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Roadmap

§Environmental Monitoring
§Human Centric Sensing
§Rethinking IoT Protocol Designs



Environmental Monitoring



The Problem at Stake
• Spatio-temporal signal

• Data acquired from field sensors at regular intervals
• Slotted time

• Study the tradeoff among
• Signal compression / Transmission 
• Energy Consumption (sensors)
• Reconstruction accuracy (data collector)



Signals

[Z++11] Zordan, G. Quer, M. Zorzi, M. Rossi,“Modeling and Generation of Space-Time
Correlated Signals for Sensor Network Fields,” Proc. of IEEE GLOBECOM, 2011.
[WML12] C. J. Willmott, K. Matsuura, D. R. Legates, “Global Air Temperature and
Precipitation: Regridded Monthly and Annual Climatologies,” 2012, Center for Climatic
Research, Dept. of Geography, Univ. of Delaware, US. [Online]

§ Synthetic signals [Z++11]
§ Temperature, humidity, solar radiation, wind direction, air 

temperature, precipitation, etc.
§ LUCE and St-Bernard WSN testbeds (EPFL, Lausanne), 

CitySense WSN testbed (Hardvard Univ. & BBN tech.)
§ Meteorological station records from [WML12]
§ Our own testbed @DEI (~300 nodes, indoor)



Network Model
• N nodes uniformly distributed within a square area
• Same TX range for all sensors - shortest path routing

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

CH

CH

CH

CH

sink

 

 

Distributed Source Coding
• Uses clustering
• CH sends data uncompressed
• Other nodes TX compressed data
Compressive Sensing (CS)
• Data is sampled from a small 

number of nodes at each round
DCT & LTC
• All nodes independently compress
• They all TX compressed data



LTC (compressing time series)

x(n)

n
[S++04] T. Schoellhammer, B. Greenstein, M. Wimbrow E. Osterweil, and D. Estrin,
“Lightweight temporal compres- sion of microclimate datasets,” in Proceedings of the
IEEE International Conference on Local Computer Net- works (LCN), Tampa, FL, US,
Nov. 2004.
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Compressive Sensing

=

y
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Sparse Signal
§ Assumption

§ There exists a basis Ψ
that sparsifies the signal
(the sink must know Ψ)

Ψ
transform.

matrix
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sparse
vector
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sensor

readings



Replacing “x” with “Ψs”
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We finally get

y
data at
the sink

(M values)

A=ΦΨ
MxN matrix

(M<N)

=

s
sparse
vector

§ Linear system, 
M equations,
N>M unknowns 

§ N-M deg. of freedom 
(ill-posed problem)

§ Norm-1 minimization
§ Solvers: NESTA, l1-

magic, Subspace
Pursuit, …



Which transform? 

[Q++09] G. Quer, R. Masiero, D. Munaretto, M. Rossi, J. Widmer, M. Zorzi, “On the
interplay between routing and signal representation for compressive sensing in
Wireless Sensor Networks,” Inf. Theory and Applications Workshop (ITA), 2009.
[S87] D. T. Sandwell, “Biharmonic Spline Interpolation of GEOS-3 and SEASAT
Altimeter Data,” Geophysical Research Letters, vol. 14, no. 2, 1987.
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RS
RS−CS with T1
RS−CS with T2
RS−CS with T3
RS−CS with T4

Transforms
T1: 2D DCT
T2: Haar Wavelet
T3, T4: our own



Principal Component Analysis
§ Linear transform 

§ Change of basis

§ Dimensionality reduction
§ Only the M (<N) “strongest” principal components are retained

§ Decorrelates the data set
§ Removes second order dependencies

§ Columns of transform matrix Ψ are the eigenvectors of Cx

§ Cx covariance matrix of random process x (N-sized)

Estimate Cx at runtime (sample cov.)
Use PCA as CS transform 



PCA – large variance reveals structure

SNR =
�2

signal

�2

noise

Basic assumption: the direction with highest variance contains the dynamics of
interest (this corresponds to having SNR>>1) à direction with highest variance
provides the best (linear) fit for the signal



PCA – variance vs correlation

Dimensionality reduction: approximate the signal from 2 to a single variable projecting
along the axis with the maximum variance



Where PCA fails

Maximum variance: in these examples, projecting the original data along the
directions with maximum variance does not describe a good description of the
underlying data structure



In general…



Interesting technique (pointers) 

Subspace clustering is the problem of finding a multi-
subspace representation that best fits a collection of points
taken from a high-dimensional space.

[Chu10] Yi-Hong Chu, Jen-Wei Huang, Kun-Ta Chuang, De-Nian Yang, Ming-Syan
Chen, “Density Conscious Subspace Clustering for High-Dimensional Data”, IEEE
Transactions on Knowledge and Data Engineering, Vol. 22, No. 1, 2010.

[Elhamifar13] Eshan Elhamifar, Ren Vidal, “Sparse Subspace Clustering: Algorithm,
Theory and Applications”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 35, No. 11, 2013.

[Hu15] Han Hu, Jianjiang Feng, Jie Zhou, “Exploiting Unsupervised and Supervised
Constraints for Subspace Clustering”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 37, No. 10, 2015.



Principal Component Analysis

[Q++12] G. Quer, R. Masiero, G. Pillonetto, M. Rossi, M. Zorzi, “Sensing,
Compression and Recovery for WSNs: Sparse Signal Modeling and Monitoring
Framework,” IEEE Transactions on Wireless Communications, Vol. 11, No. 10, 2012.



Medium to high spatial correlation
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Covariogram theory (geostatistics)
Empirical Variograms (Evs)

�(h) =
1

2N(h)
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Covariogram theory (geostatistics)
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Results: temperature data [WML12]

[H++16] M. Hooshmand, M. Rossi, D. Zordan, M. Zorzi, “Covariogram-based
compressive sensing for environmental wireless sensor networks,” IEEE Sensors
Journal, Vol. 16, No. 6, 2016.
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Human Centric Sensing



System Model

Data 
Acquisition Pre-processing Feature 

Extraction

Feature 
Selection Classification Multi-stage 

Authentication

Interpolation &
Segmentation

Convolutional 
Neural Net

PCA One-Class 
SVM

Sequential 
Prob. Ratio 
Test (SPRT)

IMU

score



Data Acquisition

Inertial Measurement Unit (IMU)
§ Axivity WAX9

§ Accelerometer ±2 / 4 / 8 g (14 bit resolution)
§ Magnetometer ±1mT (16 bit resolution)
§ Gyroscope ±250 / 500 / 2000 dps (16 bit resolution)
§ Temperature 0 - 65 °C (0.1˚C resolution)
§ Pressure 30-110 kPA (1Pa resolution)
§ Max. sampling frequency: 400 Hz
§ Bluetooth LE radio



Template-based Segmentation

corr dist = 2� corr(acc)� corr(gyro)



Walking Pattern Examples



Feed-Forward Neural networks (FF-NN)
• Feed Forward NN
• Layers of neurons
• Non-linear activation functions
• Set of weights

Efficient learning algos exist
• Error backpropagation
• Supervised, 

• output examples are needed
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Convolutional Neural Network (CNN)

§Supervised training (15 subjects)
§ 10 minutes of walk, at least 2 sessions
§ 2 minutes for training, 8 to test the CNN

§ Implicit extraction of relevant features
§ Automatic feature engineering

§Shared weights
§ Lower number of pars than Feed Forward NN

§Convolution and Max. Pooling
§ Equivariant to translation of features in input space
§ Invariance to other local transforms



Convolutional Neural Network (CNN)

Output Input Kernel

CNN features

• Kernel reuse
• Memory savings
• Complexity reduction
• Robust to translations



Convolutional Neural Network



One-Class SVM [S+00]
§ Only target class (orange) data is available
§ Training finds the boundary (tick circle)
§ Classification output: score

§ Distance from the boundary

§ Training
§ We only used data from target user

§ Test
§ Data from the negative class were also used
§ Performance assessment

[S++00] B. Schölkopf, J.C. Plattz, J. Shawe-Taylory, A.J. Smolax, Robert C.
Williamson, “Estimating the Support of a High-Dimensional Distribution,” Technical
Report MSR-TR-99-87, Microsoft Research, Redmond, WA, 2000.



One-Class SVM

optimal region

F-measure

Precision: no. of true classified true / tot. number of positives
Recall: no. of true classified true / tot. number of true

F = 2

precision⇥ recall

precision + recall



One-Class SVM (test output)
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Sequential Decision Making

TARGET CLASS

OTHER USERS’ CLASS

Sequential Probability Ratio Test (SPRT) [W47]

Log-likelihood Ratio

probability of accepting H1 
when H0 is true

probability of accepting H0 
when H1 is true

Sn = log

✓
p(x1, . . . , xn|H1)

p(x1, . . . , xn|H0)

◆
=

nX

i=1

log

✓
p1(xi)

p0(xi)

◆

[W47] A. Wald, Sequential analysis, Dover, New York, NY, US, 1947.
[TNB15] A. Tartakovsky, I. Nikiforov, M. Basseville, “Sequential Analysis
Hypothesis Testing and Changepoint Detection,” CRC Press, 2015.



Sequential Analysis

Accept H1

Accept H0
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Final Results



Feature extraction CNN vs SOTA



Demo 



Rethinking IoT Protocol Design



Thus far
§Networking protocol design

§ Routing, channel access

§Common assumptions
§ Backlogged queues 
§ Some sort of arrival process

§Often neglected
§ signal-processing (e.g., compression)
§ signal-statistics



Our point
§ In Future Networks 

§ Functionalities & algorithms will be injected as new software
§ Software Defined Networking

§Signal statistics depend on
§ What is being measured
§ Where
§ When

§Statistics may change as a function of time

classification, estimation, adaptation



Protocol Reconfiguration
§Channel Access Behavior

§ Periodic vs bursty vs asynchronous
§ Example: dynamic setting of MAC pars or
§ Dynamic switching the MAC protocol in use [AZD16]

§Routing behavior
§ What can be aggregated (data fusion)
§ Make routing decisions based on spatio-temporal statistics

§Routing vs compression at the sources
§ When and how much to compress 
§ Depending on: cost of transport, data fidelity

[AZD16] A. Asudeh, G.V. Zàruba, S.K. Das, “A general model for MAC protocol selection
in wireless sensor networks,” Ad Hoc Networks, Vol. 36, Part. 1, January 2016.



The Big Picture



Data Mining Framework
§Highly Comparative Time Series Analysis (HCTSA)

§ Feature Extraction & Classification framework [FLJ13]
§ Over 9000 features, including:

§ Basic statistics, linear correlation, stationarity, information theoretic  
and entropy measures, non linear time series analysis, model fits, …

§ Supervised classification using:
§ SVM trained on signal features
§ SVM trained on N principal components of the Feature Matrix 
§ Linear classification on single features

[FLJ13] B. D. Fulcher, M. A. Little, N. S. Jones, “Highly comparative time-series
analysis: the empirical structure of time series and their methods,” J. Roy. Soc.
Interface, 10, 83, 2013.



Considered Time Series
§Environmental Data

§ Temperature, Humidity, Wind speed, Wind direction, Rain 
intensity, Rain rate, Solar irradiation, etc.

§Structural Monitoring
§ Strain gauge sensors

§Biomedical 
§ ECG, PPG

§Power Consumption (Households)

~1400 temporal signals
~7000 windows of 500 samples each



What do we know?
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Feature vector
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Data matrix (33 x 6548)
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Data matrix (33 x 6548)
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Signal class example
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PCA (first two principal components)

PC 1 (19.66% var)
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Classification Rate

Number of PCs
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Classification Rate
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Using Neural Networks (FF-NN)
59
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Compression Example (cr=comp/full)
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Compression Performance (1/3)
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Compression Performance (2/3)
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Compression Performance (3/3)
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Discrete Cosine Transform 
Compression Performance
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The Work Ahead

§Step1: classify based on compression performance
§Step2: check which features are most meaningful

§Supervised classification
§ SVM
§ Sensor networks

§Unsupervised classification
§ DBSCAN
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