
RECORDS: a Remote Control Framework
for Underwater Networks

Giovanni Toso, Ivano Calabrese, Paolo Casari, Michele Zorzi

Department of Information Engineering, University of Padova, Italy

tosogiov@dei.unipd.ithttp://nautilus.dei.unipd.it/

Scenario

● underwater sea trials
● underwater acoustic nodes
● nodes deployed at

○ sea surface
○ sea bottom
○ floating

● no cabled or wifi connection
○ mobile nodes
○ distances of several kilometers

Introduction

● how to acquire real-time information?
○ status of the node
○ residual battery
○ disk space available
○ SNR of a given link

● how to reconfigure the nodes / network?
● how to start a network experiment?

RECORDS

● open source framework
● makes it possible to remotely monitor and control a

heterogeneous network
● exploits acoustic communications to deliver control

messages
● avoids the need to deploy cabled or wireless

connections to control each node

RECORDS

● ready-to-use, lightweight, robust and reliable tool
● very cheap in terms of hardware resources
● easily portable on several embedded systems
● manages in real time network experiments by using the

DESERT Underwater framework

RECORDS

● is composed of four modules
○ remote control
○ startup
○ system profiler
○ log files processor

● the framework has been written using scripting
languages
○ Tcl
○ Expect
○ Bourne Shell

STARTUP module

● watchdog daemon
● reads the parameters passed by the user
● checks that the required network ports are available
● starts other modules in the correct order
● starts the system profiler
● restores other modules in case of errors

PROFILER module

● keeps track of the CPU and RAM consumption of each
component of the framework

CORE modules

Network stack

CORE module (MAC)
● interacts directly with the

modem to deliver the
messages coming from the
upper layers and vice-versa

● provides basic multiple access
interference mitigation through
random back-off delays

● retrieve the multipath structure
of the channel and logs it

CORE module (NET)
● implements two routing

protocols:
○ static source routing
○ flooding

● each packet can be sent in
broadcast, unicast or
multicast, using either
protocols

● packets sent via different
protocols can coexist
simultaneously in the network

CORE module (APP)
● makes it possible to remotely

start or kill instances of
DESERT and keeps track of
them

● acts as an abstraction layer
for the modem

● creates end-to-end
acknowledgement messages

● interacts with the operative
system to run any system
command

CORE module (USR)
● used to mimic the behavior of

an actual user
● can query the modem by

mimicking a human user
● the settings can be issued at

boot time, after a
predetermined period, or also
periodically

● it makes it possible to send
periodic heartbeat messages

CORE module (NSC)
● resides between an instance

of the DESERT framework
and the modem

● forwards messages from the
DESERT software to the
modem and vice-versa

● simulates a desired PER
value over a given source-
destination link

● retrieve the multipath structure
of the channel and logs it

● provides a random traffic
generator

● can started/stopped remotely
on demand

● can be configured to send
random ASCII strings, the
length, the destination and the
period can be programmed
remotely

CORE module (NSD)

ANALYZER module

● processes the logs and produces a human-readable
output

● used to obtain statistics on the fly and in real time
● generates plots

Hardware

● S2CR White Line Science Edition (WiSE)
● S2CR 18/34
● IGEPv2 DM3730
● Pandaboard
● Gumstix FIREstorm + Tobi/Tobi-Duo
● Raspberry Pi Model B
● PC (x86 and x86_64)

Experiments

● testbed
○ CPU and RAM usage
○ delivery and execution

latency for remote
commands

● sea trial
○ CommsNet’13

(La Spezia, Italy)

CPU usage (high traffic T = 2s)

Gusmtix

Raspberry

CPU usage (low traffic T = 30s)

Gusmtix

Raspberry

RAM usage (high & low traffic)

Testbed

Testbed

Testbed

Testbed

Delivery and execution latency

● 1.33 s for the command without ACK
○ 0.73 -> RECORDS
○ 0.60 -> MODEM + acoustic communication

● 3.75 s for the command with ACK
○ 1.60 -> RECORDS
○ 0.54 -> system processing time
○ 1.61 -> MODEM + acoustic communication

● 4.76 s for command to start network simulation with
DESERT

○ 1.67 -> RECORDS
○ 1.48 -> system processing time
○ 1.61 -> MODEM + acoustic communication

* the nodes clock were synchronized through NTP

Sea Trial
● Sep 9th–22nd, 2013
● CommsNet’13 sea trial in La

Spezia, Italy
● collaboration with the NATO

STO CMRE
● several types of nodes:

bottom, mobile and floating
● not all the nodes were

reachable via a cable or radio
link

● we could only reconfigure
them and check their status
via the RECORDS framework

● more than 30 experiments

Sea Trial

Sea Trial

Sea Trial

Sea Trial
● experiment with ID 53
● 8 nodes available
● direct access to node 2
● configuration command:

SEND,F,255,4,NS 53 M
60 240 36000 4 1 0 15
48 120 2 7 8 3

● flooding + TTL = 4
● nodes 1, 3, 5, 7 and 8

received it directly
● node 4 from node 3
● nodes 2 and 9 from node 5

● we presented RECORDS, an open source framework to
remotely control underwater modems via acoustic
messages

● RECORDS is modular
● we conducted several field experiments to test the

framework
● the results show that RECORDS is a stable, lightweight

and robust solution to control underwater networks

Conclusion

● we measured both the impact of RECORDS on the
system resources of different embedded platforms and
the latency

● the results confirm that RECORDS can be employed
extensively in real world experiments

Conclusion

The authors gratefully thank

● Piero Ruol and Luca Martinelli for the access to the wave flume of
the Maritime Laboratory of the Civil, Environmental and
Architectural Engineering Department of the University of
Padova

● the NATO STO CMRE for involving the authors in the CommsNet’
12 and CommsNet’13 campaigns

● the partners of the EDA RACUN project for allowing us to
experiment the MSUN protocol

Acknowledgments

Delivery and execution latency

Sea Trial

Testbed

Delivery and execution latency

● we evaluated the time required to execute remote
commands
○ commands without ACK
○ commands with ACK
○ commands to start network simulation with DESERT

● nodes clock synchronized through NTP
● 2 -> 1 -> 3 (16 meters between the external nodes)

