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© Security issues for the loT
@ Security needs of loT
@ Low energy security
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Security issues for the loT
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Security goals, threats, services and mechanisms
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Security issues for the loT
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What security do we need?
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Security issues for the loT
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Low energy, small storage security

Possible approaches

@ provide "minimum" (i.e., "no") security
@ expect electronic and battery performance increase

@ harvest energy from environment
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Current security standards
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© Current security standards
o MAC layer: 802.15.4 security
@ Network layer: 6LoWPAN security
@ Application and transport layer: CoAP security and DTLS
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MAC layer: IEEE 802.15.4 security

Security modes

no security
| payload |
authentication with AES-CBC-MAC
4/8/16 B
| payload | MAC |
encryption with AES-CTR
4B 1B

|frame ctr || key ctr | encrypted payload |

auth + encryption  with AES-CCM
4B 1B 4/8/168B
|frame ctr || key ctr | enc payload || enc MAC |
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Current security standards
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Network layer: 6LoWPAN security

No security mechanisms are defined in 6LoWPAN, but the following
issues are identified:
neighbour descovery and mesh routing may be
vulnerable to threats, 802.15.4 AES-based security could
provide mechanisms for securing routing
the overload of ports may be exploited by
applicatons not honoring the reserved sets, it should be
integrity protected

RPL routing security
The RPL protocol supports security services for routing messages:

@ Authentication and integrity protection through AES-CBC-MAC
codes

@ Secrecy through AES-CTR encryption
@ Semantic security through counters and nonces

@ Key management with pairwise symmetric keys, group keys, digital
signatures

N. Laurenti
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Current security standards

Application layer: CoAP and DTLS

CoAP adopts Datagram TLS to transparently apply security. This
guarantees secrecy, authentication, integrity protection, non replay by
adopting AES/CCM and nonces

Security modes

symmetric keys preprogrammed into the device
identity-based
for public-key infrastructure

public key and certificate modes support elliptic curve cryptography
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© Computationally lighter solutions
@ Lightweight broadcast authentication
@ Physical layer authentication
@ Physical layer secrecy
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Computationally lighter solutions
e0

Broadcast authentication: the TESLA protocol

Generation
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Computationally lighter solutions
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Security of TESLA

The security of TESLA is based on the one-wayness of the hash function
in the chain, i.e. on the difficulty of finding possible future keys that
match the so far disclosed keys

Previous work

The security of TESLA has been proved

@ in the assumption that the whole hash chain is a pseudo random
function [Perrig et al., ‘00]

@ when each key is separately generated and its committment obtained
by a single hash [Archer, '02]
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Computationally lighter solutions

@00

PHY authentication: System model

hAB

A - B channel statistics
complex, jointly Gaussian,
circularly symmetric

= <&
% A\

hAB) ~ CN(0,x1, RAP))
RAE)  CN (0,51, RAE))
h(EB) ~ CN (0,1, R(FR))

gj channel reciprocity

h=lho,...,hn_1]: E [h(AB)h(AE)*] — R(AB,AE)
channel fading coefficients (e.g., impulse E [h(AB)h(EB)* — R(AB.EB)
response, frequency response, channel E [h(AE)h(EB)*] — R(AE,EB)

matrix entries)
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Computationally lighter solutions
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Authentication scheme [Xiao et al., ‘08]

Phase I: training

@ A (securely) sends a training sequence to B

@ B obtains a (reliable) ML estimate h*B of the channel

h"B =p"B L' | w' ~CN(0,020)

Phase Il: hypothesis testing

For every received packet, B estimates the channel response h(t) and
checks it against the hypotheses
(authentic) Hy : h(t) =h*"® +w'(t) , w'(t) ~CN(0,031)
(forged) H; h(t) =g(t) +w'(t) , g(t) arbitrary
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Computationally lighter solutions
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Generalized likelihood ratio test (GLRT)

Formulation

fil‘?‘lhg il i" Vzl
Fhjno(R) o’

U <1: decide for Hy,
¥ > : decide for H; .

@ log likelihood ratio: ¥ = log

H

_ jAB) ‘

@ compare with a threshold : {

Probability of False Alarm and Missed Detection

U is a chi-square variable
Pea = P> |Hol=1—-F2(¥)Pup =P [¥ <V |Hi] = Fy25(0)

If we fix a target Ppa, we get Pup(f) = Fy2 5 (F><_21,0 (1- PFA)>
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Computationally lighter solutions
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The wiretap channel

Y

%p() “ol pyapal) Y| D) _77'.

probabilistic lz deterministic

encoder @ decoder

We aim for reliable transmissions to B, and secrecy with respect to E

C.= lim max [2

1 H(u)] subject to:

| For memoryless channels
N—>00 U,Pg |y, D

reliability: lim Plu # @] =0 Cs = max, [I(u;y) — I(u;2)]"
n—00 X . +
(strong) secrecy: lim I(u;z) =0 > maxg [I(z;y) — I(z;2)]
RS g > [Cag — Cael "
or (weak) secrecy: lim —I(u;z) =0
n— oo
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Computationally lighter solutions

[e] lee)

Toy example: uniform channel

Consider a wiretap channel in which
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Computationally lighter solutions
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Random binning

If we can find:
@ asubset X’ C X such that Va # o’ € X, Ty, (a) N Ty,(a’) =0
@ a set M and a partition of X’ into {T$|u(d)}d€M such that

U Tp@=2 , vieMm

a€Ty, ., (d)

Py|x

oo I, o K\ . .
M

Kk
probabilistic encoder u — x
Pafulald) = {é/NM ’ Z ; %:ZEdg
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Computationally lighter solutions
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How many secrecy bits?

For perfect reliability to B:

/ Y

IN

For perfect secrecy with respect to

m

Ny > —
ol = Nz|:1:

For both

X Y NZIac I(zy)—I(z;
M= < < — ol(@iy)—1(z;2)
M N SN, T2
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© Our recent results
@ Broadcast authentication [Caparra, Sturaro, NL, Wullems, IEEE
ICL-GNSS, '16]
@ Physical layer authentication [Centenaro, Caparra, NL, Tomasin,
Vangelista, IEEE ICC, '16]
@ Physical layer secrecy with energy harvesting [Biason, NL, Zorzi,
IEEE JSAC, '16]
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Our recent results
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Security of TESLA with very long hash chains

In assessing the security of TESLA it is assumed that each key k; in the
chain is unpredictable.

However, repeated hashing brings collisions and hence reduces entropy of
keys.

Is it possible for an attacker to leverage the reduction in entropy and
forge a valid key chain?

Aim of our work

To assess the security of the TESLA hash chain against attacks that aim
at forging messages by leveraging a forged key chain

N. Laurenti
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Our recent results

Hash chain example

0 1 key index 1 — L—-11L
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Our recent results
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Attack model

Ty = U1}, length of the target forging interval

Ry hashing rate available to the attacker
T total time dedicated to attack computing
Ny total number of guesses (attempts)

For an attack that starts at the disclosure of k; and last for ¢ key
intervals, the attacker tries to find k;41, ..., k;y¢ such that

filkizn) = ki, firr(kiva) = kira, o, five—1(Kive) = kiyer

He guesses a random value for I;:,,;H, computes ¢ hashes and checks if he
gets k;. If not, he tries another guess.
The success event for a single guess j = 1,..., N4 is

S;(i,0) = {k] =k}

Attack parameters

N. Laurenti
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Our recent results
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Attack example

‘\\.
A
I\

A

authentic key chain successful guess

success probability
of a single guess
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Our recent results
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Attack success probability
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Attacked interval Ty

Success probability for an attack against a 80-bit key chain (N = 280)
with a new key released every T, = 0.255s, with hashing rate
Ry, = 5- 103 hash/s, and attack duration 7' = 30 days.
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Our recent results
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PHY Authentication for the loT

Our assumptions

We consider:
@ a CloT network

@ anchor nodes, that are trusted and securely connected with the
concentrator

@ provide a key-less message authentication scheme

© assuming that anchor nodes have a limited energy availability,
propose suitable scheduling policies for the activation of the anchor
nodesto maximize the anchor network lifespan

Security for the Internet of Things: standards, problems, open issues



Our recent results
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Reference Scenario

Consider an CloT scenario with M legitimate sources, N anchor nodes
(with indices 7), and one concentrator node C over a narrowband channel

1

The complex channel gains (including path loss \; and fading) from
source node S to anchor node i = 1,..., N are collected into the vector

h(S) = [hi(S), ..., hn(S)]

Assumptions:

@ communication between the anchor nodes and the concentrator
node C is secure

@ when involved in the authentication of a node, an anchor node
consumes a fixed amount of energy so that each anchor node is able
to perform at most () message authentications

Security for the Internet of Things: standards, problems, open issues N. Laurenti



Our recent results
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Proposed Authentication Protocol |

Authentication procedure:

@ initialization: anchor nodes receive a message coming from source S
that has been authenticated by some other methods (e.g., by a
key-based authentication procedure) and the anchor nodes estimate
the channel gain vectors h(?)(S). This estimate is reported to C.

@ runtime: upon reception of the k-th message reportedly coming
from source S, a sub-set of anchor nodes (configuration) estimate
the channel on the message and report the estimate to the
concentrator node

N. Laurenti
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Our recent results
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Proposed Authentication Protocol Il

The anchor node configuration for the k-th message from S
is denoted by ¢(S, k) € {0,1}V 1 where

1 if node 7 is active in the authentication
0 otherwise

[C(S7 k)]z = {

b
C obtains from the active anchor nodes the estimated channel gain vector
h()(S):
@ Hg: actual transmitter is S. Then
W9 (S)[e(S, k)i ~ hi(S)[e(S, k)], i=1,...,N

@ H;y: Ais transmitting. Then

W (S)[e(S, k)]s ~ g:(S)[e(S, k) i=1,...,N
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Our recent results
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Admissible Configurations

Definitions:
@ admissible configuration = configuration s.t. Ppa < Pgﬁ‘\r and
Pyp < PiES
@ efficient admissible configuration = admissible configuration with a
minimal set of active nodes

b
We collect all efficient admissible configurations into the N x A binary
matrix
C=la) - cu) - er(M) - cap(M)]
where

@ ag = number of efficient admissible configurations for source node S

@ ¢/(S) = (-th efficient admissible configuration for S

e A= Egzl @y, is the total number of efficient admissible
configurations

1

Efficient admissible configurations are chosen randomly according to a
predetermined probability distribution p,(S), that can be found in vector

Security for the Internet of Things: standards, problems, open issues N. Laurenti



Our recent results
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Network Lifespan

Reference performance metric:

anchor network lifespan L = smallest number of authentication processes
after which at least one anchor node runs out of power

Since the choice of the configuration is random, L is a random variable:
in the paper, derivations of

@ upper/lower bound on Fy (z)

@ approximation of Fy(z), neglecting correlation among anchor nodes

How to compute =7

Define the utilization vector u € [0, 1]V *! as
1
__c
u ™

where 1/M is the probability that each source node is transmitting

Security for the Internet of Things: standards, problems, open issues N. Laurenti



Our recent results
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Optimization Problems

Objective functions:
@ Least Squares Problem

N
ming u?
™
i=1
@ Minimum Variance Problem
N N 2
1
min U; — — u
- Z ‘ NZ J
i=1 Jj=1
@ Min-Max Problem
. N
min max u;
T =1
Constraints: .
u = Cr
M

0<m(S)<1 ¢=1,...,a5, S=1,....,M
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Our recent results
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Observations

Least squares prob. (33) and minimum variance probl. (33) are convex

4

Solved fast using well-known techniques (e.g., interior point method)

Min-max prob. (33) can be linearized

4

Solved fast using the simplex algorithm
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Our recent results
0O0000000e

Anchor Network Lifespan

a) Least squares problem

b) Minimum variance problem

0
150

Parameters Results
N=9 n=2

min variance
least squares

. i
150 200 250 300 350 400 450 500 550

a) and c) better than b)

SNR =30dB, p=0.1 Up to 4x the default lifespan!
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Our recent results
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PHY secrecy and Energy Harvesting

trarismilber

harvasied ensrgy

The transmitter harvests
energy from an external,
non-controllable and

renewable energy source

Our goal is to maximize
the achievable secrecy

i an
o
o ! g
1
1
i iy
B e
Transmit
power is split
among N

subchannels

rate, by choosing the
Optimal Secrecy Policy
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Problem statement

Given We model our system with a Markov Chain (MC) with a finite
number of states. For every MC state (e, g, h), a power allocation policy
1 is the set of rules

w=A{u(;e,g,h), Ve €&, Vg € g, h € h},
where

. s using a power _ _
wpse,g.h) =P (splitting vector p ’e, G=gH= h) ’

N. Laurenti
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Optimal policy is deterministic

Theorem

There exists a deterministic OSP, i.e., an optimal secrecy policy in which,
for every MC state (e, g, h), 3p; , , such that

1, ifp= p;gﬁv

*(p;e,g,h) = :
w(pie.gh) 0, otherwise,

where p; , ;, depends upon the current MC state in general.
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Our recent results
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Efficient optimization

Theorem

The maximization of C,, can be decomposed into two steps:

© fix a value = and the channel gain vectors g, h and find the optimal
power splitting choice

p*—argmaxp c(p,g,h),
st. peP_(z)2{p: p=0, z=1%p};

@ maximize C,, by considering only i**

*
ptot = arg max e Cp,

s.t. put°' and u are consistent,
pe.g.n SOIves the above with z=p't ,

Ve€E Vgeyg, Vheh,

The optimal p* can be found by fixing ptOt* according to point 2) and
choosing p with the optimal power splitting choice of point 1).
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Monotonicity of optimal policy

Theorem

Consider N = 1. The transmission power of OSP is non-decreasing with
g and non-increasing with h (we omit the “1” subscripts). Formally

o * *
e ifg" > ¢, then pteog,,ﬁ > p‘éO;/Ah;'

YN / tot* tot™
o ifh" > h', then p 1 < peig -

Theorem

Consider N = 1. With partial CSI, the transmission power of OSP is
non-decreasing with g (we omit the “1” subscripts). Formally, if g > ¢,

tot* tot*

then py > Py -
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Security for the Internet of Thing:

Numerical results

Secrecy rate vs battery size
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Essential references

“Security for the Internet of Things: A Survey of Existing Protocols
and Open Research Issues”

“Low-Energy Security: Limits and Opportunities in the Internet of
Things”

“Efficient authentication and signing of multicast streams over lossy
channels”

"“Using the physical layer for wireless authentication in time-variant
channels”

Security for the Internet of Things: standards, problems, open issues N. Laurenti



	Security issues for the IoT
	Security needs of IoT
	Low energy security

	Current security standards
	MAC layer: 802.15.4 security
	Network layer: 6LoWPAN security
	Application and transport layer: CoAP security and DTLS

	Computationally lighter solutions
	Lightweight broadcast authentication
	Physical layer authentication
	Physical layer secrecy

	Our recent results
	Broadcast authentication [Caparra, Sturaro, NL, Wullems, IEEE ICL-GNSS, '16]
	Physical layer authentication [Centenaro, Caparra, NL, Tomasin, Vangelista, IEEE ICC, '16]
	Physical layer secrecy with energy harvesting [Biason, NL, Zorzi, IEEE JSAC, '16]


