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What is security?

Security services

Secrecy

Data
integrity

Accountability

Controlled
access

Availability

Threats

Eavesdropping

Forgery

Repudiation

Masquerade

Denial of
service

Security mechanisms

Encryption

Randomization

Digital
signature

Notarization

Intrusion
detection
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A system for secret communication [Shannon, ‘49]

A C(k;u) D(k;x) B

E

u ux
k k

Kerchoff’s Assumption

E knows:

the functions C(·; ·), D(·; ·)
the distributions pu(·), pk(·)

Secrecy of u is only based on
hiding the key k

Perfect secrecy

u statistically independent of x
pu(α) = pu|x(α|β) , I(u;x) = 0

Theorem

Perfect secrecy requires

H(k) ≥ H(u)
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A vicious circle?

In order to transmit a perfectly secret message u, we need to
transmit a perfectly secret key k of the same length. Is this a
frustrating impasse?

1 We can settle for “less than perfect” secrecy of the message
(computational security)

2 We can settle for “less than perfect” secrecy of the key
(public key cryptography)

3 The secret key can be shared in advance (key predistribution)

4 We can obtain perfect secrecy with the help of the channel
(physical layer secrecy)

5 The secret key need not be known a priori by A nor B (key
agreement)
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Computational security

The complexity vs. success
probability tradeoff

For a (probabilistic) attack

Ps

1

T

strong

weak

T0

ε

Concrete security (T0, ε)

For any probabilistic attack with
complexity T < T0, the success
probability is Ps < ε

Asymptotic security in key
length n

For any probabilistic attack with
polynomial complexity as n→∞

T = O(P (n))
the success probability vanishes

Ps = o(1/Q(n))
for any polynomials P (n), Q(n).

Ex.: “brute force” attack with N trials: T ∝ N , Ps = N/2n
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Message authentication / integrity protection

A S(k;u) V (k;x, u) B

E

u

u

ok, u

no
x

k k

Kerchoff’s-like Assumption

E knows:

the functions S(·; ·), V (·; ·)
the distributions pu(·), pk(·)

Non forgeability of x is only based on hiding the key k
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Public key cryptography [Rivest-Shamir-Adleman, ‘78]

Secrecy / confidentiality

C(k;u) = C ′(k′;u) for all u

k′ can be easily derived from k and is public for A to use

k can not be recovered from k′ and is kept secret by B

A C ′(k′;u) D(k;x) B
u ux

k′ k

Authentication / integrity protection

V (k;x, u) = V ′(k′;x, u) for all x, u, and k is kept secret by A

A S(k;u) V ′(k′;x, u) B
u

u

ok, ux
k k′
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Cryptographic key agreement [Diffie-Hellman, ‘76]

A fA(·, ·) fB(·, ·) B

E

rA rB
kA kB

c

c
cA

c
cB

Objective

maxL(kA) subject to:
correctness: kA = kB

secrecy: infeasible to derive k from c

uniformity: pkA
(a) ≈ 1/2L(kA)
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The wiretap channel [Wyner, ‘75]

A C(u) pyz|x(·) D(y) B

E

u ûx y

z

We aim for reliable transmissions to B, i.e. limn→∞ P [u 6= û] = 0,
under the constraint of secrecy with respect to E

Secrecy constraints

Perfect secrecy, [Shannon, ‘49]: I(u, z) = 0
Asymptotic perfect secrecy: lim

n→∞
I(u, z) = 0

Vanishing information rate, [Wyner, ‘75]: lim
n→∞

1
nI(u, z) = 0
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Random encoding & channel resolvability

The basic idea is to use a probabilistic encoder u→ x

Consider a subset X ′n ⊂ X n that allows to simulate the
channel, that is pz|x∈X ′

n
(·) = pz|x∈Xn(·) = pz(·)

Map each possible message u to a disjoint X ′n(u)
Choose the codeword x randomly from X ′n(u)

Channel resolvability [Han-Verdù, ‘93]

The minimum number of typical codewords in X ′n is |X ′n| ≥ 2nI(x;z)

Secrecy rates and secrecy capacity

Transmission rates for which we can satisfy the secrecy constraint
and guarantee reliability are called achievable secrecy rates. The
secrecy capacity is the supremum of all achievable secrecy rates.
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Secrecy capacity

Theorem

The secrecy capacity of the wiretap channel in bit/channel use is

Cs = max
u

[I(u; y)− I(u; z)]+ ≥ max
x

[I(x; y)− I(x; z)]+

Visualization of the proof

X n Yn• •

•
•

Zn

X ′n

2nR ' 2nI(x;y)

2nI(x;z)
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Info-theoretic key agreement [Ahlswede-Csiszar, ‘93]

A fA(·, ·) fB(·, ·) BE

pxyz(·)
x y

z
kA kB

c
c

cA
c

cB

Objective

max
fA,fB

H(kA) subject to:

correctness: P [kA 6= kB] < ε
secrecy: I(kA, kB; z, c) < ε′

uniformity: L−H(kA) < ε′′

Upper bound

For ε, ε′, ε′′ → 0

max
fA,fB

H(kA) ≤ I(x; y|z)
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Information-theoretic key agreement [Maurer, ‘93]

A fA(·, ·) fB(·, ·) BE

pyz|x(·)x y

z
kA kB

c
c

cA
c

cB

Objective

max
fA,fB,x

H(kA) subject to:

correctness: P [kA 6= kB] < ε
secrecy: I(kA, kB; z, c) < ε′

uniformity: L−H(kA) < ε′′

Upper and lower bounds

For ε, ε′, ε′′ → 0

max
fA,fB,x

H(kA)≤max
x

I(x; y|z)

max
fA,fB,x

H(kA)≥max
x

I(x; y)− I(x; z)
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Quantum key agreement [Bennett-Brassard, ‘84]

A fA(·, ·) fB(·, ·) BE

quantum
channel

quantum
source

quantum
detector

x y

z
kA kB

classical
channel

classical
modem

classical
modem

c
c

cA

c

cB

Objective

max
fA,fB,x

H(kA) subject to:

correctness: P [kA 6= kB] < ε
secrecy: I(kA, kB; z, c) < ε′

uniformity: L−H(kA) < ε′′

Upper bound

For ε, ε′, ε′′ → 0

max
fA,fB,x

H(kA) ≤ max
x

I(x; y|z)
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A practical scheme (I)

Based on a divide and conquer approach
3-phase protocol:

1 Sifting → advantage over E

so that I(x′; y′) > I(x′; z, c′)

2 Information reconciliation → correctness

so that P
[
x′′ 6= y′′

]
< ε

3 Privacy amplification → secrecy

so that I(kA, kB; z, c) < δ

f ′A(·, ·)

f ′′A(·, ·)

f ′′′A (·, ·)

x

x′

c′B

c′A

x′′

c′′B

c′′A

kA

c′′′B

c′′′A
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A practical scheme (II)

H(x)

I(x; y)

I(x; z)

H(x′)

I(x′; y′)

I(x′; z, c′)

sifting

H(x′′) = I(x′′; y′′)

I(x′′; z, c′, c′′)

key reconciliation

H(kA)

I(x′′; z, c)

privacy
amplification
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The BB84 protocol

xn 0 1 1 0 0 1 1 1

An

an

Bn

bn
yn 1 1 0 0 1 1 1 1

1
1− ε

1

0
1− ε

0
ε

ε
1

1
2 + ε′

1

0
1
2 + ε′

0

1
2 − ε

′

1
2 − ε

′
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The B92 protocol

xn 0 1 1 0 0 1 1 1

an

Bn

th no no no yes no no yes no

yn × × × 0 × × 1 ×

1
1
2

1

0
1
2

0

1
2

×
1
2

1 1

0 0

1

×
1
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Reconciliation of sifted keys

A encoder decoder BE

quantum channel
(sifted)

x′ y′

x̂′

classic channel

c
c cA

ccB

quantum classic
channel channel

private public
low rate high rate

unreliable reliable

Aim

To allow B to reliably reconstruct x̂′ = x′,
by transmitting c = (cA, cB) publicly,
with the minimum leakage of information
I(x′; c) to E.
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Existing models and solutions

Coding techniques for reconciliation fall into 1 of 3 categories:

cascade iteratively (and interactively) split the keys to locate
single errors and correct them [Brassard-Salvail, ‘93]

hashing given a (n, n− r) parity check matrix H
Alice transmits c = Hx′.
Bob chooses x̂′ = arg mina:Ha=c d(a,y)
Examples: Winnow [Buttler et al., ‘03]

LDPC [Elkouss et al., ‘09]

systematic pick a (n+ r, n) generating matrix G =
[

In

A

]
Alice transmits c = Ax′.
Bob chooses x̂′ = arg mina∈C d(a,y)
Examples: LDPC [Mondin et al., ‘10]

BCH [Traisilanun et al., ‘07]
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Existing models and solutions

The choice of the coding technique for reconciliation depends on
the model for the classical channel

layer ch. type condition delays codes used

Physical AWGN high SNR none systematic (soft)

Data link binary low BER low systematic (hard)

Net & up packet error free long cascade, hashing
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Cascade and Winnow: common structure

i = 0, εi = εq

segment x′ and y′ into blocks
of length Li, with εiLi � 1

check if parity of each block is
the same in x′ and y′

correct error in blocks of y′

with different parities

i← i+ 1, estimate εi, equally
permute x′ and y′

for i = I, let x̂′ = y′

the condition εiLi � 1
ensures that multiple errors
in a block are unlikely

the block parities need to be
exchanged (cA, cB)
both algorithms can correct
a single error per block
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Analysis and parameter optimization (Winnow)

Key BER target ≤ 10−5

Reconciled Key BER

2% 4% 6% 8%
10−8

10−7

10−6

10−5

10−4

0%
Sifted key BER

10%

Average revealed bits

2% 4% 6% 8%

20%

40%

60%

80%

0%
0%

Sifted key BER
10%

100%
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Privacy amplification

A compress compress BE

quantum channel
(reconciled)

x′ x̂′

k k̂

classic channel

c
c cA

ccB

quantum classic
channel channel

private public
low rate high rate

Aim

To allow A and B to remove any
information E might have from k̂ = k,
by publicly agreeing on the compressing
function, and with the minimum amount of
compression.
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Choosing a compression function

Must be chosen randomly, after transmission

Must be compactly representable

Assume we know that Eve has observed some t-bit linear function
of the reconciled key

z = Mx′ , with M ∈ {0, 1}t×n

(include c observed during reconciliation)

Theorem (Universal hashing functions [Bennett et al., ‘95])

If the compressing function A is chosen uniformly from a class of
universal hashing s× n matrices, then on average (over M and A)

I(k; z,A) ≤ 1
ln 2

2s+t−n
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Choosing a compression function

Once we choose a hashing matrix A, we would like to obtain
1 H(k) = s (perfect uniformity)
2 I(k; z) = 0 (perfect secrecy)

Lemma 1

If rank(A) = s and x′ is uniform over {0, 1}n, then k is uniform
over {0, 1}s

Example: binary Toeplitz matrices

A is uniquely specified by n+ s−1 bits a = [a−r+1, . . . , an−1]
If a is uniform in {0, 1}n+s−1, P [rank(A) < s] = 1/2n−s+1

Lemma 2

If dimN (M)− dim (N (M) ∩N (A)) = rank(A) and x′ is
uniform over {0, 1}n, then I(k; z) = 0
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Choosing a compression function

Theorem

If dimN (M)− dim (N (M) ∩N (A)) = s and x′ is uniform over
{0, 1}n, then k is uniform and perfectly secret.

Illustration

{0, 1}n{0, 1}t {0, 1}s

∼ N (A)

∼ N (M)

z

M
x

A

k
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QKD networks with photonic switches

A

M

N

P

B
quantum

channel

public
channel

the public channel can follow a different route

N, P do not observe qubits directed from A to B

switches in N, P introduce further losses in the lightpath A-B
→ reducing the achievable key rates
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QKD networks with trusted repeaters [Elliott, ‘02]

A

M

N

P

B
kAN

kPN kPB

On each link there is a different Quantum Key shared between
the terminals

A secret message (or a key kAB) is decrypted and re-encrypted
at nodes N, P

Allows to geographically extend the network
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Reti QKD con ripetitori non sicuri [Salvail, ‘10]

A

M

N

P

B
kAN

{kAN}kBN

kAM
{kAM}kBM

kAP {kAP}kBP

kAB kAB

kAB = f(kAM, kAN, kAP)

Use a secret sharing scheme (n, t, d):

n intermediate nodes take part in transmitting the key from A
to B

any t nodes, nodes behaving honestly allow reconstruction of
the key kAB in A and B

up to d malicious and colluding nodes con not obtain any
information on kAB

Can be generalized to arbitrary access structures (N, T ,D)
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Integration with IPSec Tunnel mode

A

B

QKD can provide master secrets, replacing Diffie-Hellman in
IKE and ISAKMP

Only cryptographic gateways need to be linked by quantum
channels and equipped with QKD terminals

Terminal to gateway path must be secured otherwise

Authenticated channel between gateways?
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Integration with TLS?

A

BQ Q

QKD can provide shared master secrets, replacing D-H/RSA
in TLS handshake protocol

Every subnetwork pair must share a quantum channel

In-subnetwork paths must be otherwise secured

Authenticated channel between subnetworks
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QKD implementation in Quantum Future

≈ 1 m144 km?

Alice Bob

key processing key processing

802.11

authentication
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Ideas for a QKD intersatellite network
23

000
km

19 000 km

59 000 km

Key reconciliation
based on LDPC codes

QKD network with
(partially) trusted
repeaters

Resilient to node
capture

Use QKD in
end-to-end protocols
at all layers
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“Efficient reconciliation protocol for discrete-variable quantum
key distribution”
ISIT ‘09, 1879–1883.

Information-Theoretic Security and Quantum Key Distribution N. Laurenti

Motivations for QKD Information-theoretic security Quantum key distillation QKD and higher layers

References: QKD networks

C. Elliott
“Building the quantum network”
New J. Phys., 4(1): 1–12, 2002.

C. Elliott, D. Pearson, and G. Troxel
“Quantum cryptography in practice”
ACM SIGCOMM ’03, 227–238.

L. Salvail, M. Peev, E. Diamanti, and R. Alléaume
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