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Note: The following notes have been extracted from “A Control Matching
Model Predictive Control Approach to
String Stable Vehicle Platooning”, Roozbeh Kianfar, Paolo Falcone, Jonas
Fredriksson. Submitted to Control Engineering Practice.
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Modeling and notation
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Consider the platoon in the
figure. Model the i-th vehicle as
(i = 1, . . . , N):

ėp,i = ev,i − aihi,
ėv,i = ai−1 − ai,
ai = Ki

τis+1e
−θisadesi ,

The resulting model is ẋ(t) = Ax(t) +Buu(t− θ) +Bωω(t), with

x =
[

ep,i ev,i ai vi
]T

,

ui = adesi ,

ω = ai−1,

A =









0 1 −hi 0
0 0 −1 0
0 0 −1/τi 0
0 0 1 0









,

Bu =









0
0
Ki

τi

0









, Bω =









0
1
0
0
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Control objective, constraints and requirements
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Problem statement. Minimizing the position and velocity errors
while satisfying a performance (e.g., string stability and smooth
driving) and safety requirements (e.g., rear-end collision avoidance).

1 Safety. A safe minimum distance must be maintained from the
preceding vehicle in order to prevent rear-end collisions

ep,min ≤ ep,i(t) ≤ ep,max, ∀t ≥ 0.

2 Performance (comfort).
◮ Bounds on relative velocities

ev,min ≤ ev,i(t) ≤ ev,max, ∀t ≥ 0,

◮ Max velocity 0 ≤ vi(t) ≤ vmax, ∀t ≥ 0,
◮ Acceleration

amin ≤ ai(t) ≤ amax, ∀t ≥ 0,

3 Physical limitation. Max acceleration demands imposed by the
powertrain

umin ≤ ui(t) ≤ umax, ∀t ≥ 0.



Control objective, constraints and requirements
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Constraints 1-3 can be compactly written as

[

Hx Hu

]

[

x
u

]

≤ hx.

Definition

A vehicle platoon is predecessor-follower string stable w.r.t. an
acceleration disturbance if

‖Γi(s)‖∞ = sup
ai−1 6=0

‖ai(t)‖L2

‖ai−1(t)‖L2

.
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MPC problem formulation. Background
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1 Every sampling time solve a
CFTOC, based on the current
state

2 Apply the optimal input only in
[t, t+ 1]

3 At t+ 1 solve a CFTOC over a
shifted horizon based on new
state measurements

4 The resulting controller is referred to as Receding
Horizon Controller (RHC).

5 If the finite time optimal control law is computed by solving
an optimization problem on-line, the RHC is usually
referred to as Model Predictive Control (MPC).



MPC problem formulation
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J(x(t), ω(t)) = min
Ut

‖Px(N |t)‖2

+
N−1
∑

k=0

‖Qx(t+ k|t)‖2 + ‖Ru(t+ k|t)‖2

subj. to

xt+k+1,t = Fixt+k,t +G1,iut+k,t +G2,iωt+k,t,

[

Hx Hu

]

[

xt+k,t

ut+k,t

]

≤ hx,

xt+N,t ∈ Xf = R
n

ωt+k|t = ωt|t

k = [0, . . . , N − 1],

ωt,t = ω(t),

xt,t = x(t),
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Control matching
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Basic idea

1 Design a string stable linear controller

2 “Tune” the weighting matrices Q, P , R in order to retrieve the
behavior of the string stable linear controller.

Step 1. Consider the feedback/feedforward control policy,

uss,i = Kss

[

x
ω

]

= [Kss
FB Kss

FF]

[

x
ω

]

,

where Kss
FB and Kss

FF are static state feedback and feedforward gains.

The closed-loop dynamics are ẋ(t) = Aclx(t) + Ecl
ω ω(t), where

Acl = A+BuK
ss
FB and Ecl

ω = BuK
ss
FF +Bω. Consider the following

output signals,





ai
ep,i
uss,i



 =

[

CΓ DΓ

CH DH

] [

x
ω

]

.
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Define the transfer functions

1 Γ = CΓ

(

sI −Acl
)−1

Ecl
ω +DΓ, the transfer function from ω to ai,

2 H = CH

(

sI −Acl
)−1

Ecl
ω +DH , the transfer function from ω to

[ep,i uss,i]
T .

Calculate Kss as,

Kss = argmin
Kss

α‖Γ‖∞ + β‖H‖2,

subj.to ‖Γ‖∞ ≤ 1,

Step 2. Rewrite the MPC problem as

J(x(k), ω(k), U(k)) = min
U(k)

U(k)THU(k)

+ 2x(k)TFU(k) + x(k)TY x(k)

subj. to

MU(k) ≤ W (k) + Ex(k),
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Solve the “unconstrained” problem

J(x(k), ω(k), U(k)) = min
U(k)

U(k)THU(k)

+ 2x(k)TFU(k) + x(k)TY x(k)

The solution is U⋆(k) = −H−1FTx(k) and the feedback control law is

u⋆(k) = u(0|k) = −ΛH−1FTx(k),

where Λ = [ I 0 · · · 0 ].

“Match” the controller by finding the weighting matrices P, Q, R
(hidden in H, F ) such that

uss(k) = [KFBKFF ]x̃(k) = −ΛH−1FTx̃(k)

Note that, the obtained MPC controller can guarantee string stability
as long as constraints are not active.
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