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In the context of optimization, control, estimation, decision making, computation, etc,
the word DISTRIBUTED is used with different meanings:

The task is distributed over many agents in order to speed up the task completion
(i.e. parrallel computers).

The system itself is constituted by several interacting parts which need to be
coordinated (i.e. wireless sensor networks).

In the context of the distributed decision models we can distinguish:

Distributed decision models with leaders or with a hierarchy (based on spanning
trees construction).

Leaderless distributed decision models in which the agents are peers in the
network. In this case the goal is not perfomance, but the robustness and the of self-
organization.




Distributed decision models

- Communication networks
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Distributed decision models

Example

. robotic networks

Kiva systems




Distributed decision models

Example: robotic networks

GRASP Lab at the University of Pennsylvania







Water distribution Traffic
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A AR 74\ ' i
AR Scientific context

Cooperation: simple global behavior from local interactions

Flocking: collective animal behavior given by the motion of a
large number of coordinated individuals

12



Social and economic networks: individual social and economic
iInteractions produce global phenomena
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Propblem description

The object of our investigations is to study the behavior of “complex”

systems constituted by the interconnection of many units which are
themselves dynamical systems.

The behavior of these systems will depend on the dynamics of the
units and on the interconnection topology. We want to understand
how these two features produce the global dynamics.
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Example: distributed estimation

Assume that N sensors have to estimate a quantity x € R from their noisy
measurements. The result of the measurement of the sensor i is

‘n:x+m‘

where n; are independent noises of zero mean and the same variance. The
best estimate of x from the measurements is

I
:NZ)’:'

- Q Sensor

: Communication link
-
Sensing link
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The consensus algorithm

GOAL: each node has to obtain the average of y,,...,yy\, Where y. is known
only by the node i.

ALGORITHM: Each sensor produces at time t an estimate x;(t) of the average
as follows

x;(0) =y, xi(t+ 1) = Z Piix;(t)

N
Pi>0 > Pj=1I
=1

COMMUNICATION: x;(t) needs to be transmitted from the node i to the
node j iff

P # 0

1 where N; is the numebr of neighbors of the node i.

l.e. Plj = N
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where P stochastic.

If P; > O for all i and the graph Gp associated with P is strongly connected, then
all estimates converge to the same value (consensus)

(1) — > 10

where the weights 1 are nonnegative and sum to one.
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The consensus algorithm

In case P is stochastic as well (for instance if P is symmetric), then pj = 1 /N and so

00— 5 D0
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Pros and cons

Advantages

|. Very robust to node and link failures and to time asynchronocity.
2. Very simple implementation (may be implemented asynchrously)
3. No need of a centralized design.

4. Incremental i.e. anytime algorithm.

Disadvantages

|. Slow convergence

20



Convergence rate

xi(t) — xi(00)

exponentially fast with rate given by the second largest
eigenvalue of P

p(P) = max{|\| : X are the eigenvalues of P}

AP

xi(t) — xi(00)| < costp(P)!

&

W

v
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Convergence rate

There are two types of problems:

|. Optimization problems: find the matrix P in a class which opti-
mize the performance index.

2. Influence of the network topology: find how the network topol-
ogy influences the the performance index.

We consider the second type of problems and more specifically we are
interested in the influence of the number of nodes on the performance
for the various types of network topologies.
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Geometric graph
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We now consider randomly time varying
stochastic matrices P(t). We obtain the
system

x(t+ 1) = P(t)x(t)
PROBABILISTIC CONSENSUS
xi(t) = ¢ almost surely

where ¢ = ) u;x;(0) and where p; are ran-
dom variables.
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We now consider randomly time varying

stochastic matrices P(t). We obtain the
system '
x(t+ 1) = P(t)x(t) . , 1

PROBABILISTIC CONSENSUS

xi(t) = ¢ almost surely

where ¢ = ) u;x;(0) and where p; are ran-
dom variables.
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Example: gossip algorithm

Consider an indirected strongly connected graph §.

At each time step, an edge (j,i) is chosen randomly among the edges
of G and the following iteration is done

xi(t+1) = 1/2x(t) +1/2x(t)
x(t+1) = 1/2x(t) +1/2x(t)
Xh(t T ) = Xh(t) h 7& i, |
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Gossip algorithm Boyd et al. 2006)

1/2

1/2

P(t) =

1/2

1/2
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Examples of a leaderless management of an electric grid




Power distribution network
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Definition of a microgrid

We define a smart microgrid as a portion of the electrical power distri-
bution network that connects to the transmission grid (utility) in one
point and that is managed autonomously from the rest of the network.

In particular, ancillary services are taken care by some microgrid
controllers, whose objective is to operate the microgrid in an optimal
way while satisfying some constraint on how the microgrid interfaces
with the rest of the network.

Among them, we focus on the problem of optimal reactive power
compensation.
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H’- \ \ \"} 2 1o Vo
/ Lossless electric components need current but
they do not need electric power.
n However, in order to bring this current to these
- = components some electric power is dissipated
along the transmission lines.
V(A
/A /2
It is convenient that the current
IS provided by the generator
+ + which is closed, namely by the
T = T generator which is connected to
the lossless component by a
i line with smaller resistance.
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Reactive power

Definition of the reactive power

We have reactive power whenever voltage and current are out of phase,
i.e phase angle is not zero.

Users in the microgrid may rec

it can be obtained from the uti

uire reactive power

ity or produced by the electronic

interfaces of microgenerators in the grid

the utility charges the microgrid for reactive power

producing reactive power has no fuel cost

larger flows of reactive power correspond to quadratically larger

power losses on the cables.
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Microgrid: a portion of the power distribution network
» connected to the utility

» populated by loads ) and microgenerators ¢
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A model of a microgrid

Graph model

Electric network
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Controlled nodes x € C

O O_Q (generators)

. O_ ._O O Uncontrolled nodes x € U
: : O—O— (loads)
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@il A model of a microgrio

Sinusoidal regime

We assume that the circuit is at the sinusoidal regime at a certain fixed
frequency. In this way every signal u(t) are described by a complex
number u € C describing amplitudes and phases

u(t) = |u| cos(wt + Zu)
where |u| is the absolute value of u and Zu is the phase of wv.

u
u .
u Sy U= ule/<Y
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A model of a microgrid

Model of power lines

Edge e = (x,y) . /

Node x

u(x) — uly) = Z(e)j(e) |

u(x) potential at node x
u(y) potential at node y

Node y j(e) current at edge e = (x, y)
Z(e) impendence at edge e = (x, y)
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A model of a microgrid

Let u be the vectors with components u(x) and j be the vector with compo-

nents j(e).

Let A be the incidence matrix of the graph with a row per edge, a column per
node and entries 0,

A =

node x

nodey

edge e (Au)e = u(x) — u(y)

Let Z be the diagonal matrix with diagonal entries Z(e).

Z =

Au+ 2 =0
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2 A model of a microgrid

Kirchhoff's current law

For the Kirchhoff's current law the sum of the currents is zero.
T By using the incidence matrix A we get

Node x

82



A A model of a microgrio

Model of the nodes

()
Node OM{
O O O u(0)

Node 0 utility

On this node the utility imposes
the nominal voltage

U(O) — UNeiw

Uy is the nominal voltage
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@ A model of a microgrio

Model of the load/generator nodes

Edge e = (x,y)

Node x Node y Fixed power law [u(x)i(x)* = s(x)
Loads/generators u(x) voltage at the node x
impose a given amount  j(x) current at the load/generator x
of active power and s(x) complex power imposed by the load/generator x

reactive power
Non-linear constraint

A
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Controlled and uncontrolled (disturbance) variables

In the uncontrolled nodes (loads) x € U/ the complex power is not controllable.

In the controlled nodes (generators) x € C the active power
p(x) := Re[s(x)]

is typically the maximum that can be generated, while
q(x) := Imls(x)]

can be decided. Therefore q(x), x € C are the control variables, while p(x),
x € C and s(x), x € U can be considered as the disturbance variables.
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Equations describing the model

 Letu,i,s,jbe the vectors of components u(x), i(x), s(x), j(e) respectively.
* Let A be the incidence matrix of the graph.

* Let Z be the diagonal matrix with diagonal entries Z(e).

Ai+i=0 ) L_

: inear
Au + Zj = O, " constraints F(Uy I,],S, UN) =0
U(O) - UNCW )

) Nonlinear
U(X)’(X)* — S(X) for all x 7é 0 constraints

UN (nominal voltage) . i
s(x), x # 0 (complex powers) DEUSIG 717J
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Equations describing the model

 Letu,i,s,jbe the vectors of components u(x), i(x), s(x), j(e) respectively.
* Let A be the incidence matrix of the graph.

* Let Z be the diagonal matrix with diagonal entries Z(e).

Ai+i=0 ) L_

: inear
Au + Zj = O, " constraints F(Uy I,],S, UN) =0
U(O) - UNCW )

) Nonlinear
U(X)’(X)* — S(X) for all x 7é 0 constraints

inputs{UN (nominal voltage) . i
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Equations describing the model

 Letu,i,s,jbe the vectors of components u(x), i(x), s(x), j(e) respectively.
* Let A be the incidence matrix of the graph.

* Let Z be the diagonal matrix with diagonal entries Z(e).

ATj +i=0 \ ’ Implicit function
: Inear
Au + Zj = O. ' constraints F(Ua s UN) =0
U(O) o UNGW ) _
Nonlinear states inputs

U(X)i(x)* — S(X) for all x 7é 0 constraints

inputs{UN (nominal voltage) ] L }
s(x), x # 0 (complex powers) crerming y ] g states
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Equations describing the model

 Letu,i,s,jbe the vectors of components u(x), i(x), s(x), j(e) respectively.
* Let A be the incidence matrix of the graph.

* Let Z be the diagonal matrix with diagonal entries Z(e).

ATj +i=0 \ ’ Implicit function
: inear
Au + Zj = O. ' constraints F(Ua Sy UN) =0
u(0) = Unel* | —
Nonlinear states inputs

U(X)i(x)* — S(X) for all x 7é 0 constraints

inputs{UN (nominal voltage) ] L }
s(x), x # 0 (complex powers) crerming y ] g states
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Equations describing the model

 Letu,i,s,jbe the vectors of components u(x), i(x), s(x), j(e) respectively.
* Let A be the incidence matrix of the graph.

* Let Z be the diagonal matrix with diagonal entries Z(e).

ATj +i=0 \ ’ Implicit function
: inear
Au + Zj = O. ' constraints F(Ua Sy UN) =0
u(0) = Unel* | —
Nonlinear states inputs

U(X)i(x)* — S(X) for all x 7é 0 constraints

inputs{UN (nominal voltage) ] L }
s(x), x # 0 (complex powers) crerming y ] g states
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Equations describing the model

 Letu,i,s,jbe the vectors of components u(x), i(x), s(x), j(e) respectively.
* Let A be the incidence matrix of the graph.

* Let Z be the diagonal matrix with diagonal entries Z(e).

ATj +i=0 \ ’ Implicit function
: inear _—
Au + Zj = O. ' constraints F(Ua l,],S, UN) =0
u(O) _ UNeW } | —— =
Nonlinear states inputs

U(X)i(x)* — S(X) for all x 7é 0 constraints

inputs{UN (nominal voltage) ] L }
s(x), x # 0 (complex powers) crerming y ] g states
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x\\ \\ <2\ Mlmmlzmg the loss in a microgrio

The cost function

The power losses along the power lines

This is a quadratic function in j, but it is non quadratic as a function of the

inputs s and Uy

j ZRe

* =Jj"Re(Z] ]

J

:_/(S, UN)
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The grid model

|

Grid parameters:
Topology, impedences

|

[ Nominal voltage ] UN)
- B
Decision variables
q(x), x€C
Non-decision variables S o
p(x), x€C
q(x), xZC
p(x), xZC
N\ Y,

| z

Microgrid

Grid state

=Jj'RelZ] ]

ui,j {Powerwj

losses J

>
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;;:;a Approximation of the cost

S -

THEOREM

Power series expansion

J(s,UN) = J,(s)UR2 + J5(s)UR3 + - -

where

'_lz(s) — s*Ms |

and M is a suitable real matrix depending on the power network topology.

Proof: Implicit function theorem
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\\\\\2\ Approximation of the cost

Approximated cost function
J(s,Un) = h(s)Uy* + (UG +-- 0 Jys) = s"Ms

4 1

|

If Uy is big, then J(s,UnN) =~ U—zs*Ms
N

For fixed Uy, minimizing J(s, Uy) is equivalent to minimizing

J,(s) = s"Ms




MO\ Approximation of the cost
BN

Minimizing J, (s) is equivalent to minimizing g’ Mq
(active power p is not controllable)

51



EINI Quadratic optimization

Minimizing the cost J(s, Uy) is equivalent to minimizing g’ Mgq.
Only the components of g belonging to the set of controllable nodes C are
controllable.

Hence we need to solve the following optimization

Optimization problem
min q'Mq

g(x) x € C are free
qg(x) x & C are fixed

2x9(x) =0

52



Motivation for distributed algorithm

min q'Mq

qg(x) x € C are free
qg(x) x & C are fixed

> xq(x) =0

This optimization problem admits a simple closed form solution, but:

* complete knowledge of the system structure and of the system state is required
* coordination and communication among all agents is required
* compensators are

— heterogeneous in size and characteristics
— in large number

— subject to partial availability, disappearance, replacement, new insertion
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A

Consider the family of subsets of C

Control

{C1,...,Cp}
such that
-,
/
| Ja=cC
i—1

Graph model
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Dlstnbuted optimization algorithm

O Consider the family of subsets of C

{Cq,...,Cp}

such that
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I-th optimization subproblem

Start from g and compute an update g’ minimizing the cost by updat-
ing only the components of g beloning to C;, while keeping the others
constant. Namely

'~ min qd'Mq  subjecttoq € q+ S I
q/

where

S — {qeRN : Zq(x):o,q(x):ovxgc,}
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@\ Distributed optimization algorithm

I-th optimization subproblem

Notice that
F,' pp— I . N,M

and where N; is a matrix depending on the local electrical properties of
the power lines network. Therefore

Ti(q) = 9 — NiMq

58



A\ Distributed optimization algorithm

——

-

I-th optimization subproblem

Ti(q) = 9 — NiMq

Notice that, while N is a sparse matrix
(N = 0if h,k & C;

Consequence: multiplying by the matrix N; is a computation that each node can
do "locally”, namely from the information coming only from the nodes in C..

qp(t+1) = q,(t) — Z(Ni)hk(Mq)k

keCi

The node h needs to know only (N;)nk, (Mq)y for k € C;.
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A\ Distributed optimization algorithm

——

-

Ti(q) = g — NiMq

On the contrary, the matrix M is not sparse and so the term Mq can not be
computed locally, since it would require the knowledge of entire M (and so the
global power network topology) and q.

I-th optimization subproblem

'HYPOTHESIS: Z(e) = ¢’R(e) where R(e) is a real number.|

In this case it can be shown that for k € C;

(Mq)i =~ Z ug||up| sin(ZLup, — Zug — 0)
hel;

namely (Mq)x can be computed locally from the voltages on the nodes in C..
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\| "4 Distributed optimization algorithm

Consider a sequence {o(t)}, o(t) € {I,...,¢}. When the symbol i appears in
the sequence, the i-th subproblem is solved:

q(t+ 1) = T,1q(t)] = Forq(t)

The proposed optimization algorithm therefore consists of the following, repeated
steps:

e a set C; is chosen according to a sequence of symbols o(t) € {I,...,/¢};

* every agent j in C; senses the network and obtain, directly or via some
filtering, an estimate of (Mq);;

* they determine a feasible update step that minimizes the given cost function,
coordinating their actions and communicating;

* they actuate the system by updating their state (the injected reactive power).
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@U\illiay  Convergence of the algorithm

Assumption

The sequence o (t) is a sequence of independently, identically distributed
stochastic process valued in {I,..., ¢} with Plo(t) =i] = p..

Results

* We have conditions on {C,...,Cy} ensuring that the algorithm
converges to the global minimum.

* We analyzed the convergence rate of the algorithm.

* In case the power network topology is a tree, we have conditions
on {Cj,...,Cy} and on the probabilities p,, ..., p, yielding the
fastest convergence rate.
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@\l Convergence of the algorithm

Convergence to the global optimum

q* := argmin q' Mq subject to 1'q = 0 and q(x) = q(x), Vx € U

Then
q(t) — ¢q

if and only if the hypergraph with hyperedges C1, ..

.,Cg IS

connected.
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© proving that clustering neighbor nodes is indeed the best choice
for general graphs;

introducing operating limits for compensators;

considering a dynamical optimization problem that includes stochas-
tically varying demands;

© obtaining a dynamic nonlinear model and its linearization which
capture the same features of the static models presented here;

© designing dynamic filtering algorithms that allow local estimation
of the gradient of the cost function from voltage measurements.
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Conclusions

The consensus algorithm is an instance of a completely distributed
design. This is an extreme design paradigm.

It is intrinsically robust to external changes and highly selt-adaptive so
that a limited initial configuration and tuning effort is necessary.

None or limited information about the global structure of the system is
necessary to the units.

Graceful performance degradation.

Importance of the interaction network topology.
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