to the uniform quantization
strategy in which each sensor generates the same number of
bits regardless of its channel quality.

To obtain the desired quantization and transmit power levels,
we have assumed in this paper that the fusion center knows

. This assumption is reasonable
in cases where the network condition and the signal being
estimated change slowly in a quasistatic manner. Thus, once

are acquired by the fusion center,
they can be used for a reasonably long period of time. Also,
our approach can be generalized to the estimation of a memo-
ryless discrete-time random process . Due to the temporal
memoryless property of the source and sensor observations, we
can impose sample-by-sample estimation without significant
estimation performance loss, but obtain important features such
as easy implementation and no coding and estimation delay.

For future work, we wish to extend the current work to the
vector signal model: , for all , where is
the vector of unknown parameters, is the vector of sensor
observations. Our initial investigation shows the corresponding
energy minimization problem becomes nonconvex, which
makes the optimal power scheduling difficult to compute. We
also plan to explore tighter universal source coding bounds and
other energy-efficient coded transmission schemes for decen-
tralized estimation in wireless sensor networks. It is likely that
joint source and channel coding approaches can achieve higher
energy efficiency than the strategy considered in this paper.
Moreover, designing a completely distributed algorithm for
optimal power scheduling which does not require local sensor
information at the fusion center
is also part of our future work.

APPENDIX

A. Proof of Lemma 2

The quantized message has bits and can be written as

where is the first most significant
bit (MSB) of , and is the second MSB, etc.

Suppose the BER of sensor is , and are the decoded
version of at the fusion center. Let , then the
estimator based on the received messages
is

Notice that we may have for some . In this case,
, indicating that the corresponding

weight of such message is . Therefore, such
sensors do not participate the estimation in order to save energy,
and will have no contribution in the final mse.

We now analyze the mse of by taking into account the
bit error caused by the channel. To transmit , the binary bits

must be sent. Suppose the decoded bits at the
fusion center are . Let denote the event that
the first bit decoded incorrectly is , i.e., , but

”Uniform quantization/power allocation”: Same number of quantization bits/transmit power in all sensors (to meet Do )

The larger the spread in channel path-losses, the higher the savings.
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Concluding Remarks

General observations:

BLUE and Maximum-Likelihood (ML) estimators are often used in
decentralized settings.
Benchmarks: centralized estimator and Cramer-Rao Lower Bound.
Maximization of sum-rate vs. maximization of estimation accuracy.

Decentralized Estimation with Analog Transmission (A&F):

Opportunistic Power Allocation (OPA) performs close to Optimal
Power Allocation (i.e. waterfilling-like solutions) with less complexity
and feedback requirements.
OPA neatly outperforms Uniform Power Allocation approaches.

Decentralized Estimation with Digital Transmission:

With 1 bit per sensor, ML estimation and rough knowledge on
quantization threshold, the distortion is close to the ”analog” system.
With Lk bits (variable) per sensor, power allocation, and BLUE
estimation substantial energy savings w.r.t. the cases with fixed
quantization levels/fixed power allocation (for a given distortion).
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