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Introduction

Considered system (at the receiver side, by means of a discretization
process, the received signal r(t) is converted into a discrete-time sequence r)

a
ChannelEncoder

θ

c r a = (a1, a2, . . . )

c = (c1, c2, . . . )

θ = (θ1, θ2, . . . )

r = (r1, r2, . . . )

Problems of interest in the present talk:
MAP symbol detection:

âk = argmax
ak

P(ak |r)

MAP sequence detection:

â = argmax
a

P(a|r)

MAP estimation:
θ̂k = argmax

θk
p(θk |r)
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Introduction (cont’d)

All problems have, in general, exponential complexity in the
transmission length (NP-hard), unless proper conditions occur

The first and the third problems have in common a marginalization of
the joint distribution P(a, c,θ|r)

Apparently, this is not the case of the second problem. We will come
back on MAP sequence detection later

When is it possible to implement a marginalization in a more effective
way?

5/111 On the applications of factor graphs and the sum-product algorithm to detection and decoding Giulio Colavolpe



Introduction FGs and SPA Applications Conclusions

Introduction (cont’d)

Algorithms that must deal with complicated global functions of many
variables often exploit the manner in which the given functions factor as
a product of “local" functions, each of which depends on a subset of the
variables

Such a factorization can be visualized with a factor graph, a bipartite
graph that expresses which variables are arguments of which local
functions

The sum-product algorithm works on the factor graph and
computes—either exactly or approximately—the marginal functions
derived from the global function

A wide variety of algorithms developed in artificial intelligence, signal
processing and digital communications can be derived as specific
instances of the sum-product algorithm
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Definition

Let x1, x2, . . . , xn be a collection of variables

xi takes on values in some (usually finite) domain (or alphabet) Ai

Let g(x1, x2, . . . , xn) be an R-valued function of these variables, i.e., a
function with domain S = A1 × A2 × · · · × An and codomain R

Associated with g(x1, x2, . . . , xn) there are n marginal functions gi (xi )
defined as

gi (xi ) =
∑

x1∈A1

· · ·
∑

xi−1∈Ai−1

∑
xi+1∈Ai+1

· · ·
∑

xn∈An

g(x1, x2, . . . , xn)

This operation is called not-sum or summary and will be denoted by

gi (xi ) =
∑
∼{xi}

g(x1, x2, . . . , xn)
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Factor Graphs (FGs)

Suppose that g(x1, x2, . . . , xn) factors into a product of several local
functions, each having some subset of {x1, x2, . . . , xn} as arguments:

g(x1, x2, . . . , xn) =
∏
j∈J

fj (Xj )

where J is a discrete index set, Xj is a subset of {x1, x2, . . . , xn}, and
fj (Xj ) is a function having the elements of Xj as arguments

A factor graph is a bipartite graph that expresses the structure of this
factorization

It has a variable node for each variable xi , a factor node for each local
function fj , and an edge connecting variable node xi to function node fj if
and only if xi is an argument of fj
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Example

Let g(x1, x2, . . . , xn) be a function of five variables, and suppose that g
can be expressed as a product

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE (x3, x5)

In this case, J = {A,B,C,D,E}, XA = {x1}, XB = {x2},
XC = {x1, x2, x3}, XD = {x3, x4}, and XE = {x3, x5}

10/111 On the applications of factor graphs and the sum-product algorithm to detection and decoding Giulio Colavolpe



Introduction FGs and SPA Applications Conclusions

Marginalization of a Joint Pmf

If g(x1, x2, . . . , xn) is a joint probability mass function (PMF), we are
interested in computing the marginal functions gi (xi )

In the case of the previous example, by using the distributive law:

g1(x1) = fA(x1)
{∑

x2

fB(x2)
[∑

x3

fC(x1, x2, x3)
(∑

x4

fD(x3, x4)
)(∑

x5

fE (x3, x5)
)]}

(a(b + c) is more cost-effective than ab + ac)

In summary notation

g1(x1) = fA(x1)
∑
∼{x1}

{
fB(x2)fC(x1, x2, x3)

( ∑
∼{x3}

fD(x3, x4)
)( ∑
∼{x3}

fE (x3, x5)
)}

Similarly

g3(x3) =
[ ∑
∼{x3}

fA(x1)fB(x2)fC(x1, x2, x3)
][ ∑
∼{x3}

fD(x3, x4)
][ ∑
∼{x3}

fE (x3, x5)
]

We have some operations in common!
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Expression Trees

In computer science, arithmetic expressions are often represented by
ordered rooted trees (the expression trees) in which internal vertices
(i.e., vertices with descendants) represent arithmetic operators and leaf
vertices (i.e., vertices without descendants) represent variables or
constants. Ex.: x(y + z)

Expression trees may be extended such that the leaf vertices represent
functions not just variables or constants
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Expression Trees: g1(x1)

g1(x1) = fA(x1)
∑
∼{x1}

{
fB(x2)fC(x1, x2, x3)

( ∑
∼{x3}

fD(x3, x4)
)( ∑
∼{x3}

fE (x3, x5)
)}
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Expression Trees: g3(x3)

g3(x3) =
[ ∑
∼{x3}

fA(x1)fB(x2)fC(x1, x2, x3)
][ ∑
∼{x3}

fD(x3, x4)
][ ∑
∼{x3}

fE (x3, x5)
]

14/111 On the applications of factor graphs and the sum-product algorithm to detection and decoding Giulio Colavolpe



Introduction FGs and SPA Applications Conclusions

Expression Trees and Factor Graphs

When a factor graph is cycle free, the factor graph not only encodes in
its structure the factorization of the global function, but also encodes
arithmetic expressions by which the marginal functions associated with
the global function may be computed, following these rules

I Replace each variable node in the factor graph with a product
operator

I Replace each factor node with a “form product and multiply by f ”
operator

I Between a factor node f and its parent x insert a
∑
∼{x} summary

operator

Trivial products (those with one or no operand) act as identity operators

A summary operation
∑
∼{x} applied to a function with a single

argument x is also a trivial operation, and may be omitted
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Computing a Single Marginal Function

Every expression tree represents an algorithm for computing the
corresponding expression, a “bottom-up” procedure that begins at the
leaves of the tree, with each operator vertex combining its operands
and passing on the result as an operand for its parent

Rather than working with the expression tree, it is simpler and more
direct to describe such marginalization algorithms in terms of the
corresponding factor graph

Let us imagine that there is a processor associated with each vertex of
the factor graph and that the factor-graph edges represent channels by
which these processors may communicate
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Single-i Sum-Product Algorithm

It computes a single marginal function gi (xi ) in a rooted cycle-free factor
graph, with xi taken as root vertex

Rules
I Each leaf variable node sends a trivial “identity function" message

to its parent
I Each leaf factor node f sends a description of f to its parent
I Each vertex waits for messages from all of its children before

computing the message to be sent to its parent
I A variable node simply sends the product of messages received

from its children
I A factor node f with parent x forms the product of f with the

messages received from its children, and then operates on the
result with a

∑
∼{x} summary operator

I The computation terminates at the root node xi , where the
marginal function gi (xi ) is obtained as the product of all messages
received at xi
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Computing All Marginal Functions

Computation of gi (xi ) for all i simultaneously can be efficiently
accomplished by essentially overlaying on a single factor graph all
possible instances of the single-i algorithm

No particular vertex is taken as a root vertex, so there is no fixed
parent/child relationship among neighboring vertices

Message passing is initiated at the leaves

Each vertex v remains idle until messages have arrived on all but one
of the edges incident on v ; then, it is able to compute the message on
the remaining edge to another vertex w as in the single-i algorithms.
After that, the vertex v returns to the idle state, waiting for a return
message from w . Once this message has arrived, the vertex is able to
compute and send messages to each of its neighbors (other than w)
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Computing All Marginal Functions (cont’d)

The algorithm terminates once two messages have been passed over
every edge, one in each direction

At the variable node xi , the product of all incoming messages is the
marginal function gi (xi ), just as in the single-i algorithm
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Sum-Product Algorithm

The resulting algorithm is called sum-product algorithm and is based on
the following two rules. Let us denote by n(v) the set of neighbors of a
given node v

I variable to local function

µx→f (x) =
∏

h∈n(x)\{f}

µh→x(x)

I local function to variable

µf→x(x) =
∑
∼{x}

(
f (X )

∏
y∈n(f )\{x}

µy→f (y)
)

where X = n(f ) is the set of arguments of the function f

Note that all messages are functions
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Example

Step 1

µfA→x1 (x1) =
∑
∼{x1}

fA(x1) = fA(x1) µfB→x2 (x2) =
∑
∼{x2}

fB(x2) = fB(x2)

µx4→fD (x4) = 1 µx5→fE (x5) = 1

Step 2

µx1→fC (x1) = µfA→x1 (x1) µx2→fC (x2) = µfB→x2 (x2)

µfD→x3 (x3) =
∑
∼{x3}

µx4→fD (x4)fD(x3, x4)

µfE→x3 (x3) =
∑
∼{x3}

µx5→fE (x5)fE (x3, x5)21/111 On the applications of factor graphs and the sum-product algorithm to detection and decoding Giulio Colavolpe
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Example (cont’d)

Step 3

µfC→x3 (x3) =
∑
∼{x3}

µx1→fC (x1)µx2→fC (x2)fC(x1, x2, x3)

µx3→fC (x3) = µfD→x3 (x3)µfE→x3 (x3)
Step 4

µfC→x1 (x1) =
∑
∼{x1}

µx3→fC (x3)µx2→fC (x2)fC(x1, x2, x3)

µfC→x2 (x2) =
∑
∼{x2}

µx3→fC (x3)µx1→fC (x1)fC(x1, x2, x3)

µx3→fD (x3) = µfC→x3 (x3)µfE→x3 (x3)

µx3→fE (x3) = µfC→x3 (x3)µfD→x3 (x3)
Step 5

µx1→fA (x1) = µfC→x1 (x1)

µx2→fB (x2) = µfC→x2 (x2)

µfD→x4 (x4) =
∑
∼{x4}

µx3→fD (x3)fD(x3, x4)

µfE→x5 (x5) =
∑
∼{x5}

µx3→fE (x3)fE (x3, x5)22/111 On the applications of factor graphs and the sum-product algorithm to detection and decoding Giulio Colavolpe
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Example (cont’d)

Termination

g1(x1) = µfA→x1 (x1)µfC→x1 (x1)

g2(x2) = µfB→x2 (x2)µfC→x2 (x2)

g3(x3) = µfC→x3 (x3)µfD→x3 (x3)µfE→x3 (x3)

g4(x4) = µfD→x4 (x4)

g5(x5) = µfE→x5 (x5)

Equivalently

g3(x3) = µfC→x3 (x3)µx3→fC (x3)

= µfD→x3 (x3)µx3→fD (x3)

= µfE→x3 (x3)µx3→fE (x3)
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Marginalization in Graphs with Cycles

When a graph has cycles, in the sum-product algorithm there is not a
natural termination

Because of the cycles in the graph, an iterative algorithm with no
natural termination will result, with messages passed multiple times on
a given edge

It is not possible to obtain an exact marginalization of the global function

Some of the most exciting applications of the sum-product algorithm
(turbo codes, LDPC codes) arise precisely in situations in which the
underlying factor graph does have cycles

Extensive simulation results show that such decoding algorithms can
achieve astonishing performance even though the underlying factor
graph has cycles

The adopted schedule assumes a key role (ex. flooding schedule)
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Transformations of Factor Graphs

These transformations can be used to remove cycles

Clustering
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Transformations of Factor Graphs (cont’d)

Stretching
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Modeling Systems with FGs

Definition: Iverson’s convention. If P is a predicate (Boolean
proposition), then

[P] =

{
1 if P is true
0 otherwise

Definition: characteristic function of a code with codebook C

χC(c1, c2, . . . , cN) = [(c1, c2, . . . , cN) ∈ C]

Tanner graph for a linear code: it represents the characteristic function
of the code. Ex.: a (6, 3) block code with parity check matrix H
(HcT = 0)

H =

 1 1 0 0 1 0
0 1 1 0 0 1
1 0 1 1 0 0


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Modeling Systems with FGs (cont’d)

Membership in C is completely determined by checking whether each
of the three equations is satisfied

χC(c1, c2, c3, c4, c5, c6) = [(c1, c2, c3, c4, c5, c6) ∈ C]

[c1 ⊕ c2 ⊕ c5 = 0][c2 ⊕ c3 ⊕ c6 = 0][c1 ⊕ c3 ⊕ c4 = 0]

c6

c1

c2 c3

c5 c4

Usually, this graph has cycles
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Decoding of Block Codes (LDPC)

In the MAP symbol decoding the aim is the computation of the marginal
probabilities P(cn|r) from the joint pmf P(c|r)

On an AWGN channel with received samples rn = cn + wn

(n = 1, . . . ,N), we have

P(c|r) ∝ P(c)p(r|c) =
1
|C|χC(c)

N∏
n=1

p(rn|cn)

where p(rn|cn) = 1
2πσ2 exp{− |rn−cn|2

2σ2 }

c3 c4

p(r2|c2) p(r3|c3) p(r4|c4) p(r6|c6)

c5 c6

p(r5|c5)

c1

p(r1|c1)

c2
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Decoding of Block Codes (LDPC) (cont’d)

The application of the SP algorithm to this factor graph allows the
computation of the marginal probabilities P(cn|r) (the code is assumed
to be

The graph has cycles: the algorithm proceeds iteratively until all checks
are satisfied (or a maximum number of iterations is reached)

Usually, the flooding schedule is adopted

The messages on the edges of the graph are functions of discrete
variables

In the case of binary block codes, if log-likelihood ratios (LLR) are used
instead of probabilities, the passed messages become real numbers
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Simplifications for Binary Block Codes

A variable node makes the product of the incoming messages ) in terms
of the LLR a variable node simply adds the incoming messages

Check node to variable node

α(ck ) =
∑
∼{ck}

α(ci )α(cj )[ci ⊕ cj ⊕ ck = 0]

=
∑

ci

∑
cj

α(ci )α(cj )[ci ⊕ cj ⊕ ck = 0]

cj

ci

ck
α(ck)

α(ci)

α(cj)

33/111 On the applications of factor graphs and the sum-product algorithm to detection and decoding Giulio Colavolpe



Introduction FGs and SPA Applications Conclusions

Simplifications for Binary Block Codes (cont’d)

Hence

α(ck = 0) = α(ci = 0)α(cj = 0) + α(ci = 1)α(cj = 1)

α(ck = 1) = α(ci = 0)α(cj = 1) + α(ci = 1)α(cj = 0)

By defining

`k = ln
α(ck = 0)

α(ck = 1)

one has

`k = 2 tanh−1
[

tanh
(
`i

2

)
tanh

(
`j

2

)]
' sgn(`i )sgn(`j ) min(|`i |, |`j |)

This decoding algorithm is used to decode Low-Density Parity-Check
(LDPC) codes, very long block codes with sparse (to reduce the
decoding complexity) parity-check matrix

In practice, only cycles of length 4 must be avoided
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Performance of LDPC Codes

Regular LDPC codes were proposed by Gallager in 1963

10
−5
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−4

10
−3

10
−2

10
−1

10
0

0 0.5 1 1.5 2 2.5 3 3.5

B
E

R

E
b
/N

0

LDPC, max 200it

(504,252)
(1008,504)
(2640,1320)
(4000,2000)
(20000,10000)

Irregular LDPC codes, proposed in 2001, outperform the best known
turbo codes
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Decoding of Trellis Codes

A generic code can be modeled as a finite state machine:

cn = g1(an, µn)

µn+1 = g2(an, µn)

When this code is transmitted over an AWGN channel (rn = cn + wn) we
can write

P(c, a,µ|r) ∝ p(r|a, c,µ)P(c,µ|a)P(a)

=
[ N∏

n=1

p(rn|cn)
]
P(c,µ|a)

[ N∏
n=1

P(an)
]

I P(c,µ|a) is an indicator function, equal to one when a, c and µ
are in a one-to-one correspondence, to zero otherwise. It can be
expressed as the product of indicator functions for all trellis
section (Wiberg graph)

P(c,µ|a) = P(µ1)
N∏

n=1

IT (an, cn, µn, µn+1)

IT (an, cn, µn, µn+1) = [(an, cn, µn, µn+1) ∈ T ]
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Decoding of Trellis Codes (cont’d)

P(c, a,µ|r) ∝ P(µ1)
N∏

n=1

p(rn|cn)IT (an, cn, µn, µn+1)P(an)

P (a3) P (a4) P (a5) P (a6)

. . .

a1 a2 a3 a4 a5

c1 c2 c3 c4 c5

a6

c6

p(r1|c1) p(r2|c2) p(r3|c3) p(r4|c4) p(r5|c5) p(r6|c6)

P (a1) P (a2)

P (µ1)

µ1 µ2 µ3 µ4 µ5 µ6 µ7IT IT IT IT IT IT

The application of the SP algorithm leads to the BCJR algorithm

The graph is cycle-free⇒ the exact marginal pmfs P(an|r) are obtained
(also pmfs P(cn|r) useful in serially concatenated schemes and P(µn|r)
are also obtained)
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Decoding of Trellis Codes (cont’d)

α(µn+1) =
∑

∼{µn+1}
α(µn)p(rn|cn)IT (an, cn, µn, µn+1)P(an)

β(µn) =
∑
∼{µn}

β(µn+1)p(rn|cn)IT (an, cn, µn, µn+1)P(an)

P(an|r) =
∑
∼{an}

α(µn)β(µn+1)p(rn|cn)IT (an, cn, µn, µn+1)P(an)

����
����
����
����
����
����

����
����
����
����
����
����

µn+1µn

p(rn|cn)

cn

P (an)

an

P (an)

p(rn|cn)

β(µn)

α(µn)

β(µn+1)

α(µn+1)
IT
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Iterative Decoding of Turbo Codes

Decoding is not performed on the Wiberg graph of the overall code⇒
cycles⇒ iterative decoding
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Detection over ISI Channels

Received samples after the WMF: rn =
∑L
`=0 f`an−` + wn

Defining σn = (an−1, an−2, . . . , an−L)

P(a,σ|r) ∝ p(r|a,σ)P(σ|a)P(a)

=
[ N∏

n=1

p(rn|an, σn)
]
P(σ|a)

[ N∏
n=1

P(an)
]

I p(rn|an, σn) = 1
2πσ2 exp{−|rn −

∑L
`0

f`an−`|2/2σ2}
I P(σ|a) is an indicator function, equal to one when a and σ are in

a one-to-one correspondence, to zero otherwise:

P(σ|a) = P(σ1)
N∏

n=1

IT (an, σn, σn+1)

IT (an, σn, σn+1) = [(an, σn, σn+1) ∈ T ]
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Detection over ISI Channels (cont’d)

P(a,σ|r) ∝ P(σ1)
N∏

n=1

p(rn|an, σn)IT (an, σn, σn+1)P(an)

. . .

a1 a2 a3 a4 a5 a6

σ1 σ2 σ3 σ4 σ5 σ6 σ7

P (a2)P (a1)

P (σ1)

IT p(r1|a1, σ1) IT p(r2|a2, σ2) IT p(r3|a3, σ3) IT p(r4|a4, σ4) IT p(r5|a5, σ5) IT p(r6|a6, σ6)

P (a3) P (a4) P (a5) P (a6)

The application of the SP algorithm to this cycle-free FG still leads to
the BCJR algorithm
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Outline

3 Applications
Decoding of LDPC Codes
BCJR Algorithm
Turbo Codes
Detection over ISI Channels
Viterbi Algorithm
LDPC over Channels with Unknown Parameters

A Priori Average over Channel Parameters
Numerical Average over Channel Parameters

Linear Modulations over Linear Channels
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Viterbi Algorithm

This framework is based on the application of the distributive law

The codomain of g can be any semiring with two operations “+” and ”·”
that satisfy the distributive law

We can use the “min-sum” semiring:

+ → min

· → +

MAP sequence detection strategy can be expressed in the following
equivalent ways

â = argmax
a

P(a|r) = argmin
a

[
− log P(a|r)

]
(â, σ̂) = arg min

(a,σ)

[
− log P(a,σ|r)

]
since, given σ1, a and σ are in a one-to-one correspondence

46/111 On the applications of factor graphs and the sum-product algorithm to detection and decoding Giulio Colavolpe



Introduction FGs and SPA Applications Conclusions

Viterbi Algorithm (cont’d)

The problem
(x̂1, x̂2) = arg min

(x1,x2)
f (x1, x2)

can be solved in two steps:
I I step: compute

x̂2(x1) = argmin
x2

f (x1, x2)

I II step: compute
x̂1 = argmin

x1
f [x1, x̂2(x1)]

Hence, in case of MAP sequence detection, decision on symbol ak can
be taken as

âk = argmin
ak

{
min
∼{ak}

[
− log P(a,σ|r)

]}
min∼{ak}

[
− log P(a,σ|r)

]
is a marginalization in the “min-sum”

semiring
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Viterbi Algorithm (cont’d)

Factors become addends

− log P(a,σ|r) ∝
N∑

n=1

[ 1
2σ2

∣∣∣rn −
L∑
`0

f`an−`

∣∣∣2 − log P(an)

︸ ︷︷ ︸
λn(an,σn)

+T (an, σn, σn+1)
]

T (an, σn, σn+1) = − log IT (an, σn, σn+1) =

{
0 (an, σn, σn+1) ∈ T
+∞ otherwise

an

σn σn+1

β(σn) β(σn+1)

α(σn) α(σn+1)
λn + T
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Viterbi Algorithm (cont’d)

Algorithm:

α(σn+1) = min
an,σn

[α(σn) + λn(an, σn) + T (an, σn, σn+1)]

β(σn) = min
an,σn+1

[β(σn+1) + λn(an, σn) + T (an, σn, σn+1)]

ân = argmin
an

min
σn,σn+1

[α(σn) + λn(an, σn) + β(σn+1) + T (an, σn, σn+1)]

The last equation is equivalent to compute the forward recursion up to
n = N, to choose the best survivor, and then to come back taking
decisions on it since ∀n

min
σN+1

α(σN+1) = min
an,σn,σn+1

[α(σn) + λn(an, σn) + β(σn+1) + T (an, σn, σn+1)]
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Outline

3 Applications
Decoding of LDPC Codes
BCJR Algorithm
Turbo Codes
Detection over ISI Channels
Viterbi Algorithm
LDPC over Channels with Unknown Parameters

A Priori Average over Channel Parameters
Numerical Average over Channel Parameters

Linear Modulations over Linear Channels
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Channels with Unknown Parameters

We now consider an LDPC coded transmission over an unknown
channel

We will not consider non-Bayesian algorithms (using the “min-sum”
semiring)

We will consider Bayesian algorithms:
I a priori average over channel parameters
I numerical average over channel parameters (canonical

distributions)

The considered algorithms can employ soft estimations for code symbol
probabilities available in iterative decoding schemes

They can be used for turbo-codes also
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System Model

A sequence of M-ary coded symbols {cn}, obtained from the encoding
of a sequence of information bits and a proper mapping on a multilevel
constellation, is transmitted from epoch 0 to epoch N − 1

To avoid phase ambiguity problems, pilot symbols or differential
encoding may be also inserted in the sequence {cn}

A sequence of coded symbols is denoted in vector notation as

cn2
n1

= (cn1 , cn1+1, . . . , cn2 ) , n2 > n1

The entire sequence is denoted by c = cN−1
0

This sequence is then modulated and transmitted over a channel which
is modeled as a noiseless filter (possibly stochastic) plus additive white
Gaussian noise (AWGN) with two-sided power spectral density N0/2
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System Model (cont’d)

We assume that a single sample rn is used for each coded symbol,
which is practically sufficient in many cases

We also assume that the channel is causal, that is rn
0 up to epoch n

depends on the coded sequence up to epoch n only:

p(rn
0|c) = p(rn

0|cn
0)

This condition characterizes a noncoherent channel, a flat or a
frequency-selective fading channel, and a channel with known and
time-invariant ISI
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System Model (cont’d)

In the numerical results, we will focus on linear modulations on the:
I noncoherent channel characterized by an unknown stochastic and

possibly time-varying phase θn and model (true in the absence of
strong phase variations):

rn = cnejθn + nn

For the phase noise process {θn}, different statistics will be
considered

I flat fading channel
rn = hncn + nn

where {hn} is a sequence of zero-mean complex Gaussian
random variables with autocorrelation sequence E{hnh∗n−k}
= J0(2πfDTk), where fDT is the normalized Doppler rate
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Factor Graph

FG representing the joint APP of transmitted symbols {cn}

P(c|r) ∝ P(c)p(r|c) ∝ χ(c)
N−1∏
n=0

p(rn|rn−1
0 , cn

0)

where χ(c) is the code indicator function, and the causality condition
has been used

Channels with finite memory (e.g., a channel with finite known ISI)

p(rn|rn−1
0 , cn

0) = p(rn|rn−1
0 , cn

n−C)

C is the finite memory parameter

P(c|r) ∝ P(c)p(r|c) ∝ χ(c)
N−1∏
n=0

p(rn|rn−1
0 , cn

n−C)

The application of the SP algorithm to this FG allows us to compute the
marginal APP P(cn|r)⇒ MAP symbol detection is implemented
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Factor Graph (cont’d)

c0 c1 c2 c4c3 c5

p(r0|c0) p(r1|r0, c10) p(r2|r10, c20) p(r3|r20, c31) p(r4|r30, c42) p(r5|r40, c53)

Code constraints, χ(c)

Graph for C = 2

With respect to a memoryless channel, we now have additional factor
nodes which perform a marginalization, based on the channel model,
without taking into account the code constraints

The complexity of this marginalization is, in general, exponential in C
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Factor Graph (cont’d)

The finite memory condition is not verified in an exact sense for a
noncoherent or a fading channel (channels with infinite memory)

A FG may be devised but the complexity of the message computation at
the factor nodes modeling the channel grows exponentially with n and
thus becomes impractical

An approximation is introduced assuming that rn depends on the R most
recent observations and the most recent C ≥ R coded symbols only

This finite dependence property may be expressed as

p(rn|rn−1
0 , cn

0) ' p(rn|rn−1
n−R , c

n
n−C)

This property, in general adopted in all practical detection schemes, is
intuitive in the case of time-varying channels. In fact, in this case the
conditional observations are asymptotically independent for increasing
index difference
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SP Algorithm

The quality of the convergence of the SP algorithm to the exact
marginal probabilities is in general determined by the girth of the graph

As an example, in designing LDPC codes, cycles of length 4 must be
avoided to ensure decoding convergence

The graph derived from the proposed factorization has, in general, girth
4. However, we verified by computer simulations that these length-4
cycles involving two factor nodes which model the channel behavior
often do not affect the convergence of the algorithm

If this is not the case, as for transmissions over ISI channels, factor
graph transformations can be adopted
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SP ALGORITHM (cont’d)

For the SP algorithm working on the described factor graphs, the most
demanding computation is that performed at factor nodes modeling the
channel. In fact, the marginalization performed by these nodes has in
general a complexity which increases exponentially with C

This complexity may be reduced by the following technique: by
choosing an integer Q < C, we may compute the marginalization at
factor nodes on the Q symbols with lowest reliabilities while the C −Q
symbols with highest reliabilities are hard-quantized on the basis of the
messages on the graph

The complexity becomes exponential in Q
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Noncoherent Channels

We model the channel phase as a time-invariant random variable with
uniform distribution in [0, 2π)

The finite dependence property will lead to a detection algorithm that
can be used for time-varying channels also

In this case R = C and

p(rn|rn−1
n−C , c

n
n−C) =

Eθn
0
{p(rn

n−C |cn
n−C ,θ

n
0)}

Eθn−1
0
{p(rn−1

n−C |c
n−1
n−C ,θ

n−1
0 )}

=
I0

(
1
σ2

∣∣∣∑C
i=0 rn−ic∗n−i

∣∣∣)
I0

(
1
σ2

∣∣∣∑C
i=1 rn−ic∗n−i

∣∣∣)e−
|cn|2

2σ2
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Time-Varying Noncoherent Channels

In the case of the Wiener model (θn = θn−1 + ∆n), an exact closed form
expression of Eθn

0
{p(rn

n−C |cn
n−C ,θ

n
0)} and Eθn−1

0
{p(rn−1

n−C |c
n−1
n−C ,θ

n−1
0 )},

does not exist. However, a very good approximation can be found. By
using an approximate result on Tikhonov distributions, it is possible to
express

Eθn
0
{p(rn

n−C |cn
n−C ,θ

n
0)} '

n∏
i=n−C

I0(|zi |)e−
|ci |

2

2σ2

n∏
i=n−C+1

1
I0( |zi |

1+σ2
∆
|zi |

)

where coefficients zi can be recursively computed as

zn =
rnc∗n
σ2

zi−1 =
zi

1 + σ2
∆|zi |

+
ri−1c∗i−1

σ2 ,

i = n, n − 1, . . . , n − C + 1 .
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Time-Varying Channels (cont’d)

For a time-varying phase process θn, assumed stationary, zero-mean
and described by a given autocorrelation sequence of the phasor
process ejθn , an approximate linear predictive approach may be
adopted which allows to increase the receiver robustness

In this case, omitting irrelevant constant terms,

p(rn|rn−1
n−C , c

n
n−C) ' exp

− 1
σ2

e

∣∣∣∣∣∣rn − cn

∑C
i=1 pi

rn−i
cn−i

|
∑C

i=1 pi
rn−i
cn−i
|

∣∣∣∣∣∣
2


where the prediction coefficients {pi}C
i=1 and the mean square

prediction error σ2
e are obtained by solving a Wiener-Hopf linear system
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Time-Varying Channels (cont’d)

For PSK signals, the prediction coefficients become independent of the
considered sequence

In addition, approximating |
∑C

i=1 pi
rn−i
cn−i
| ' |

∑C
i=1 pi |, and taking into

account that |cn| = 1, we may express

p(rn|rn−1
n−C , c

n
n−C) ∝

C∏
i=1

exp

{
2

σ2
e |
∑C

i=1 pi |
Re [pi rnc∗n r∗n−icn−i ]

}

=
C∏

i=1

gi,n(cn−i , cn)

This further factorization as a direct impact on the graph structure
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Time-Varying Channels (cont’d)

c0 c1 c2 c4c3 c5

Code constraints, χ(c)

g0,2g0,1 g1,3g1,2 g2,3 g2,4 g3,4p(r0|c0) g3,5 g4,5

Each factor node can be decomposed in C simpler degree-2 factor
nodes

Hence, for increasing values of C, the number of factor nodes increases
linearly but the computational burden at each factor node remains the
same

Note that in this modified factor graph there are no cycles of length 4
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Flat Fading Channels

For a flat fading channel, based on linear prediction we have

p(rn|rn−1
n−C , c

n
n−C) ∝ exp

− 1
σ2

e

∣∣∣∣∣rn − cn

C∑
i=1

pi
rn−i

cn−i

∣∣∣∣∣
2
 .

For PSK signals, the prediction coefficients become independent of the
considered sequence. After straightforward manipulations we have

P(c|r) ' χ(c)
N−1∏
n=0

C∏
i=1

exp
{

2
σ2

e
Re[qi rnr∗n−ic

∗
n cn−i ]

}

where qi = pi −
∑C−i
`=1 p`p`+i .

In this case also, each factor node can be decomposed in C simpler
degree-2 factor nodes. For increasing values of C, the number of factor
nodes increases linearly but the computational burden at each factor
node remains the same
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Numerical Results (1)
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Numerical Results (2)
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Numerical Results (3)
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Numerical Results (4)
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System Model: Phase Noise

Phase models:
I Wiener model θk = θk−1 + ∆k where ∆k i.i.d. Gaussian

increments with zero mean and standard deviation σ∆

I Constant phase as a particular case (σ∆ = 0)
I ESA model (DVB-S2 compliant)

H2(z)

H1(z)

nk θk

nk discrete Gaussian white process, H1(z) and H2(z) IIR filters
chosen to fit an experimental phase noise mask
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Numerical Average over Channel Parameters

Variable nodes representing the channel parameters are explicitly
introduced in the FG by considering the joint distribution of symbols
and unknown parameters and the corresponding FG

For the computation of the marginal pmfs P(ck |r), the average over
channel parameters of the joint conditional distribution of c and θ is
now performed by the SP algorithm

Approach to handle the presence in the graph of continuous rvs
(representing the channel parameters):

I Canonical distributions

71/111 On the applications of factor graphs and the sum-product algorithm to detection and decoding Giulio Colavolpe



Introduction FGs and SPA Applications Conclusions

Overall Factor Graph

The joint a posteriori distribution of symbols and unknown parameters
may be expressed as (Wiener model)

p(c,θ|r) ∝ p(r|c,θ)χ(c)p(θ)

= χ(c)p(θ0)
N−1∏
k=0

p(rk |ck , θk )
N−1∏
k=1

p(θk |θk−1)

∝ χ(c)p(θ0)
N−1∏
k=0

fk (ck , θk )
N−1∏
k=1

p(θk |θk−1)

where

fk (ck , θk ) = exp
{
− 1

2σ2 |rk − ck ejθk |2
}

p(θ0) =
1

2π
, θ0 ∈ [0, 2π)

p(θk |θk−1) = p∆(θk − θk−1) =
1√

2πσ2
∆

e
−

(θk−θk−1)2

2σ2
∆
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Overall Factor Graph (cont’d)

c0 c1 c2 c4c3 c5

Code constraints, χ(c)

θ0

f0 f1 f2 f3 f4 f5

θ1 θ2 θ3 θ4 θ5

p(θ0) p(θ1|θ0) p(θ2|θ1) p(θ3|θ2) p(θ4|θ3) p(θ5|θ4)

Corresponding FG
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Overall Factor Graph (cont’d)

...

......

...

ck−1 ck

fk fk+1fk−1

ck+1

θk+1

Pd(ck)

pd(θk)

pb(θk)

Pu(ck)

pb(θk+1)

pf(θk−1) pf(θk)

Code constraints, χ(c)

θk−1 θk

p(θk+1|θk)p(θk|θk−1)p(θk−1|θk−2)

Omitting the esplicit reference to the current
iteration

pd (θk ) =
∑

c∈C Pd (ck = c)fk (ck = c, θk )

pf (θk ) =
∫ 2π

0 pd (θk−1)pf (θk−1)p(θk |θk−1) dθk−1

pb(θk ) =
∫ 2π

0 pd (θk+1)pb(θk+1)p(θk+1|θk ) dθk+1

Pu(ck ) =
∫ 2π

0 pf (θk )pb(θk )fk (ck , θk ) dθk

The optimal SP algorithm is unfeasible
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Canonical Distributions

We represent the pdfs, which are the messages sent or received from
nodes representing the channel parameters, with given canonical pdfs,
described by some parameters

This representation can be exact or, more often, involve some
approximate assumptions

As an example, we could assume that these messages are Gaussian
pdfs which can be completely specified by their mean and variance

Hence, the SP algorithm has just to forward the parameters of the
distribution

Quantization-based algorithm, Fourier-based algorithm and Tikhonov
algorithm
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Quantization of the Channel Parameters

If we quantize the channel parameters, we may consider the factor
graph representing the joint APP P(c,θ|r) (Worthen-Stark, IEEE Trans.
Inf. Theory Feb. 2001)

The application of the SP algorithm to this factor graph allows us to
compute the desired marginal APPs P(ck |r) and the collateral ones
P(θk |r)

From a point of view of the involved approximation, in this case we have
the quantization of in general continuous channel parameters and their
statistics

This approach becomes optimal (in the sense that it approaches the
performance of the exact SP algorithm) for a sufficiently large number
of quantization levels, at the expenses of an increased computational
complexity

As an example, for M-PSK signals, L = 8M quantization levels are
sufficient
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Quantization (cont’d)

In the case of the Wiener model

P(c,θ|r) ∝ χ(c)P(θ)p(r|c,θ)

∝ χ(c)P(θ0)
N−1∏
k=1

P(θk |θk−1)
N−1∏
k=0

fk (ck , θk )

where

fk (ck , θk ) = exp
{
− 1

2σ2 |rk − ck ejθk |2
}

The pmf P(θk |θk−1) is related to the quantized distribution of the
increment ∆k :

P(θk |θk−1) = P∆(θk − θk−1)

As an example, for σ∆ � 1

P∆(∆k ) =

{
1− σ2

∆

( L
2π

)2 for ∆k = 0
σ2

∆
2

( L
2π

)2 for ∆k = ± 2π
L

(discrete random walk approximation)
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Quantization (cont’d)

c0 c1 c2 c4c3 c5

Code constraints, χ(c)

θ0

f0 f1 f2 f3 f4 f5

θ1 θ2 θ3 θ4 θ5

P (θ0) P (θ1|θ0) P (θ2|θ1) P (θ3|θ2) P (θ4|θ3) P (θ5|θ4)

Corresponding FG
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Quantization (cont’d)

ck−1 ck

fk fk+1

θkθk−1

fk−1

ck+1

θk+1

Pd(ck)Pu(ck)

Pb,k+1(ℓ)Pb,k(ℓ)

Pf,k(ℓ)Pf,k−1(ℓ)

P (θk−1|θk−2) P (θk+1|θk)P (θk|θk−1)

ηk(ℓ)

Omitting the esplicit reference to the current
iteration

ηk (`) =
∑

c∈C fk (ck = c, 2π`/L)Pd (ck = c)
` = 0, 1, . . . , L− 1

Pf ,k (`) =
∑L−1

m=0 Pf ,k−1(m)ηk−1(m)P∆

(
2π `−m

L

)
Pb,k (`) =

∑L−1
m=0 Pb,k+1(m)ηk+1(m)P∆

(
2π `−m

L

)
Pu(ck ) =

∑L−1
`=0 Pf ,k (`)Pb,k (`)fk (ck , 2π`/L)
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Fourier-Based Algorithm

...

......

...

ck−1 ck

fk fk+1fk−1

ck+1

θk+1

Pd(ck)

pd(θk)

pb(θk)

Pu(ck)

pb(θk+1)

pf(θk−1) pf(θk)

Code constraints, χ(c)

θk−1 θk

p(θk+1|θk)p(θk|θk−1)p(θk−1|θk−2)

pd (θk ) =
∑

c∈C Pd (ck = c)fk (ck = c, θk )

pf (θk ) =
∫ 2π

0 pd (θk−1)pf (θk−1)p(θk |θk−1) dθk−1

pb(θk ) =
∫ 2π

0 pd (θk+1)pb(θk+1)p(θk+1|θk ) dθk+1

Pu(ck ) =
∫ 2π

0 pf (θk )pb(θk )fk (ck , θk ) dθk

All these pdfs are periodic in θk with period 2π.
Hence, they can be expanded in Fourier series
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Fourier-Based Algorithm (cont’d)

It is possible to show that pd (θk ) can be expressed as

pd (θk ) =
∞∑

`=−∞

A(`)
k ej`θk

having defined

A(`)
k =

∑
c∈C

Pd (ck = c)e−
|c|2

2σ2 I`

(
|rk ||c|
σ2

)
e−j`φ(rk c∗)

where I`(x) is the modified Bessel function of the first kind of order `
and for a complex number z, φ(z) = arg(z)

For M-PSK signals, the expression of coefficients A(`)
k , simplifies to

A(`)
k = e−j`φ(rk )I`

(
|rk |
σ2

)∑
c∈C

Pd (ck = c)c`
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Fourier-Based Algorithm (cont’d)

We define B(`)
f ,k and B(`)

b,k as the Fourier coefficients of pdfs pf (θk ) and
pb(θk ), i.e.,

pf (θk ) =
∞∑

`=−∞

B(`)
f ,k ej`θk , pb(θk ) =

∞∑
`=−∞

B(`)
b,k ej`θk

The integral recursive equation for pf (θk ) becomes

B(`)
f ,k = D`(σ∆)

∞∑
m=−∞

A(m)
k−1B(`−m)

f ,k−1 = D`(σ∆)[A(`)
k−1 ⊗ B(`)

f ,k−1]

where ⊗ denotes convolution between sequences and

D`(σ∆) = e−
σ2

∆`
2

2

The starting condition is B(`)
f ,0 = δ(`), where δ(`) denotes the Kronecker

delta

Similarly, to compute coefficients {B(`)
b,k}, we have the following

backward recursion:

B(`)
b,k = D`(σ∆)[A(`)

k+1 ⊗ B(`)
b,k+1]
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Fourier-Based Algorithm (cont’d)

Finally

Pu(ck ) = e−
|ck |

2

2σ2

{
∞∑

m=−∞

B(m)
f ,k

∞∑
n=−∞

B(n−m)
b,k In

(
|rk ||ck |
σ2

)
ejnφ(rk c∗k )

}

In general, a reduced number Nc of coefficients must be taken into
account

For a binary modulation format, this algorithm has practically the same
complexity of the quantization-based algorithm

For a modulation format characterized by a more dense constellation,
if for the quantization-based algorithm the optimal number of
quantization levels, and thus the complexity, must be increased, the
number N of considered Fourier coefficients in this new algorithm
remains practically the same
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Tikhonov Algorithm

Is it possible to substantially reduce the complexity?

...

......

...

ck−1 ck

fk fk+1fk−1

ck+1

θk+1

Pd(ck)

pd(θk)

pb(θk)

Pu(ck)

pb(θk+1)

pf(θk−1) pf(θk)

Code constraints, χ(c)

θk−1 θk

p(θk+1|θk)p(θk|θk−1)p(θk−1|θk−2)

pd (θk ) =
∑

c∈C Pd (ck = c)fk (ck = c, θk )

pf (θk ) =
∫ 2π

0 pd (θk−1)pf (θk−1)p(θk |θk−1) dθk−1

pb(θk ) =
∫ 2π

0 pd (θk+1)pb(θk+1)p(θk+1|θk ) dθk+1

Pu(ck ) =
∫ 2π

0 pf (θk )pb(θk )fk (ck , θk ) dθk
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Tikhonov Algorithm (cont’d)

If the messages Pd (ck ) were the exact a posteriori probabilities of the
code symbols, it would be pd (θk ) = p(rk |θk )

The pdf pd (θk ) is a linear combination of Gaussian pdf

This pdf will be approximated with a single Gaussian pdf with the same
mean and variance (approximation based on the first and second
moment matching)

From direct calculation

E{rk |θk} = αk ejθk , var{rk |θk} = 2σ2 + βk − |αk |2

where

αk =
∑
c∈C

cPd (ck = c) , βk =
∑
c∈C

|c|2Pd (ck = c)

Hence

pd (θk ) ' exp
{
− |rk − αk ejθk |2

2σ2 + βk − |αk |2

}
∝ exp

{
2

Re[rkα
∗
k e−jθk ]

2σ2 + βk − |αk |2

}

85/111 On the applications of factor graphs and the sum-product algorithm to detection and decoding Giulio Colavolpe



Introduction FGs and SPA Applications Conclusions

Tikhonov Algorithm (cont’d)

Substituting this approximation in the recursive integral equations for
pf (θk ) and pb(θk ), we find that these pdfs may be expressed as
(Tikhonov distribution)

pf (θk ) ∝ exp{Re[af ,k e−jθk ]} , pb(θk ) ∝ exp{Re[ab,k e−jθk ]}

and

af ,k =
af ,k−1 + 2

rk−1α
∗
k−1

2σ2+βk−1−|αk−1|2

1 + σ2
∆

∣∣∣af ,k−1 + 2
rk−1α

∗
k−1

2σ2+βk−1−|αk−1|2

∣∣∣
ab,k =

ab,k+1 + 2 rk+1α
∗
k+1

2σ2+βk+1−|αk+1|2

1 + σ2
∆

∣∣∣ab,k+1 + 2
rk+1α

∗
k+1

2σ2+βk+1−|αk+1|2

∣∣∣
The solution of the integral equations is exact for σ∆ = 0 and involves a
very good approximation in the case of a time-varying channel phase⇒
in practice, the only approximation is that on pd (θk )
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Tikhonov Algorithm (cont’d)

Finally,

Pu(ck ) ∝ exp
{
−|ck |2

2σ2

}
I0

(∣∣∣∣af ,k + ab,k +
rk c∗k
σ2

∣∣∣∣)
Hence

Pd (ck ) ⇒ (αk , βk ) (mean and mean square value)

(αk , βk ) ⇒ af ,k , ab,k (forw. and back. recursions)

af ,k , ab,k ⇒ Pu(ck ) (probability update)
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System Model: Flat-Fading Channels

Flat fading channel:
rk = hk ck + nk

where {hk} is a sequence of zero-mean complex Gaussian random
variables with autocorrelation sequence E{hk h∗k−n} = J0(2πfDTn),
where fDT is the normalized Doppler rate

The fading process is approximated as AR(n):

hk+1 =
n−1∑
i=0

ρihk−i + νk

where νk is a complex white Gaussian process and coefficients ρi can
be computed from the fading autocorrelation sequence

Example: AR(1)
hk = ρhk−1 + νk

where ρ = J0(2πfDT ) and νk has a variance 1− ρ2
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Overall Factor Graph

The joint a posteriori distribution of symbols and unknown parameters
may be expressed as

p(c,h|r) ∝ p(r|c,h)χ(c)p(h)

= χ(c)p(h0)
N−1∏
k=0

p(rk |ck , hk )
N−1∏
k=1

p(hk |hk−1)

∝ χ(c)p(h0)
N−1∏
k=0

fk (ck , hk )
N−1∏
k=1

p(hk |hk−1)

where

fk (ck , hk ) = exp
{
− 1

2σ2 |rk − ck hk |2
}

p(h0) =
1

π(1− ρ2)
e
− |h0|

2

1−ρ2

p(hk |hk−1) =
1

π(1− ρ2)
e
−
|hk−hk−1|

2

1−ρ2
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Overall Factor Graph (cont’d)

c0 c1 c2 c4c3 c5

Code constraints, χ(c)

f0 f1 f2 f3 f4 f5

h0 h1 h2 h3 h4 h5

p(h0) p(h1|h0) p(h2|h1) p(h3|h2) p(h4|h3) p(h5|h4)

Corresponding FG
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Overall Factor Graph (cont’d)

ck−1 ck

fk fk+1fk−1

ck+1

Pd(ck)Pu(ck)

hk−1 hk

pb(hk+1)pb(hk)

pf(hk)pf(hk−1)

p(hk|hk−1)

Code constraints, χ(c)

p(hk−1|hk−2) p(hk+1|hk)

hk+1

pd(hk)

Omitting the esplicit reference
to the current iteration

pd (hk ) =
∑

c∈C Pd (ck = c)fk (ck = c, hk )

pf (hk ) =
∫ ∫

pd (hk−1)pf (hk−1)p(hk |hk−1) dhk−1

pb(hk ) =
∫ ∫

pd (hk+1)pb(hk+1)p(hk+1|hk ) dhk+1

Pu(ck ) =
∫ ∫

pf (hk )pb(hk )fk (ck , hk ) dhk

The optimal SP algorithm is unfeasible
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Kalman Smoother

The pdf pd (hk ) is a linear combination of Gaussian pdf

This pdf will be approximated with a single Gaussian pdf with the same
mean

From direct calculation
E{rk |hk} = αk hk

where
αk =

∑
c∈C

cPd (ck = c)

Hence

pd (hk ) ' exp
{
−|rk − αk hk |2

2σ2

}
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Kalman Smoother (cont’d)

Substituting this approximation in the recursive integral equations for
pf (hk ) and pb(hk ), we find that these pdfs are still Gaussian pdfs.
Therefore, the problem reduces the propagation of their means and
variances

By using the following properties of Gaussian pdfs
(gC(A,Σ, x) = 1

πΣ
exp{− |x−A|2

Σ
})

gC(A1,Σ1, x)gC(A2,Σ2, x) ∝ gC

(
Σ2

Σ1 + Σ2
A1 +

Σ1

Σ1 + Σ2
A2,

Σ1Σ2

Σ1 + Σ2
, x
)

∫
gC(A1,Σ1, x)gC(A2x ,Σ2, y)dx ∝ gC

(
A1A2,Σ2 + |A2|2Σ1, y

)
we obtain the following forward and backward recursions
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Kalman Smoother (cont’d)

Forward recursion

mk|k = mk|k−1 +
Σk|k−1α

∗
k

|αk |2Σk|k−1 + 2σ2

(
rk − αk mk|k−1

)
Σk|k =

2σ2

|αk |2Σk|k−1 + 2σ2 Σk|k−1

mk+1|k = ρmk|k Σk+1|k = ρ2Σk|k + 1− ρ2

for k = 0, . . . ,N − 1, with initial conditions Σ0|−1 = 1 and m0|−1 = 0

Backward recursion

µk|k = µk|k+1 +
Ξk|k+1α

∗
k

|αk |2Ξk|k+1 + 2σ2

(
rk − αkµk|k+1

)
Ξk|k =

2σ2

|αk |2Ξk|k+1 + 2σ2 Ξk|k+1

µk−1|k = ρµk|k Ξk−1|k = ρ2Ξk|k + 1− ρ2

for k = N − 1, . . . , 0, with initial conditions ΞN−1|N = 1 and µN−1|N = 0.
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Kalman Smoother (cont’d)

Finally, for each k we obtain

mk =
Ξk|k+1

Σk|k−1 + Ξk|k+1
mk|k−1 +

Σk|k−1

Σk|k−1 + Ξk|k+1
µk|k+1

Σk =
Σk|k−1Ξk|k+1

Σk|k−1 + Ξk|k+1

and

Pu(ck ) ∝ gC

(
mk ck , 2σ2 + |ck |2Σk , rk

)
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Numerical Results (1)
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10−4

10−3
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10−1

100

 1  1.5  2  2.5  3
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E

R

Eb/N0

σ
∆ = 6 deg.

known phase

ESA model

Wiener model

Tikhonov
Kalman

(3,6)-regular LDPC code
with codewords of length
4000

BPSK modulation

Maximum of 200
iterations of the SP
algorithm on the overall
graph

A pilot symbol every 19
code bits to avoid
ambiguity⇒ increase in
the required SNR of
0.223 dB
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Numerical Results (2)
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Numerical Results (3)
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Numerical Results (4)
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Outline

3 Applications
Decoding of LDPC Codes
BCJR Algorithm
Turbo Codes
Detection over ISI Channels
Viterbi Algorithm
LDPC over Channels with Unknown Parameters

A Priori Average over Channel Parameters
Numerical Average over Channel Parameters

Linear Modulations over Linear Channels
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Linear modulations over linear channels

We consider linear modulations over linear channels impaired by AWGN

The relationship between the transmitted sequence a = [c1, c2, . . . , cN ]T

and the received sequence r = [r1, r2, . . . , rK ]T can be written as

r = Hc + w

where w = [w1,w2, . . . ,wK ]T are i.i.d. zero-mean Gaussian random
variables, while H is a matrix with K rows and N columns

We consider MAP symbol detection of the symbols c, that requires the
evaluation of the APPs P(cn|r)

To be used in iterative detection/decoding schemes
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Examples of Channels

Channels with known ISI: the model holds with N = K and

Hm,n =

{
fm−n for 0 ≤ m − n ≤ L
0 otherwise

{f`}L
`=0 the discrete-time channel impulse response after WMF

CDMA systems (only one symbol epoch): the matrix H includes the
spreading sequence of the users and the related powers. N is the
number of users and K is the length of the spreading sequences

Multiple-antenna channels (only one symbol epoch): K and N represent
the number of receive and transmit antennas, whereas the entries of
matrix H are the channel coefficients.

OFDM systems with ICI: the matrix H is a square matrix where the
entry Hm,n describes the ICI between the m-th and n-th subcarriers

Spectrally-efficient FDM systems (systems with both ISI and ICI)

Other multidimensional ISI channels (storage systems with
bidimensional ISI)
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Literature Review

The literature addressing suboptimal soft-input soft-output (SISO)
detection algorithms for applications that can be led to the mentioned
system model is huge. Most papers address only one of these
applications at a time

Optimal MAP symbol detection can be performed with a complexity
which increases exponentially with the number of interferers

The most famous paper is that by Wang & Poor (Gaussian
approximation of the interference) addressing multiuser detection for
CDMA systems. It has then be extended to MIMO, ISI channels, FDM
systems with ICI. The resulting algorithms have a complexity which
increases quadratically with the number of interferers
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New Algorithm for MAP Symbol Detection

The conditional pdf of the received sequence y given the modulation
symbols c is

p(y|c) ∝ exp
(
−‖y− Hc‖2

2σ2

)
If we define

x = HHy, G = HHH

p(y|c) ∝ exp
(

2Re{cHx} − cHGc
2σ2

)
x is an equivalent sufficient statistic for MAP detection
We call y and x as Forney and Ungerboeck observation models.

x = HH(Hc + w) = Gc + η

xn = Gn,ncn +
∑
m 6=n

Gn,mcm + ηn

When G is not diagonal, the computation of the target APPs has a complexity
that grows exponentially with the number of interferers
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Proposed Graph-Based Detection Algorithm

Novel framework for SISO detection algorithm, obtained by using the FG/SPA
framework.

P(c|y) ∝ P (c) p (y|c) ∝
N∏

n=1

[
Pn(cn)Tn(cn)

∏
m<n

Fn,m(cn, cm)

]

Tn(cn) = exp
[

1
σ2 Re

{
xnc∗n −

Gn,n

2
|cn|2

}]
Fn,m(cn, cm) = exp

[
− 1
σ2 Re {Gn,mcmc∗n }

]
Three sections of the FG, for the case when interference between cn and cm

arises only if |m − n| ∈ {1, 2}

c8

P8

c7

P7

c6

P6

T6 T7 T8

F8,7F8,6F7,6F7,5F6,5F6,4
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Numerical Results: CDMA Systems

CDMA system with N = 4 synchronous users and SNR = 1.35 dB

Constant cross-correlation of the spreading sequences,

Gn,m/Gn,n = γ ∈ (0, 1)
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Numerical Results: FDM Systems

FDM systems with U = 3 synchronous users for different normalized
channel spacings FT = |f (i) − f (i−1)|T
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Numerical Results: ISI Channels

Two channels with (L = 12)

The optimal BCJR algorithm works on a trellis with 4096 states when a binary
modulation is considered
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Conclusions

Factor graphs provide a natural graphical description of the factorization
of a global function into a product of local functions

Factor graphs can be applied in a wide range of application areas (from
communications and signal processing to neural networks)

The sum-product algorithm represents a general method to marginalize
the global function

Some applications to communications have been shown

This framework can be successful applied to other communication
problems: the work has just started!
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