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Possible	applications
Indoor	localization Energy	monitoring

Preventive	maintenance
Peak	shaving



System	design

User

Data	scientist

The	“cloud”

Sensor	 network Mathematical	model



Lecture	outline

• Processing	in	distributed	networks
• Aggregate	computation
• Fast	gossiping	algorithms

• Data	science	and	the	internet	of	things
• Distributed	classifiers
• Machine	learning	in	NILM

• Dealing	with	failures	in	aggregates
• Conclusions



Processing	in	distributed	systems

• Specialists	are	expensive,	simple	programming	paradigms
• Example:	Basic	Linear	Algebra	Subprograms	(BLAS)	
• GPU-s,	multicore	systems,	the	“cloud”
• Primitive:					[…]m,n x	[...]n,1

• BLAS	for	mesh	networks	- difficult…
• Current	cloud	research	- graph	processing GPUs

Multicore	
systems

Server	farm
Mesh	

networks



First	layer

Basic	primitives	 (gossiping,	 etc.)

Functions:	 counts,	 polynomials,	 filters,	
convex	optimization,	etc.

Classifiers	 &	machine	learning

Data	analytics	API



Mesh	networks?

• Which	primitives	are	specific	and	can	be	used	as	basic	element	of	the	
algebra?



Gossip-based	interaction

• Gossip:	basic	mechanism	for	spreading	and	aggregating	information
• Communication	takes	place	locally
• Nodes	exchange	information	with	neighbors
• Robust,	fast,	scales	well

• Exchanged	data	can	be	anything
• Exchanged	data,	references	to	nodes,	
actual	programs,	etc.

• No	centralized	control	or	management



Example	– gossiping	(multicasting)

P.	Eugster:	Epidemic	Information	Dissemination	 in	Distributed	Systems (IEEE	Computer,	2004)



Gossip-based	applications

• Examples
• Raw	information	dissemination
• Data	aggregation
• Topology	construction	for	overlay	networks
• Semantic	clustering	of	nodes
• Realizing	storage	facilities	in	ad	hoc	networks
• Distributed	signal	processing

• Not	everything	can	be	accomplished	via	gossiping!



Gossip	(push)	– fully	connected	network

Round	1 Round	4Round	3Round	2

Round	5 Round	6 Round	7 Round	8

200x200	nodes



Gossip	(push-pull)	– mesh	network

Round	1 Round	30Round	20Round	10

Round	40 Round	50 Round	60 Round	70

100x100	nodes,	transmission	range	=	10	units



Gossiping	mechanism

• Terminology
• Anti-entropy:	each	node	chooses	another	node	and	exchanges	information	about	
difference	in	states
• Both	nodes	have	access	to	identical	information	->	identical	states

• Gossiping:	a	node	informs	other	nodes	about	its	own	state	(infects	the	other	
nodes)	and	may	stop

• Notations
• Object	O	has	on	node	S	the	value	val(O,S)	and	timestamp	T(O,S)

!!! We	will	use	“gossiping”	terminology	for	both	mechanisms	!!!



Anti-entropy

• Node	S	exchanges	information	with	node	S’
• Push: T(O,S’)<T(O,S)	->	val(O,S’)	<- val(O,S)
• Pull: T(O,S’)>T(O,S)	->	val(O,S)	<- val(O,S’)
• Push-pull: S	and	S’	exchange	their	updates

• Convergence	speed:
• O(log	n)	cycles	update	speed	for	fully	connected	
network,	random	unicast	model
• 40000	nodes	– 8	cycles	to	compute	the	average	value

• O(D2 log	n)	in	a	mesh	network	– this	may	be	slooooow!!!

Round	1 Round	8



Anti-entropy	analysis

• Setup:	a	source	propagates	updates	in	a	fully	connected	network
• Pi	=	probability	that	a	node	has	not	received	update	after	i-th	cycle

• Two	cases:
• Pull:

• the	node	was	not	updated	during	the	
i-th	cycle	and	should	contact	another	
node	during	next	cycle

• Push:
• the	node	did	not	update	during	i-th	
round	and	no	node	chooses	it	for	the	
next	round
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Gossiping	mechanism

• Basic	mechanism
• Node	S	(containing	the	update)	contacts	node	S’
• If	node	S’	knows	the	update

• Node	S	stops	with	probability	p=1/k	(S	is	effectively	removed)
• Otherwise

• Node	S	contacts	another	random	node	S’’



Gossiping	– mathematical	model

S	– nodes	not	
updated

I	– active	nodes	
(updated)

R	– passive	nodes	
(updated)
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Gossiping	– mathematical	model
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k = 10
k = 5
k = 2
k = 1

!!! Gossiping	 is	not	perfect	!!!

k s Ns	(n=10000)

1 0.203188 2032

2 0.059520 595

5 0.002516 25



Convergence	speed

• Demonstration	sketch:
• Consider	at	each	step	in	time	values	xi
• Compute	the	standard	deviation	of	xi at	each	time	round	 (si)
• Show	that	si decreases	exponentially	with	time
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Fully	connected	networks,	anti-entropy
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PushSum	algorithm

• Simple	algorithm	of	computing	average	values
• Each	node	starts	with	a	(random)	value	&	a	weight
• Nodes	exchange	pieces	of	the	value	with	neighbors
• In	time,	all	values	converge	to	a	common	mean	value
• PushSum	is	not	strictly	an	“anti-entropy”	algorithm!

Node	i:
1:	 {(mr,t-1,ωr,t-1)}	– received	pairs	in	round	 t-1
2:	 mi,t =	Σr(mr,t-1)

ωi,t =	Σr	(ωr,t-1)
3: choose	random	neighbor	 j
4: send	to	i	and	j:	(	½	mi,t,	½	ωi,t)
5: estimate	in	round	 t	is:			mi,t/ωi,t

D.	Kempe	et	al.:	Gossip-Based	Computation	of	Aggregate	Information	(FOCS	2003)



PushSum	example

ωi ωj
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Extension	of	PushSum

• Computing	averages:
• mi,0 =	“random”,	ωi,0 =	1			
• mi,∞ =	sumi(mi,0)/n

• Computing	sums:
• mi,0 =	“random”,	ωi,0 =	0,	ω0,0 =	1
• mi,∞ =	sumi(mi,0)

• Counting	the	nodes	in	the	network:
• mi,0 =	1,	ωi,0 =	0,	ω0,0 =	1
• mi,∞ =	sumi(mi,0)	=	n

• Main	properties	hold	for	all	variations:
• The	algorithms	are	guaranteed	to	converge
• The	convergence	speed	is	the	same	in	all	cases



PushSum	&	network	dynamics

• Convergence	speed	is	influenced	by:
• Network	diameter	– reduced	the	convergence	speed
• Node	mobility	– mobility	increases	convergence	speed
• Number	of	random	neighbors	selected

• Unicast	– Multicast	– Broadcast

Anand	D.	Sarwate:	The	Impact	of	Mobility	on	Gossip	Algorithms,	 IEEE	Transactions	 on	Information	Theory



“Fast”	gossiping	primitives

• Primitive	allowing	computation	of	sums	in	a	distributed	manner
• Basic	property:	minimum	value	of	a	series	of	exponential	r.v.	with	λi is	a	r.v.	with	
parameter	λ	=	Σ	λi
• Positive	aspects:	very	fast	propagation	– O(D)	time	steps
• Negative	aspects:	message	size	affects	precision	O(δ-2)

Shah,	Devavrat.	Gossip	algorithms.	Now	Publishers	 Inc,	2009

… … * … … … … … … …

… … … … … … … * … …

* * * * * * * * * *Final	vector
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Second	layer

Basic	primitives	 (gossiping,	 etc.)

Functions:	 counts,	 polynomials,	 filters,	
convex	optimization,	etc.

Classifiers	 &	machine	learning

Data	analytics	API



Computability	with	locally	checkable	functions

• Simple	aggregates	can	be	layered	to	compute	any	polynomial	function
• Example:	compute	Σ	xi xj
• Idea:	use	the	identity	(x1+x2)2 =	x12+x22+2x1x2
• v1 =	Σ	xi
• v2 =	Σ	xi2
• Result	=	(v12 – v2)/2



What	is	computable?

• Straight-forward	single-step	computations
• minimum	and	maximum,		sums	and	products	[9]
• averages,	quantiles,	random	sampling	[6]
• generalized	means,	variance	and	other	moments,	counting,	rank	statistics	[5]	
• Presburger	algebra	[1]	

• Multi-step	computations
• find	the	nth	element,	quantiles	[6]
• median	element	[10]
• system	identification	(transfer	function)	[3]	
• first	k	eigen	vectors	[7]	
• principal	component	analysis	(via	sparsification),	MDS-MAP	localization	[8]	
• Fiedler	vector	[2]
• frequency	moments	of	data	[12]
• eigenvectors	via	wave	propagation;	network	clustering	[4],	[11]	



What	is	computable?

• [1]	D.	Angluin,	 J.	Aspnes,	D.	Eisenstat,	and	E.	Ruppert,	“The	computational	power	of	population	 protocols,”	Distributed	Computing,	 vol.	20,	no.	4,	
pp.	279–304,	 2007.

• [2]	A.	Bertrand	and	M.	Moonen,	 “Distributed	computation	of	the	fiedler	vector	with	application	to	topology	 inference	in	ad	hoc	networks,”	 Signal	
Processing,	 vol.	93,	no.	5,	pp.	1106–1117,	 2013.

• [3]	A.	Carzaniga,	C.	Hall,	and	M.	Papalini,	 “Fully	decentralized	estimation	of	some	global	properties	of	a	network,”	in	INFOCOM, 2012	Proceedings	
IEEE.	IEEE,	2012,	pp.	630–638.	

• [4]	M.	Franceschelli,	 A.	Gasparri,	A.	Giua,	and	C.	Seatzu,	“Decentralized	estimation	of	laplacian	eigenvalues	in	multi-agent	systems,”	Automatica,	
vol.	49,	no.	4,	pp.	1031–1036,	 2013.	

• [5]	M.	Jelasity,	 A.	Montresor,	and	O.	Babaoglu,	“Gossip-based	 aggregation	in	large	dynamic	networks,”	ACM	Transactions	on	Computer	Systems	
(TOCS),	 vol.	23,	no.	3,	pp.	219–252,	2005.

• [6]	D.	Kempe,	A.	Dobra,	and	J.	Gehrke,	“Gossip-based	 computation	of	aggregate	information,”	in	Foundations	 of	Computer	Science,	2003.	
Proceedings.	44th	Annual	 IEEE	Symposium	 on.	IEEE,	2003,	pp.	482–491.	

• [7]	D.	Kempe	and	F.	McSherry,	“A	decentralized	algorithm	for	spectral	analysis,”	 in	Proceedings	of	the	thirty-sixth	 annual	ACM	symposium	 on	
Theory	of	computing.	ACM,	 2004,	pp.	561–568.

• [8]	S.	B.	Korada,	A.	Montanari,	and	S.	Oh,	“Gossip	 pca,”	in	Proceedings	of	the	ACM	SIGMETRICS	joint	international	conference	on	Measurement	
and	modeling	of	computer	systems.	ACM,	2011,	pp.	209–220.	

• [9]	D.	Mosk-Aoyama	 and	D.	Shah,	“Fast	distributed	 algorithms	for	computing	separable	functions,”	 Information	Theory,	 IEEE	Transactions	on,	vol.	
54,	no.	7,	pp.	2997–3007,	 2008.	



Random	sampling

• Problem:	extract	random	samples	from	a	set
• Example:

• The	set:	{1,2,3,1,2,3,2,1,2,3,2,1,2,3,2,1,2,3,3,3}
• Solutions:

• Pick	randomly	 i in	the	range	1-20	and	pick	the	ith element
• Etc…

• Solution	needs	to	generate	random	samples	according	to	the	distribution	of	the	set:
• Element	frequencies	 {1,2,3}→	{0.25,0.4,0.35}



Distributed	random	sampling

• Set	is	distributed	over	n	nodes
• Problem:	pick	random	samples	from	the	set	without	gathering	
all	the	data	at	a	central	point

Original	set:	{		1,2,3,	 	1,		2,3,2,	 	1,2,	 	3,2,1,	 	2,3,2,1,	 	2,3,		3,3		}

{1,2,3}

{1,2}

{3,2,1}

{2,3,2}

{1}

{2,3,2,1}
{2,3}

{3,3}



Push-Random	algorithm

• Protocol	uses	short	messages
• Each	node	holds	only	one	element
• Messages	contain	one	element	+	one	weight

Node	i:
1: {(qr,t-1,ωr,t-1)}	– received	pairs	in	round	 t-1
2: ωi,t =	Σr	(ωr,t-1)

qi,t =	picked	at	random	from	{qr,t-1}	with	prob.	wr,t-1/ωi,t
3: choose	shares	αi,j,t for	each	neighbor	 j
4:	 send	to	eachneighbor	 j:	(qi,t,	αi,j,t·ωi,t)
5: random	sample	in	round	 t	is:	qi,t
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Processing	in	distributed	systems

• Specialists	are	expensive,	simple	programming	paradigms
• Example:	Basic	Linear	Algebra	Subprograms	(BLAS)	
• GPU-s,	multicore	systems,	the	“cloud”
• Primitive:					[…]m,n x	[...]n,1

• BLAS	for	mesh	networks	- difficult…
• Current	cloud	research	- graph	processing GPUs

Multicore	
systems

Server	farm
Mesh	

networks



Moving	towards	data	science	applications

• What	is	data	science?
• Big	data,	cloud	computing,	…
• Statistics,	analytics...
• Machine	learning

• Data,	data,	data…	Who	produces	large	amounts	of	data?
• Embedded	sensors

• Wireless	sensor	networks
• Internet	of	things
• Machine-to-machine

• “Others”:	human	social	activities	(networks,	videos,	images,	songs,	etc)



Kaggle	and	data	science	competitions



Third	layer

Basic	primitives	 (gossiping,	 etc.)

Functions:	 counts,	 polynomials,	 filters,	
convex	optimization,	etc.

Classifiers	 &	machine	learning

Data	analytics	API



Moving	towards	data	science	applications

• Motivation:
• Traditionally	

• Get	the	data	out	of	the	network	fast	and	clean
• Data	scientists	will	process	it	in	the	cloud	afterwards

• Opportunities
• The	network	is	the	tool	- traffic,	resolution,	lifetime,	don’t	hold	two	infrastructures
• Unexpected	additional	benefit:	privacy	(!)



Use	case:	operational	smart	grid

• Robustness	metrics
• Real	time	results	needed
• Highly	dynamic	network	(continuously	changing	load)
• Dynamic	network	topology
• Tremendous	size	– country	wide	deployment

• Self-stabilizing	epidemic	algorithms
• Achieve	real	time	monitoring
• Use	insignificant	resources
• (Almost)	constant	behavior	function	of	network	scale

Koç,	Yakup,	et	al.	"A	robustness	metric	for	cascading	failures	by	targeted	attacks	in	power	networks.”,	2013



Example:	computing	robustness	in	the	smart	grid
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Ideas	from	different	fields	- data	mining

• Problem:
• Banks	need	to	agree	on	the	profile	of	the	customer	(defaulter)
• Banks	cannot	exchange	client	data

• Idea:
• What	if	data	never	leaves	the	nodes?
• Gossiping	may	be	used	for	computation	of	classifier	parameters



Distributed	classifiers

H.	Daume	- Protocols	for	Learning	Classifiers	 on	Distributed	Data,	2012



Preventive	maintenance



Machine	learning	&	electricity	networks

• Non	intrusive	load	monitoring	(NILM)
• Problem:
• Detect	which	devices	are	active	at	given	moments	of	time

• Solution:
• Employ	machine	learning	to	estimate	the	number	of	devices	and/or	identify	
specific	devices



NILM	and	machine	learning

A. Zoha	- Non-Intrusive	 Load	Monitoring	Approaches	for	Disaggregated	Energy	Sensing:	A	Survey,	 2012
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Use	case:	dynamic	crowd	monitoring

• Cardinality	as	value	of	interest
• Number	of	people,	density,	flux,	etc.
• Infrastructure	– congested	or	unavailable
• Worst	dynamics	from	network	perspectives

• Use	available	technology
• Smartphones	in	ad-hoc	communication	mode
• Low	resource	consumption
• High	availability,	robust	estimates



More	application	examples

• More	possible	applications:
• Detecting	average	speed,	traffic	jam	size,	number	of	cars	in	traffic
• Monitoring	number	of	persons	in	a	public	place,	detecting	stampedes
• Optimizing	resource	allocation	in	transport	and	logistics	scenarios



Even	more	applications

• Target	networks	where	large	data	dissemination	is	not	the	main	goal
• Example:
• Large-scale	networks
• Running	non-standard	routing	algorithms
• User	needs	to	access	all	data	for:

• Signaling	exceptions
• Estimating	network	parameters
• Computing	parameters	for	optimization	algorithms

Robbert	Van	Renesse	et	al.	- Astrolabe:	A	robust	and	scalable	technology	for	distributed	 system	monitoring,	
management,	and	data	mining,	 ACM	transactions	on	computer	systems	(TOCS)	 2003



Influence	of	failures

• Under	ideal	conditions	(no	failures):
Σimi,t-1 =	Σimi,t – mass	conservation
Σiωi,t-1 =	Σiωi,t – weight	conservation

• In	real	environment:
• Node		failures:	mass	loss
• Communication	failures:	mass	loss
• Churn:	severe	mass	loss

Márk	Jelasity:	Gossip-based	 aggregation	in	large	dynamic	 networks.	ACM	Trans.	Computer	Systems,	 2005



Network	size	estimation	with	50%	nodes	crashes



Network	size	estimation	under	node	churn



What	to	do	about	failures?

• Introduce	the	concept	of	synchronized	epochs
• Márk	Jelasity:	Gossip-based	 aggregation	 in	large	dynamic	networks,	2005

• Run	several	algorithms	in	parallel
• N.	Bicocchi	et	al	- Handling	dynamics	in	diffusive	aggregation	schemes:	An	
evaporative	approach,	2010

• Introduce	on	purpose	periodic	failures	(resets)
• A.	Pruteanu	et	al	- ChurnDetect:	A	Gossip-Based	Churn	Estimator	for	Large-Scale	
Dynamic	Networks,	2011



Counter-based	self-stabilization

• Each	value	in	the	network	has	a	time-to-live	associated
• Time-to-live	is	initialized	with	a	maximum	T
• Time-to-live	decreases	with	time	(and	hopcount)
• When	time-to-live	reaches	0,	values	are	deleted	and	replaced

• Effects
• Values	belonging	to	failed	nodes	will	disappear	– no	tracking	needed
• Old	values	which	got	changed	will	also	disappear	with	time-to-live

• Choosing	the	T	constant
• T	should	be	as	large	as	possible

• Larger	than	the	diameter	of	the	graph
• Messages	should	be	allowed	to	span	the	whole	network	before	expiring

• T	should	be	as	small	as	possible
• Size	of	T	is	linked	directly	to	the	“refresh”	speed	of	the	network

* * * * * * * * * *Final	vector
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• σ2	– σ1	reflects	the	sum	of	the	changed	values	
in	the	network
• σ3	– σ2	reflects	the	sum	of	the	replaced	values	
in	the	network

Propagation	of	fast/slow	values
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Conclusions

• System	design	to	match	the	new	data	processing	requirements
• Reviewed	a	possible	basic	primitive:	gossiping
• Basic	primitive	allows	complex	functions	and	classifiers
to	be	built	directly	in	the	network

• Additional	information	for	this	lecture:
• Maarten	van	Steen:	Gossiping	 in	Large-Scale	
Distributed	Systems	

• Ozalp	Babaoglu:	Complex	Systems
• Giovanna	di	Marzo	Serugendo:	Adaptive	Systems
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