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Main concepts and intro

Paolo Falcone (CHALMERS) Platooning Control July 10, 2015 5 / 64

ACC objectives
1 Maintaining a constant vehicle longitudinal speed in absence of

preceding vehicles

2 Maintaing a “safe” distance from the preceding (slower) vehicle, if
any

Actuators
1 Engine

2 Brakes

Sensors
1 Speed sensor (odometer)
2 Radar

◮ Range through
reflections

◮ Range rate through
doppler effect

Note. The ACC is an
“autonomous” system. I.e., no
wireless



Main concepts and intro

1US Department of Transportation, 1992
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First introduced in Japan in early nineties

Originally thought as a “comfort and convenience” system

According statistics (over 90% highways accident cause by human
errors1) may impact safety as well

Basis of many automated driving systems available on the market
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Vehicle following. Control requirements
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Individual vehicle stability

Define the spacing error as

δi = xi − xi−1 + Ldes.

The ACC provide individual vehicle stability if

ẍi−1 → 0 ⇒ δi → 0

String stability

The string stability property implies that, during velocity transients,
the non-zero spacing errors do not amplify toward the tail of a string of
ACC vehiclesa

aSwaroop, 1995, Swaroop and Hedrick, 1996

Individual vehicle stability is trivial. We will focus on string

stability



Vehicle following. Vehicle model
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Assumptions

Two level hierarchical control

Upper level calculates a desired acceleration to meet the control
requirements

Lower level calculates the engine and brake low level control inputs

Hence, model the i-th vehicle as either a double integrator

ẍi = ui,

or as

ẍi =
e−sτ

a+ sT
ui,

where ui = ẍides . Typically,

−5m/s2 ≤ ẍ ≤ 2m/s2



Vehicle following. String stability
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Definition
Define

H(s) =
δi(s)

δi−1(s)
.

The chain of ACC vehicles is string stable ifa

1 ‖H(s)‖∞ ≤ 1

2 h(t) > 0, ∀t ≥ 0

aSwaroop, 1995

Intuitively,

1 Condition 1 guarantees that ‖δi‖2 ≤ ‖δi−1‖2
2 Condition 2 implies that the steady state spacing errors have the

same sign

More rigorous explanation follows



...short detour to norms for signals and systems
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Definitions (signals)

Consider a signal u(t) : t ∈ [−∞,∞] → u ∈ R. Define the following
norms

1 1-Norm ‖u‖1 =

∫
∞

−∞

|u(t)|dt

2 2-Norm ‖u‖2 =

(∫
∞

−∞

u(t)2dt

)1/2

3 ∞-Norm ‖u‖∞ = sup
t

|u(t)|

Definitions (systems)

Consider a linear, time-invariant, causal system y = g ∗ u, where g is
the impulse response and G = L (g)

1 2-Norm ‖G‖2 =

(
1

2π

∫
∞

−∞

|G(jω)|2dω

)1/2

2 ∞-Norm ‖G‖∞ = sup
ω

|G(jω)|



Useful results on gains2

2Doyle, Francis, Tannenbaum, 1992
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2-norm/2-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖G‖∞ = sup
‖y‖2
‖u‖2

Proof.
By the Parseval’s theorem

‖y‖22 = ‖Y ‖22 =
1

2π

∫
∞

−∞

|G(jω)|2|U(jω)|2dω

≤ ‖G‖2
∞

1

2π

∫
∞

−∞

|U(jω)|2dω

= ‖G‖2
∞
‖U‖22 = ‖G‖2

∞
‖u‖22

Show now that ‖G‖∞ is the least upper bound on the 2-norm/2-norm
gain.
Choose u such that ‖u‖2 = 1 and show that ‖Y ‖22 = ‖G‖2

∞



Useful results on gains
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2-norm/∞-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖G‖2 = sup
‖y‖∞
‖u‖2

Proof.
Apply the Cauchy-Schwarz inequality

|y(t)| =

∣
∣
∣
∣

∫
∞

−∞

g(t− τ)u(τ)dτ

∣
∣
∣
∣

≤

(∫
∞

−∞

g(t− τ)2dτ

)1/2 (∫ ∞

−∞

u(τ)2dτ

)1/2

= ‖g‖2‖u‖2 = ‖G‖2‖u‖2

Hence ‖y‖∞ ≤ ‖G‖2‖u‖2
Proof follows the same steps as before



Useful results on gains
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∞-norm gain/2-norm

Consider the system y = g ∗ u, with G = L (g).

‖y‖2
‖u‖∞

= ∞

Proof.
Choose a sinusoidal input signal with frequency ω, such that ω is not a
zero of G. Hence ‖u‖∞ = 1 and ‖y‖22 is unbounded



Useful results on gains
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∞-norm/∞-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖g‖1 = sup
‖y‖∞
‖u‖∞

Proof.

|y(t)| =

∣
∣
∣
∣

∫
∞

−∞

g(t− τ)u(τ)dτ

∣
∣
∣
∣
≤

∫
∞

−∞

|g(t− τ)u(τ)| dτ

≤

∫
∞

−∞

|g(t− τ)| dτ‖u‖∞ = ‖g‖1‖u‖∞

Hence ‖y‖∞ ≤ ‖g‖1‖u‖∞

Proof follows the same steps as before



Useful results on gains3

3Swaroop, 1995
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If g(t) > 0 ∀t ≥ 0 then ‖g‖1 = ‖G‖∞

Proof.

Be γp = sup
‖y‖p
‖u‖p

for a induced p-norm. Since
‖y‖p
‖u‖p

≤ ‖g‖1,

|G(0)| ≤ ‖G(jω)‖∞ ≤ γp ≤ ‖g‖1.

If g(t) > 0 then

|G(0)| =

∣
∣
∣
∣

∫
∞

0

g(τ)dτ

∣
∣
∣
∣
≤

∫
∞

0

|g(τ)|dτ = ‖g‖1



In summary

Table: System gains

‖u‖2 ‖u‖∞

‖y‖2 ‖G‖∞ ∞

‖y‖∞ ‖G‖2 ‖g‖1

Moreover, if g(t) > 0 ∀t ≥ 0 then ‖g‖1 = ‖G‖∞
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Vehicle following. String stability
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Definition
Define

H(s) =
δi(s)

δi−1(s)
.

The chain of ACC vehicles is string stable ifa

1 ‖H(s)‖∞ ≤ 1

2 h(t) > 0, ∀t ≥ 0

aSwaroop, 1995

The main objective is to obtain

‖δi‖∞ ≤ ‖δi−1‖∞,

i.e., ‖h‖1 ≤ 1. This is equivalent to ‖H‖∞ ≤ 1, with the additional
condition h(t) > 0, ∀t ≥ 0.
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Constant spacing control design
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Define the inter-vehicle spacing as

ǫi = xi − xi−1 + ℓi−1,

where ℓi−1 is the length of the (i− 1)-th vehicle.

Define the spacing error as

δi = xi − xi−1 + Ldes,

where Ldes is the desired distance and includes ℓi−1.

Consider a double integrator model for the vehicle and a linear PD
controller

ẍi = −kpδi − kv δ̇i



Constant spacing control design
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Differentiate twice the spacing error

δ̈i = ẍi − ẍi−1 = −kpδi − kv δ̇i + kpδi−1 + kv δ̇i−1

Rearranging leads to the closed-loop error dynamics

δ̈i + kv δ̇i + kpδi = kpδi−1 + kv δ̇i−1,

corresponding to the transfer function

H(s) =
δi(s)

δi−1(s)
=

kp + kvs

s2 + kvs+ kp

Problem. Find kp, kv such that

‖H‖∞ ≤ 1



Constant spacing control design
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Solution. For individual vehicle stability, it must be kv, kp > 0.

Rewrite H(s) as

H(s) =
kp

s2 + kvs+ kp
︸ ︷︷ ︸

H1(s)

(
kv
kp

s+ 1

)

︸ ︷︷ ︸

H2(s)

In order to have ‖H1‖∞ < 1, the damping must be larger than 0.707,
i.e.,

kv

2
√
kp

≥ 0.707 ⇒ kv ≥ 1.4141
√

kp

H2 has to be below one up to the resonant frequency
√
kp. Hence,

kp
kv

≥
√

kp ⇒
√

kp > kv



Constant spacing control design
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Solution. In conclusion, the following conditions have to be satisfied

kv ≥ 1.4141
√

kp,
√

kp > kv, kp, kv > 0

String stability can’t be achieved with a PD controller based
on constant spacing policy

Question. Can string stability be achieved with any other linear
controller?

Answer. No, unless. . . .
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Constant time gap control design

4Chien, 1993
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In Constant Time Gap (CTG) control policy, the desired inter-vehicle
distance varies with the speed

Define the spacing error as

δi = xi − xi−1 + Ldes,

where Ldes = ℓi−1 + hẋi and h is the time gap

Consider a double integrator model for the vehicle and the control law

ui = −
1

h
(ǫ̇i + λδi)

4

The error dynamics become

δ̇i = −λδi



Constant time gap control design
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Analyze the string stability property of the CTG policy

Combine the first order vehicle model and the control

law ui = −
1

h
(ǫ̇i + λδi). Obtain

τ
...
x i + ẍi = −

1

h
(ǫ̇i + λδi)

Differentiate twice the spacing error δi = ǫi + hẋi and replace
...
x i to

obtain

ǫ̈i = δ̈i +
1

τ

(

δ̇i + λδi

)

Solve for ǫi and replace in δi − δi−1 = ǫi − ǫi−1 + hǫ̇i to obtain

H(s) =
δi

δi−1
=

s+ λ

hτs3 + hs2 + (1 + λh) + λ

Problem. Find condition on τ and h such that ‖H‖∞ ≤ 1



Constant time gap control design
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Theorem

‖H‖∞ ≤ 1 if and only if h ≥ 2τ .Proof
Consider the transfer function

H(s) =
δi

δi−1
=

s+ λ

hτs3 + hs2 + (1 + λh) + λ

Substitute s = jω

H(s) |s=jω =
jω + λ

(λ− hω2) + jω (1 + λh− τhω2)

Calculate

|H(s)|
2
=

ω2 + λ2

(λ− hω2)
2
+ ω2 (1 + λh− τhω2)

2



Constant time gap control design
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Proof (Cont.)

Imposing |H(jω)| ≤ 1 leads to

ω2 + λ2 ≤
(
λ− hω2

)2
+ ω2

(
1 + λh− τhω2

)2

Squaring the terms in parentheses and rearranging

τ2h2ω4 +
(
h2 − 2τh− 2τλh2

)
ω2 + λ2h2 ≥ 0

Study positiveness of aω4 + bω2 + c. Rewrite

aω4 + bω2 + c = a

(

ω4 + 2
b

2a
ω2 +

c

a

)

= a

[(

ω2 +
b

2a

)2

+
4ac− b2

4a2

]



Constant time gap control design
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Proof (Cont.)

Hence aω4 + bω2 + c > 0 if

1 a, b, c > 0

2 b < 0, a > 0, c > 0 and 4ac− b2 > 0, i.e., b2 − 4ac < 0

Distinguish the following two cases

1 b > 0 corresponds to h2 − 2τh− 2λτh2 > 0. Hence

h >
2τ

1− 2λτ
.

For small λ, this is possible if h > 2τ .

2 b < 0, a > 0, c > 0 and b2 − 4ac < 0 corresponds to

(
h2 − 2τ − 2λτh2

)2
− 4τ2h4λ2



Constant time gap control design
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Proof (Cont.)
2 Simplify to obtain

λ <
4τh− h2 − 4τ2

8τ2h− 4τh2
,

λ <
− (2τ − h)

2

4τh (2τ − h)
.

Since λ > 0, it must be h > 2τ .

By relaxing the inequality in aω4 + bω2 + c > 0, h ≥ 2τ follows.

By 1) and 2) also follows that if h ≥ 2τ a λ can be found such
that |H(jω)| < 1.
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Motivation and intro
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Recall that for a string of ACC vehicles we have found out that

String stability can’t be achieved with a PD controller based
on constant spacing policy

...moreover

Question. Can string stability be achieved with any other linear
controller?

Answer. No, unless. . . .

The objective of this lecture is to analyze the string stability of vehicle
convoys for any linear controller based on constant spacing policy

Recall that string stability can be achieved with other spacing policy
like, e.g., constant time gap



Spacing error propagation in constant spacing policies
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The results presented next are based on the following assumptions

Assumptions
1 Identical vehicles modeled by G(s)

2 G(s) is linear, strictly proper, single-input-single-output and with
two integrators

3 Identical control laws

4 Constant spacing policy

Hereafter, G(s) can be assumed as follows

G(s) =
X(s)

U(s)
=

1

ms2(1 + sτ),

with X(s) = L(x(t)) and U(s) = L(u(t))
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Predecessor following control scheme
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Each vehicle longitudinal motion can be modeled as

Xi(s) = H(s) (Ui(s) +Di(s)) +
xi(0)

s
, 1 ≤ i ≤ N,

where Di(s) is an input disturbance and xi(0) = −iLdes.

The spacing error is given by

∆i(s) = Xi−1(s)−Xi(s)−
Ldes

s

Assume momentarily Di(s) = 0 and a local feedback control law based
on the spacing error w.r.t. the predecessor. I.e., Ui(s) = K(s)∆i(s).

Calculate ∆1(s) (drop the s argument)

∆1 = X0 −X1 −
Ldes

s



Predecessor following control scheme
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calculation of ∆1 (cont.)

∆1 = X0 −HU1 +
Ldes

s
−

Ldes

s
= X0 −HK∆1

⇒ ∆1 =
1

1 +HK
︸ ︷︷ ︸

S

X0

Calculate ∆i

∆i = Xi−1 −Xi −
Ldes

s

= HK∆i−1 − (i − 1)
Ldes

s
−HK∆i + i

Ldes

s
−

Ldes

s
= HK∆i−1 −HK∆i

⇒ ∆i =
HK

1 +HK
︸ ︷︷ ︸

T

∆i−1, i = 1, . . . , N



Predecessor following control scheme
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Remarks
1 The transfer function from X0 to ∆1 is the sensitivity function

2 The transfer function from ∆i−1 to ∆i is the complementary
sensitivity function

3 We would like to have
1 |S(jω)| small for all frequencies (limiting the first spacing error)
2 |T (jω)| small for all frequencies (limiting the error propagation)

4 Classical trade-off between sensitivity and complementary
sensitivity functions

5 Given a K(s) stabilizing the closed-loop system, H(s)K(s) has
two poles in the origin.

Hence, T (0) = 1 and ‖T ‖∞ ≥ 1

6 Actually ‖T ‖∞ > 1 as shown next



Predecessor following control scheme

Paolo Falcone (CHALMERS) Platooning Control July 10, 2015 38 / 64

Theorem (analogous to Bode’s integral formula)

Assume that the loop transfer function H(s)K(s) of a feedback system
goes to zero faster than 1/s as s → ∞ and let T (s) be the
complementary sensitivity function. The complementary sensitivity
function satisfies the following integral

∫
∞

0

ln |T (jω)|

ω2
dω = π

∑ 1

zi
,

where zi are right half-plane zeros.

Observe that,

1 Since H(s) is strictly proper, |T (jω)| → 0 as ω → ∞.
Hence, ln |T (jω)| < 0 at high frequencies.

2 The theorem implies that ln |T (jω)| > 0 for some frequency.
Hence, |T (jω)| > 1



Example
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Consider the following vehicle model and controller

H(s) =
1

s2(1 + 0.1s)
, K(s) =

1 + 2s

1 + 0.05s

Assume the lead vehicle accelerates from rest to 20 m/s over 12 s using
the control input U0(s) =

1
s2

(
e−s − e−3s − e−11s + e−13s

)
,

corresponding to a trapezoidal input



Example (Cont.)
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Predecessor and leader following control scheme
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Modify the local control strategy in order to add info from the leader

Ui(s) = KP (s)∆i(s) +Kl(s)

(

X0(s)−Xi(s)− i
Ldes

s

)

Calculate ∆1

∆1 = X0 −X1 −
Ldes

s

= HU1 −
Ldes

s
+

Ldes

s
−

Ldes

s

= X0 −HKP∆1 −HKl

(

X0 −X1 −
Ldes

s

)

︸ ︷︷ ︸

)∆1

⇒ ∆1 =
1

1 +H (KP +Kl)
︸ ︷︷ ︸

Slp(s)

X0



Predecessor and leader following control scheme
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Calculate ∆i

∆i = Xi−1 −Xi −
Ldes

s

= HUi−1 − (i− 1)
Ldes

s
−HUi + i

Ldes

s
−

Ldes

s

= HKP∆i−1 +HKl

[

X0 −Xi−1 − (i − 1)
Ldes

s

]

− HKP∆i −HKl

[

X0 −Xi − i
Ldes

s

]

= HKP∆i−1 −HKP∆i −HKl

[

Xi−1 + (i− 1)
Ldes

s
−Xi − i

Ldes

s

]

︸ ︷︷ ︸

∆i

⇒ ∆i =
HKP

1 +H (KP +Kl)
︸ ︷︷ ︸

Tlp(s)

∆i−1



Predecessor and leader following control scheme
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Clearly, KP and Kl can now be easily designed in order to
guarantee ‖Tlp‖∞ < 1.

For example, if we chose KP (s) = Kl(s) then Tlp(0) = 0.5.

Consider the case of the previous example, if we
chose KP (s) = Kl(s) = 1/2K(s) then Tlp(s) = 1/2T (s). In the
predecessor following scheme, ‖T ‖∞ = 1.21 while ‖Tpl‖∞ = 0.605.
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Disturbance propagation
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Recall we have modeled each vehicle as

Xi(s) = H(s) (Ui(s) +Di(s)) +
xi(0)

s
, 1 ≤ i ≤ N,

Now we analyze the effects of the disturbance Di on the stability of the
string
Calculate ∆1 and ∆i

∆1 = X0 −X1 −
Ldes

s

= X0 −HD1 −HU1 +
Ldes

s
−

Ldes

s
⇒ ∆1 = X0 −HD1 −HU1

∆i = Xi−1 −Xi −
Ldes

s

= HDi−1 +HUi−1 −HDi −HUi − (i− 1)
Ldes

s
+ i

Ldes

s
−

Ldes

s
⇒ ∆i = HDi−1 −HDi +HUi−1 −HUi
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Introduce the vectors

∆̄ = [∆1, . . . ,∆N ] , D̄ = [D1, . . . , DN ] , Ū = [U1, . . . , UN ]

The spacing error dynamics can be compactly rewritten as

∆̄ = P11

[
X0

D̄

]

+ P12Ū ,

with

P11 =








1 −H
0 H −H
...

. . .
. . .

0 H −H







, P12 =








−H
H −H

. . .
. . .

H −H







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The control law Ui(s) = KP (s)∆i(s) +Kl(s)

(

X0(s)−Xi(s)− i
Ldes

s

)

can be rewritten as

Ui(s) = KP (s)∆i(s) +Kl(s)

(

X0(s)−X1(s)−
Ldes

s

+ X1(s)−X2(s)− i
Ldes

s
. . .+Xi−1(s)−Xi(s)− i

Ldes

s

)

= KP (s)∆i(s) +Kl(s)
i∑

k=1

∆k

Hence, Ū = K̄∆̄ with

K̄ =








Kl +KP

Kl Kl +KP

...
. . .

. . .

Kl . . . Kl Kl +KP







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By substituting Ū in ∆̄ = P11

[
X0

D̄

]

+ P12Ū , write the error vector as

∆̄ =








1
Tlp

...

TN−1
lp







SlpX0 − SlpH








1
Tlp − 1 1

...
. . .

. . .

(Tlp − 1)TN−2
lp . . . Tlp − 1 1







D̄

Contribution from the first term falls in the analysis done for the leader
and predecessor following scheme. Focus on the second term
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Consider the matrix







1
Tlp − 1 1

...
. . .

. . .

(Tlp − 1)TN−2
lp . . . Tlp − 1 1








Recall that Tlp =
HKP

1 +H (KP +Kl)

Distinguish the following two cases

1 KP = 0. I.e., only the information from the leader is used. In this
case Tlp = 0. There is not disturbance propagation and Di

affects ∆i+1 through SlpH

2 Kl = 0. I.e., only the information from the preceding vehicle is
used. We already know that |Tlp(jω)| > 1 for some ω. Moreover,
disturbances propagate and Di affects ∆i+1

through (Tlp − 1)SlpH . On the other hand | (Tlp − 1) | ≪ 0 at low
frequencies and the disturbances are attenuated.
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In conclusion
1 With leader information only there is not disturbance propagation.

2 Information from the predecessor reduces the effect of the
disturbance on the spacing error.

More rigorously,

Theorem
Assume H has two poles in the origin and the closed loop is stable.
Be Ḡdδ(s) the transfer matrix from the disturbance to the spacing
errors.

1 If ‖Tlp‖∞ > 1, then given any M > 0, there exists a N (platoon
length) such that ‖Ḡdδ‖∞ > M

2 If ‖Tlp‖∞ < 1, then there exists a M > 0, such
that ‖Ḡdδ‖∞ ≤ M, ∀N
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Remarks on the Theorem
1 If ‖Tlp‖∞ > 1 (e.g., in a predecessor following scheme) the gain

from the disturbance to the spacing errors grows with the platoon
length

2 If ‖Tlp‖∞ < 1 (e.g., in a predecessor and leader following scheme)
the gain from the disturbance to the spacing errors is bounded as
the platoon length increases

The predecessor and leader following scheme is scalable. Nevertheless
communication is needed.
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The results presented so far are based on the following assumptions

Assumptions
1 Identical vehicles modeled by G(s)

2 G(s) is linear, strictly proper, single-input-single-output and with
two integrators

3 Identical control laws

4 Constant spacing policy

We now remove Assumptions 1 and 3

For simplicity, we assume the platoon is made of three types of
vehicles, with slow, medium and fast dynamics

Objective: analyze the string stability of the predecessor and the
predecessor-leader following schemes
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Calculate ∆1 and ∆i

∆1 = X0 −X1 −
Ldes

s

= X0 −H1U1 +
Ldes

s
−

Ldes

s
= X0 −H1K1∆1

⇒ ∆1 =
1

1 +H1K1
︸ ︷︷ ︸

S1

X0

∆i = Xi−1 −Xi −
Ldes

s

= Hi−1Ki−1∆i−1 −HiKi∆i − (i − 1)
Ldes

s
+ i

Ldes

s
−

Ldes

s

⇒ ∆i =
Hi−1Ki−1

1 +HiKi
︸ ︷︷ ︸

T̃i−1

∆i−1, i = 1, . . . , N
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From

∆1 =
1

1 +H1K1
︸ ︷︷ ︸

S1

X0, ∆i =
Hi−1Ki−1

1 +HiKi
︸ ︷︷ ︸

T̃i−1

∆i−1, i = 1, . . . , N,

rewrite the error dynamics as

∆i =
Hi−1Ki−1

1 +HiKi
∆i−1

=
Hi−1Ki−1

1 +HiKi
·

Hi−2Ki−2

1 +Hi−1Ki−1
∆i−2

=
Hi−1Ki−1

1 +HiKi
·

Hi−2Ki−2

1 +Hi−1Ki−1
· . . . ·

1

1 +H1K1

=
1

1 +HiKi
·

Hi−1Ki−1

1 +Hi−1Ki−1
· . . . ·

H1K1

1 +H1K1
X0

= Si

(
i−1∏

k=1

Tk

)

X0
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In

∆i = Si

(
i−1∏

k=1

Tk

)

X0,

Si and Ti are the sensitivity and complementary sensitivity functions
of the i-th vehicle.

Recall that ‖Ti‖∞ > 1. Hence ‖

i−1∏

k=1

Tk‖∞ is unbounded as N grows

More in details, from

∆i =
Hi−1Ki−1

1 +HiKi
∆i−1,

it follows that

1 if the preceding vehicle has faster dynamics ‖T̃i‖∞ > 1 and the
error will grow

2 if the preceding vehicle has slower dynamics ‖T̃i‖∞ < 1 and the
error will shrink
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Consider the control law

Ui(s) = KP,i(s)∆i(s) +Kl,i(s)

(

X0(s)−Xi(s)− i
Ldes

s

)

,

where KP,i = piKi and Kl,i = liKi, Ki is the low level controller of
the i-th vehicle, pi, li are positive scalar smaller than 1 and such
that pi + li = 1

Calculate ∆1 and ∆i

∆1 =
1

1 +H1K1
︸ ︷︷ ︸

S1

X0

∆i = T̂i−1∆i−1 +Ai−1

i−1∑

k=1

Ek, i = 2, . . . , N
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T̂i and Ai are defined as

T̂i =
HiKP,i

1 +Hi+1 (KP,i+1 +Kl,i+1)

Ai =
HiKl,i −Hi+1Kl,i+1

1 +Hi+1 (KP,i+1 +Kl,i+1)

We have seen that heterogenous string stable (unstable) platoons do
not attenuate (amplify) the spacing errors uniformly
(i.e., ‖δi‖∞ < ‖δi−1‖∞)

Hence, we have to define a stable string of heterogenous vehicles

Definition

A heterogenous vehicle string is string stable if the propagating errors
stay uniformly bounded for all string lengths and vehicle type orderings
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Define the transfer functions

Tp,x =
HxKP,x

1 +Hx (KP,x +Kl,x)
,

Tl,x =
HxKl,x

1 +Hx (KP,x +Kl,x)
,

x ∈ {s,m, f}

Rewrite the error dynamics as

∆i = FiX0

F1 = 1− Tp,x1 − Tl,x1 ,

Fi =
i−1∏

j=1

Tp,xj
−

i∏

j=1

Tp,xj

+ (1− Tp,xi
)









i−2∑

k=1





i−1∏

j=k+1

Tp,xj



Tl,xk



+ Tl,xi−1



− Tl,xi
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Remark

Clearly, if there exists a finite M > 0 such that ‖Fi‖∞ ≤ M ∀ i and
vehicle type orderings, then ‖∆i‖∞ stays uniformly bounded for all i
and vehicle type orderings. I.e., the heterogenous platoon is string
stable according to the definition

The following result holds

Theorem

Assume H(s) has two poles in the origin ad the closed-loop is stable.
There exists a finite M > 0 such that ‖Fi‖∞ ≤ M ∀ i and vehicle type
orderings if and only if ‖Tp,x‖∞ < 1 for all vehicle types.
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Guidelines for controller design
1 Design the local controller for each vehicle such that ‖Tp,x‖∞ < 1

2 In order to bound the errors in such a way controllers do not have
to be redesigned when vehicle ordering and/or platoon length
change a conservative design is needed

3 In case of homogenous platoon, the largest error is the
first ∆1 = S1X0. The largest possible ∆1 is when the first follower
is a slow vehicle. In this case |S1| is the largest at low frequencies.

4 The local controllers can then be designed in order to
achieve ‖ei‖∞ ≤ ‖e1‖∞, ∀ i


