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Efficient Distributed Computation of Confidence Regions

Introduction

Introduction and Motivation

Context: Parameter estimation distributed over a wireless
sensor network.
Normally, accent on estimation.
Confidence regions assess quality for estimates.
Classical methods (Cramer-Rao bound) in the asymptotic
domain.
Non asymptotic methods are of interest→ SPS algorithm
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Efficient Distributed Computation of Confidence Regions

State of the Art

The centralized sign perturbed sums (SPS) algorithm

Method developed in Csàji et al. 2012 [1].
Network of N nodes taking linear observations yi = ψ

T
i p∗ + wi .

Measurement noise is assumed independent and
symmetrically distributed with respect to zero. Compute

z0(p) =

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

ψi

(
yi −ψT

i p
) ∣∣∣∣∣
∣∣∣∣∣
2

2

(1)

and the m − 1 norms of the sign perturbed sums

zj(p) =

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

αj,iψi

(
yi −ψT

i p
)∣∣∣∣∣
∣∣∣∣∣
2

2

, (2)

where j = 1, . . . ,m − 1 and αj,i ∈ {±1} are independent,
identically distributed and equiprobable random signs.
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Efficient Distributed Computation of Confidence Regions

State of the Art

The centralized SPS algorithm

The confidence region Σq for the true parameter value p∗ is
defined as

Σq =

p ∈ P

∣∣∣∣∣∣
m−1∑
j=1

τj(p) ≥ q

 , (3)

where τj(p) = 1 if zj(p)− z0(p) > 0 and 0 otherwise. In Csàji et
al. 2012 [1] it was proven that one has

Prob(p∗ ∈ Σq) = 1− q
m
. (4)
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Efficient Distributed Computation of Confidence Regions

Novel Contribution

Centralized vs Distributed Approach

The centralized version requires all regressors ψi and
measurements yi .
Goal: develop a distributed version ensuring every node
can compute the confidence region, merging the local
information and keeping the same level of confidence.
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Efficient Distributed Computation of Confidence Regions

Novel Contribution

Proposed distributed approaches

Information diffusion via
Flooding
Consensus algorithm
Mixed flooding + consensus scheme

Comparison in terms of traffic load.
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Efficient Distributed Computation of Confidence Regions

Novel Contribution

Flooding

To evaluate zj in (2), node i starts transmitting message

mi =
[
ψT

i , yi

]
.

Each node initially transmits D(0)
f = np + 1 values, and

D(last)
f = N(np + 1) values, in the end.
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Efficient Distributed Computation of Confidence Regions

Novel Contribution

Consensus

In eq. (2), we have sums of local quantities.
Average consensus algorithm is well suited.
Node i must start transmitting

x(0)
i =

[
(ψiyi)

T ,
{
ψiψ

T
i

}
,
{
(αj,iψiyi)

T
}

j ,
{
αj,iψiψ

T
i

}
j

]
, with

j = 1,2, . . . ,m − 1.
The state dimension is Dc = m(3np + n2

p)/2.
The state dimension is constant, but is larger than the one
initially required by flooding.
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Efficient Distributed Computation of Confidence Regions

Novel Contribution

Consensus

Node i updates its state as

x(k+1)
i =

N∑
j=1

wi,jx
(k)
j . (5)

A possible choice for the coefficients: Metropolis matrix.
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Efficient Distributed Computation of Confidence Regions

Novel Contribution

Mixed Approach

Mixed strategy performs flooding until data dimension
exceeds Dc.
When this happens, switch to the consensus strategy.

The initial consensus state x(0)
i , must be set to the

average of the already received quantities.
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Efficient Distributed Computation of Confidence Regions

Novel Contribution

Effect of information diffusion truncation

Due to traffic load limitations, truncation of information
diffusion may occur.
The truncation yields a loss of performance (larger
regions).
The confidence level is instead kept the same as in the
centralized case.
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Efficient Distributed Computation of Confidence Regions

Numerical Results

Numerical Results Setup

Simulations were performed using Matlab alongside the
Intlab package [2].
True parameter: p∗ = [p∗

1,p
∗
2,p

∗
3]

T = [0.2,0.3,0.4]T .
White Gaussian measurement noise, with variance
σ2 = 115.
Regressors taking values in {−1,1}.
90% outer approximation of confidence regions (q = 1,
m = 10), computed at node #1.
Computational efficiency via interval analysis techniques
Kieffer et al. 2014 [3].
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Numerical Results
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Outer approximation of the 90% confidence region at node #1
after 4 consensus iterations, when N = 100.
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Numerical Results
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Comparison of diameters of the single box outer approximation
as a function of the amount of received data at node #1, when

N = 100 nodes.
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as a function of the amount of received data at node #1, when

N = 250 nodes.
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Efficient Distributed Computation of Confidence Regions

Final Summary

Final Remarks

1 Distributed non-asymptotic confidence regions have the
same level of confidence as centralized ones.

2 The price for information shortage is larger confidence
regions.

3 Flooding is good at diffusing information, when no
limitations on traffic load are present. The proposed mixed
approach is advantageous when a limit is instead present.
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