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Outline

• Introduction

• Gate Injection Transistors (GITs) basics

• Trapping phenomena:

◦ ON-resistance increase and recovery

◦ Onset of drain electroluminescence

• Recovery process:

◦ Temperature dependence

◦ Hole injection dependence

• Problem resolved with improved devices
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Introduction
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Basic Structure of a Gate Injection Transistor

The use of a p-AlGaN layer under

the gate causeses an increase of the

local potential, giving a significant

decrease in the e- concentration in

the channel, and this allows to

achieve normally-OFF operation

Furthermore, it was proposed that,

for sufficiently high gate voltages,

holes can be injected in the

channel, and that this can result in a

significant channel conductivity

modulation (low hole mobility!).
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Electrical Characteristics
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Trapping phenomena at high VDS levels
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Trapping phenomena at high VDS levels
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Trapping phenomena at high VDS levels
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Further insight � Time-resolved EL measurements

•EL Signal is localized at the drain

edge of the gate, i.e. where the 

electric field is maximum

EL spectra have Maxwellian shape

� Hot electron emission, due to

Bremsstrahlung (deceleration of

carriers, accelerated by the high GD

field)
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Further insight � Time-resolved EL measurements

At high drain bias � EL signal moves to the drain and significantly

increases in intensity � EL peak moves from the gate to the drain

� Negative charge trapped in the GD access region (virtual gate)

Low VDS � Emission at the gate

High VDS � Emission at the drain
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Further insight � Time-resolved EL measurements

Emission “movie” 

recorded during

operation at 

VG=3 V, VD=40 V
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Further insight � Time-resolved EL measurements

•The onset of drain luminescence is not immediate � After a 

certain delay time (td), EL intensity suddenly increases, and the 

signal moves towards the drain 



µE-LAB,

Carlo De Santi – SSIE 2012

td strongly depends on applied drain voltage
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Characteristics of the recovery process
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De-trapping induced by the injection of holes
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• De-trapping can be significantly accelerated through the injection of holes 

from the gate

• The simple execution of an ID-VG measurement can lead to a remarkable 

recovery of the initial drain current levels, due to a stronger injection of 

holes which is recognizable from a bump in the IG-VG curve
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De-trapping induced by the injection of holes

Time constant of de-trapping was found to decrease linearly with 

injected gate current, confirming the role of hole injection in 

reducing the measured virtual gate effect

Recovery process can be significantly accelerated through the injection of holes

Increasing 
hole current
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Results on improved devices
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DC ID-VD characteristics measured 

(with VG=3 V)

• before any trapping

• after a 5 min trapping period at 
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• after a 5 min trapping period at 
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• after a 5 min trapping period at 
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Within this work, trapping problems were eliminated through optimization of

buffer and surface properties, and the addition of a field plate. Improved devices

can withstand a VDS level of 100 V in ON-state, without any trapping effect
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Conclusions

With this paper we have demonstrated that:

(i) even if the current collapse of GITs is very low, exposure to long-term operation with

high drain bias leads to a significant but recoverable increase in on-resistance. Activation

energy of the detrapping process is 0.47 eV.

(ii) Several findings suggest that R
on

degradation should be ascribed to charge trapping in

the gate-drain access region

• No shift in the threshold voltage was found

• At high drain bias, electroluminescence emission moves towards the drain contact

• the onset of drain luminescence, is not immediate, but takes place at a certain

delay time (td) after device turn-on. t
d

strongly depends on applied gate-drain field

The observed increase in on-resistance and the onset of drain luminescence were

ascribed to a field-dependent trapping process: the presence of a delay-time for trapping

was modelled by assuming that trap charging rate depends on gate-drain field

(iii) In GITs, charge de-trapping can be induced by UV illumination, or by the injection of

holes in the channel (the last solution is not possible in power HEMTs, and this makes

GITs intrinsically more robust to trapping)


