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Hakan Köroğlu and Paolo Falcone (CHALMERS) Platooning Control July 10, 2015 3 / 30



Lecture content

1 Platoon Model under Predecessor Following

2 Formulation of a Synthesis Problem

3 LMI Conditions for Stability and Performance

4 Synthesis with Multiple Performance Objectives

5 String Stability under Predecessor Following

6 An LMI-Based Synthesis for Predecessor Following

7 Extension to Leader and Predecessor Following

8 String Stability of Leader and Predecessor Following

9 Improving Robustness against Measurement Noise

10 Robust Synthesis for Uncertain Vehicle Models

11 Concluding Remarks
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Platoon Model under Predecessor Following

1+ 1

Kinematics (under constant time headway policy with a time gap of
h):

Position Velocity Acceleration

Absolute φi ϕi = φ̇i αi = ϕ̇i

Relative pi , φi−1 − φi − ri − hϕi vi , ϕi−1 − ϕi ai , αi−1 − αi

Vehicle Dynamics (with a first-order model identified by a time

constant τ):

α̇i = −
1

τ
αi +

1

τ
ui

Platoon Model:




ṗi
v̇i
α̇i





︸ ︷︷ ︸

ẋi

=





0 1 −h
0 0 −1
0 0 − 1

τ





︸ ︷︷ ︸

A





pi
vi
αi





︸ ︷︷ ︸

xi

+





0
0
1
τ





︸ ︷︷ ︸

B

ui +





0
1
0





︸ ︷︷ ︸

H

αi−1
︸︷︷︸

di
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Formulation of a Synthesis Problem
Consider the platoon model with fixed and known (A,B,H):

ẋi = Axi +Bui +Hdi

Introduce a performance indicator whose “size” is required to be
“small”. With c serving as a parameter to adjust comfort, a good choice
would be

[
pi
cτα̇i

]

︸ ︷︷ ︸

zi

=

[
1 0 0
0 0 −c

]

︸ ︷︷ ︸

C

xi +

[
0
c

]

︸ ︷︷ ︸

D

ui +

[
0
0

]

︸ ︷︷ ︸

E

di

String stability will be linked to αi =
[
0 0 1

]

︸ ︷︷ ︸

S

xi + 0 · ui + 0 · di

Problem: Find gains F and G such that the controlled system

ui = Fxi
︸︷︷︸

FB

− Gdi
︸︷︷︸

FF

⇒
ẋi = (A+BF )xi + (H −BG)di
zi = (C +DF )xi + (E −DG)di

is stable and respects the following constraint (with a “desirably” small
γ):

‖zi‖ < γ‖di‖, for all di with 0 < ‖di‖ <∞ and xi(0) = 0

Size ‖ · ‖ can be defined in alternative ways and differently for di and zi.
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Lp Norms as Signal Sizes
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||d||∞ = 1.857

Size is usually measured with the common Lp-norms (p = 2,∞):

‖d‖2 ,

√
∫ ∞

0

dT (t)d(t)dt ‖d‖∞ , sup
t≥0

√

dT (t)d(t)

Hakan Köroğlu and Paolo Falcone (CHALMERS) Platooning Control July 10, 2015 9 / 30



H∞ versus Generalized H2 Performance Objectives
For simplicity drop index i and introduce the transfer function from d to
z:

ẑ(s) =
[
(C +DF )(sI −A−BF )−1(H −BG) + E −DG

]

︸ ︷︷ ︸

S(s)

d̂(s)

H∞ and H2 norms are defined for stable transfer functions as follows:

‖S‖∞ , sup
ω∈R

√

λmax [S∗(ω)S(ω)] ‖S‖2 ,

√
∫ ∞

0

trace [S∗(ω)S(ω)] dω

Energy-to-energy gain bounding is an H∞ constraint:

γ > ‖S‖∞

FACT
︷︸︸︷
= sup

d 6=0

‖z‖2
‖d‖2

⇔ ‖z‖2 < γ‖d‖2

Energy-to-squared-peak gain bounding is a generalized H2

constraint:

When z is scalar: γ > ‖S‖2

FACT
︷︸︸︷
= sup

d 6=0

‖z‖∞
‖d‖2

⇔ ‖z‖∞ < γ‖d‖2
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LMI Conditions for H∞ Constraints
Construct a candidate Lyapunov function via Y ≻ 0 and impose

d

dt
xT (t)Y −1x(t) +

1

γ
zT (t)z(t)− γdT (t)d(t)

︸ ︷︷ ︸

η(t)

< 0 ⇒
1

γ
‖z‖22 − γ‖d‖22

︸ ︷︷ ︸
∫

∞

0
η(t)dt

< 0

Introduce θ , Y −1x (⇒ x = Y θ) and N , FY (⇒ Fx = Nθ) to obtain

ẋ = (AY +BN)θ + (H −BG)d
z = (CY +DN)θ + (E −DG)d

Let us now express η in terms of θ as well:

η = xTY −1
︸ ︷︷ ︸

θT

ẋ+ ẋT Y −1x
︸ ︷︷ ︸

θ

+
1

γ
zT z − γdT d

We now derive the concise expression

η = 2

(

θT ẋ+
1

2γ
zT z −

γ

2
dTd

)

= 2





θ
d
1
γ
z





T

︸ ︷︷ ︸

κT





ẋ
− γ

2d
1
2z





︸ ︷︷ ︸

µ

= κ
Tµ+ µT

κ
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LMI Conditions for H∞ Constraints (ctd.)
Using the system dynamics, we relate µ to κ as

µ =





ẋ
− γ

2d
1
2z



 =





AY +BN H −BG 0
0 − γ

2 I 0
CY +DN E −DG − γ

2 I





︸ ︷︷ ︸

M





θ
d
1
γ
z





︸ ︷︷ ︸

κ

We thus express η < 0 as follows:

η = κ
T Mκ
︸︷︷︸

µ

+κ
TMT

︸ ︷︷ ︸

µT

κ = κ
T (M +MT )
︸ ︷︷ ︸

N=He{M}

κ < 0

In order to ensure this condition at each time instant, we need to have

η(t) < 0, ∀t ≥ 0 ⇔ κ
TNκ < 0, ∀κ 6= 0 ⇔ N ≺ 0

LMI condition for η(t) < 0 and the resulting FB gain are obtained as
follows:

N =





He{AY +BN} H −BG ∗
∗ −γI ∗

CY +DN E −DG −γI



 ≺ 0, Y ≻ 0, F = NY −1
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LMI Conditions for Generalized H2 Constraints

In order for z to have finite peak for all finite-energy d, we need to have

E −DG = 0

In this case candidate Lyapunov function is required to satisfy two
conditions:

d

dt
xT (t)Y −1x(t) − γdT (t)d(t)

︸ ︷︷ ︸

η(t)

< 0 ⇒ xT (t)Y −1x(t) < γ

∫ t

0

dT (τ)d(τ)dτ

︸ ︷︷ ︸

≤‖d‖2
2

xT (t)Y −1x(t)−
1

γ
zT (t)z(t)

︸ ︷︷ ︸

µ(t)

> 0 ⇒
1

γ
zT (t)z(t)− γ‖d‖22 < 0, ∀t ≥ 0

LMI conditions for η(t) < 0 and µ(t) > 0 are obtained in a similar fashion:

[
He{AY +BN} H −BG

∗ −γI

]

≺ 0,

[
Y ∗

CY +DN γI

]

≻ 0
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Synthesis with Multiple Performance Objectives
Consider a synthesis problem in which constraints need to be imposed on

zj = Cjx+Dju+ Ejd, j = 1, . . . ,m

Normally, LMI conditions for j’th constraint can be imposed with
(Y j , N j).

In order achieve the objectives with a common FB gain, we need to have

F = N1(Y 1)−1 = . . . = Nm(Y m)−1

The synthesis problem becomes nonlinear due to these coupling
constraints.

Suboptimal synthesis can be performed with identical (Y j , N j).

To potentially improve the suboptimal synthesis (for m ≤ 3), one can use

(Y j , N j) = ψj(Y ,N)

with ψ1 = 1 and perform a search over the scalars ψj > 0 for j = 2, . . . ,m.

A better alternative would be to use the so-called dilated LMI

conditions, which also usually have bilinear dependance on scalar
variables.
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L2 String Stability under Predecessor Following

=           < 1=           < 1

It is important to ensure the string stability of acceleration signals αi as
well.

L2 string stability conditions read as H∞ constraints (on ǫ̂i(s)
ǫ̂i−1(s)

, α̂i(s)
α̂i−1(s)

,

...).

Since di = αi−1 in predecessor following, string stability of αi is expressed
as

‖T ‖∞ ≤ 1, where α̂i(s) = S(sI −A−BF )−1(H −BG)
︸ ︷︷ ︸

T (s)

d̂i(s)

In homogenous platoons, this ensures string stability for ǫi as well since

ǫ̂i(s)

ǫ̂i−1(s)
=

s2p̂i(s)

s2p̂i−1(s)
=

s[v̂i(s) + hα̂i(s)]

s[v̂i−1(s) + hα̂i−1(s)]
=

âi(s) + hsα̂i(s)

âi−1(s) + hsα̂i−1(s)
= T (s)
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An LMI-Based Synthesis for Predecessor Following
One can formulate a synthesis based on two performance objectives:

◮ an H∞ (or generalized H2 objective) for zi = C · xi +D · ui + E · di:

‖zi‖2 < γ‖di‖2 (or ‖zi‖∞ < γ‖di‖2)

◮ an H∞ objective for αi = S · xi + 0 · ui + 0 · di (related with string
stability):

‖αi‖2 < σ‖di‖2

By a line search over ψ > 0, one can minimize γ (σ) for fixed σ (γ) under
◮ 



He{AY +BN} H −BG ∗
∗ −γI ∗

CY +DN E −DG −γI



 ≺ 0, Y ≻ 0

(

or

[

He{AY +BN} H −BG

∗ −γI

]

≺ 0,

[

Y ∗
CY +DN −γI

]

≻ 0, E −DG = 0

)

◮ (Adapt first condition by C → S,D → 0, E → 0, Y → ψY )




ψHe{AY +BN} H −BG ∗
∗ −σI 0

ψSY 0 −σI



 ≺ 0

The feedback gain can then be constructed as F = NY −1.
Remark: For given model, minimum σ will be 1 for sufficiently large h.
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Extension Leader and Predecessor Following

Kinematic variables are defined in terms of a predecessor weight

κ ∈ [0, 1]:

pi , κ(φi−1 − φi − ri) + (1− κ)(φ0 − φi − r1 − r2 − . . .− ri)− hϕi

vi , κ(ϕi−1 − ϕi) + (1 − κ)(ϕ0 − ϕi)

One obtains a platoon model in identical form (i.e. same A,B,H) with

di , καi−1 + (1 − κ)α0

Synthesis can be performed in the same way as in predecessor following.
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String Stability of Leader and Predecessor Following
String stability is again linked to the performance objective
‖αi‖2 < σ‖di‖2.
In this case, string stability of αi can be guaranteed with respect to
leader:

σ ≤ 1 ⇒ ‖αi‖2 < ‖α0‖2, ∀i ≥ 1.

Spacing errors are now defined with a smaller headway term for i > 2:

ǫi = φi−1 − φi − ri − hϕr
i (ǫi = pi − pi−1 + κǫi−1, ǫ1 = p1)

The reduced velocity ϕr
i (for i ≥ 2) used in the headway terms is given by

ϕr
i , ϕi − (1− κ)(ϕi−1 + κϕi−2 + . . .+ κi−2ϕ1)

By using âi = α̂i−1 − α̂i = T (d̂i−1 − d̂i) = κT âi−1, one can show that

ε̂i
ε̂i−1

= κT (s) = κ
α̂i

d̂i
(note the difference from predecessor following)

String stability of ǫi can always be guaranteed by choosing κ small
enough:

‖ǫi‖2 < κσ‖ǫi−1‖2 (κ ≤ 1/σ ⇒ ‖ǫi‖2 < ‖ǫi−1‖2)

Control with small κ would be sensitive to communication errors with
leader.
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Improving Robustness against Measurement Noise

The given LMIs might lead to large gains and hence sensitivity to noise.

State measurement noise in the problem formulation leads to bilinear
matrix inequalities, which need to be relaxed into LMIs.

Dilated LMI conditions might be preferable for handling state noise.

Noise sensitivity can be reduced indirectly by enforcing
λmax(FWFT ) < 1. Bound on the gains can be adjusted by (typically
block-diagonal) W =WT .

Sufficient LMI conditions are derived for this based on

FWFT = N
(
Y −1WY −1 − λ−2W−1

)

︸ ︷︷ ︸

≺0

NT + λ−2NW−1NT

︸ ︷︷ ︸

≺λ2I

≺ I

where λ serves as an artificial variable that facilitates the decoupling.

The conditions indicated by the braces are expressed equivalently as

Y ≻ λW and

[
λW NT

N λI

]

≻ 0

Observe that the second condition is an LMI for fixed W .

Hakan Köroğlu and Paolo Falcone (CHALMERS) Platooning Control July 10, 2015 25 / 30



Lecture content

1 Platoon Model under Predecessor Following

2 Formulation of a Synthesis Problem

3 LMI Conditions for Stability and Performance

4 Synthesis with Multiple Performance Objectives

5 String Stability under Predecessor Following

6 An LMI-Based Synthesis for Predecessor Following

7 Extension to Leader and Predecessor Following

8 String Stability of Leader and Predecessor Following

9 Improving Robustness against Measurement Noise

10 Robust Synthesis for Uncertain Vehicle Models

11 Concluding Remarks
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Robust Synthesis for Uncertain Vehicle Models
Consider a vehicle model with uncertain τ ∈ [τmin, τmax]. Platoon model
with affine δ , 1

τ
∈ [δmin = 1

τmax
, δmax = 1

τmin
] dependence is obtained with





0 1 −h 0
0 0 −1 0
0 0 − 1

τ
1
τ





︸ ︷︷ ︸
[

A(δ) B(δ)
]

=





0 1 −h 0
0 0 −1 0
0 0 0 0





︸ ︷︷ ︸
[

A0 B0

]

+





0 0 0 0
0 0 0 0
0 0 −1 1





︸ ︷︷ ︸
[

A1 B1

]

δ

Parameter-independent Y , N and G lead to LMIs with affine δ
dependence:

N0(Y ,N,G) +N1(Y ,N,G)δ ≺ 0, ∀δ ∈ [δmin, δmax]

These infinitely-many LMIs are satisfied if and only if

N0(Y ,N,G)+N1(Y ,N,G)δmin ≺ 0 and N0(Y ,N,G)+N1(Y ,N,G)δmax ≺ 0

A design based on these LMI conditions will ensure stability and
robustness against arbitrary variations in δ = 1/τ over time.
If |δ̇| ≤ νmax, one can use dilated LMIs with some δ-dependent
variables.
Finitely many (sufficient) LMIs are then obtained via relaxations.
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Example H∞ State Feedback Synthesis
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i=0 i=1 i=2 i=3

Design parameters: τmin = 0.3, τmax = 0.5, h = 1.1, c = 0.2, W = 0.1I

Optimization results: σ = 1.01, γ = 0.48 [with ψ = 0.6]

Feedback Gain: F =
[
1.6645 1.5061 −0.9745

]

Simulation scenario: ϕi(0) = 20m/s, ri = 10m, zero initial spacing errors.
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Concluding Remarks

Platoon control is a good application of LMI-based multi-objective
synthesis.

Synthesis based on parameter-dependent vehicle models can also be used
for the control of heterogenous platoons.

String stability of the spacing errors is ensured by the given LMI
condition only when uncertain parameters are constant and common for
all vehicles. Vehicle-specific parameter variations lead to additional
disturbance effects.

When only some states are available, one can use dilated LMI conditions
for static output feedback. It is possible to perform an LMI-based
synthesis for dynamic output feedback as well. Nevertheless, synthesis for
uncertain systems will then be more challenging.

It is possible to implement the leader and predecessor following scheme
with a predecessor weight that changes smoothly over time.

Reference: Hakan Köroğlu and Paolo Falcone, “Robust Static Output
Feedback Synthesis for Platoons under Leader and Predecessor
Feedback”, submitted to IEEE Transactions on Control Systems

Technology for review.
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