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Smart Power
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Example: Electronic Stability Program (ESP)

Power Control 
Unit 

Micro
Controller

Power Control Unit contains integrated power FETs for 12 
solenoids  1-2A per solenoid (connected to car battery)
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Example: Electronic Stability Program (ESP)
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Think

Feel

Act

Smart Power
Smart Power = Integration of analog, digital und power 
on one single IC  Advantage: higher integration

One IC to replace multiple 
modules, additional monitoring 
and diagnosis functions  cost reduction, increased reliabilty, 
innovation through new functionality
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Smart Power

Other technology features
• Buried layer or trench isolation
• Zener diodes, schottky and power diodes
• OTP memory, EEPROM, Flash memory
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Mixed Signal Systems in Automotive

Body

• Window Lifter / Mirror Drivers

• Door Lock Solenoid Drivers

• Passive/Keyless Entry

• Relay Drivers

• Exterior Lightning (LED Drivers)

Chassis Systems

• ABS Controllers

• Vehicle Stability (ESP)

• Electronic Power Steering

• Collision Avoidance

Infotainment

• Performance Audio

• Navigation

• Power Management

Dashboard

• LED Drivers

• Power Management

Safety Systems

• Airbag

• Passenger Recognition 

• Adaptive Cruise Control

• Collision Avoidance

Power Train / Engine Control

• Sensor Signal Conditioning

• Transmission Control

• Fuel Injection Drivers

• Power Management

Vehicle Networking

• LIN

• CAN

• Flexray

• System Base Chips

Energy Management

• Hybrid Vehicle

• Advanced Alternator System

• Motor Management
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Example: Engine Management

Engine Management ASIC
Source: Bosch
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Electric Vehicle System

Source: Bosch
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Smart Power – Future Markets

Smart Power ICs are enabler for growth areas like 
smart home and voltage conversion from renewable energy

Source: Bosch
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Automotive Trends and Drivers

Example: Vehicle Safety 
Emerging countries starting legislative agendas on 
vehicle safety  ABS, ESP

Safer Efficient / 
Cleaner

More 
Comfortable

More 
Affordable 

Enabler: 
Automotive 
Electronics

Example: Driver Assistance
Park assist, blind spot detection, lane departure 
warning, night vision, adaptive cruise control, traffic 
sign recognition, object recognition

Example: Hybrid / Electrical vehicles
Start/Stop, battery monitoring, cell balancing, supercap 
management, DC/DC systems, inverter systems, 
charging solutions (including charging stations), fuel cells

Example: Infotainment 
Central entertainment unit, navigation, car audio, 
emergency call, WiFi, wireless USB, flash card slot, USB 
port, bluetooth
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The Electrical Network in a Car

Voltage systems: 
 Cars: 12V standard (battery peak power: 10kW!)
 Truck: 24V (=2x 12V in series)
 New solutions for hybrid or electrical cars: 12V, 48V + HV

The battery line noise is modeled by ISO test pulses (also 
known as Schaffner pulses), defined by ISO 7637-2 
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Minimum Maximum

Supply voltage 4 - 6V 16 - 25V

Transient on supply 36V 60V

Reverse battery protection -14V

Quiescent current 1 - 5µA

ESD strike (HBM) 2 - 6kV

Ambient temperature −40˚C 125˚C

Junction temperature −40˚C >150˚C

Automotive IC Operating Conditions

Typical Device Ratings
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Power Transistor Switches & Drivers

Low-Side High-Side Half-Bridge Full or H-Bridge

• Transistors can be on-chip (integrated) or discrete (external)

• Most applications use n-type transistors due to lower on-
resistance RDSon

Applications: 

• Motor Control

• Switched Mode Supplies

• Valves / Solenoids 

• Relais, Warning Lamps, LEDs
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Power Transistors

Discrete Power FET
(external component)

Integrated power FET in 
High-Voltage BiCMOS 
Technologies

On-resistance < 1
Drain Currents < 1...2A
FET types for > 60V available

On-resistance ~ 10...100m
Drain Currents > 1...10A
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Power MOSFET = DMOS

DMOS = Double Diffused MOS (lateral oder vertical)

• Low on-resistance RDSon (< 1, 1-2A), large VDSmax

• Source and Gate isolated from 
Substrat negative voltages possible

• Parasitic Diodes D-S and D-SUB 
 have to be taken care of
 can be utilized as free-wheeling or 

power diode
Parallel fingers of 
n unit transistors
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Power Transistor Sizing

• Design W/L for targeted RDSon (over all corners!)

• Switch = Triode-Region W/L and VGS determine RDSon

• Trade-off between area and RDSon

e.g. RDSon = 0.5ΩW/L = 
200·(450µm/1.8µm)  (0.5 x 1.5)mm²

• W and L define gate capacitance 
 to be (dis-)charged during switching  Cgate ~ 0.1...1nF

Parallel fingers of 
n unit transistors
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t

Vin

Vout

Vdo

Power Transistors: Dropout

Dropout Vdo (i.e. RDSon) determines W/L and drives decision
for pmos or nmos

Smaller dropout
extends battery lifetime

Example: Linear voltage regulator
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Transistor Switching Behavior and Losses

Example: 
VGS = 8V
Vth = 2V

ID = 0.5A
RDSon = 0.5

VDS = 12V
tsw = 100ns
fs = 500kHz

Transition Losses: 
0,5 VDS ID fs tsw = 150mW

Conduction Losses:
ID² RDSon = 250mW

For inductive loads:
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Parasitic Effects

For VD < 0 substrate currents though parasitic npn:

Countermeasure: Guardrings (GR) around the LDMOS

Consequence:
- Disturbance of 

other circuits blocks
- Debiasing, latch-up

GR around every 
drain which goes to 
an IC Pin

Drawback: Layout 
area  cost!
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Isolation of Circuit Blocks

Rule for smart power 
designs: Isolate every 
circuit block if possible

Every circuits block can be placed in isolation
Shielding against substrate noise coupling
 similar to guardring with full “incapsulation” (also at bottom)
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Substrate Coupling

 Substrate debiasing >4V

 Malfunction of analog and digital circuits

Voltage slopes > 10V/ns cause capacitive charging currents 
in the order of 100mA on IC-level during transition

=10pF 0.8 mm x 0.8 mm
VSUB

Cdr,o

RSub/EPI

ISUB

low side

high side

VOUT

VINVBOOT

Control

VDD

Driver

5 VVSW

VBOOT

Level
Shifter

40 V
500 ps

= 80 V/ns

n-Buried Layer

p--Epitaxial Layer

p+‐Substrate

R
ef

er
en

ce
: 

J.
 W

itt
m

an
n,

 C
hr

. 
R

in
df

le
is

ch
, B

. W
ic

ht
, S

ub
st

ra
te

 C
ou

pl
in

g 
in

 F
as

t-
S

w
itc

hi
ng

 
In

te
gr

at
ed

 P
ow

e
r 

S
ta

ge
s,

 IS
P

S
D

 2
01

5

Automotive Smart Power IC Design, 2015 Summer School of Information Engineering, University of Padova, Italy
© 2015 Bernhard Wicht, Robert Bosch Center for Power Electronics, Reutlingen University, Germany

28

Substrate Coupling: Experimental Results
Test chips with / without BSMMHz-Converter

Picoprobe

Test chip layout

VSW

Measured disturbance at 40V/ns:

• Back-Side Metallization (BMS) reduces coupling by ~100%
• p-Guardring is less efficient but readily available
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Gate Driver Block Diagram and Circuits

Main circuit blocks:

• Power FET (n/p-type)

• Protection

• LS / HS Driver

• Levelshifter

• Gate supply 

• Dead Time Control 
(only for bridges)

FET incl. 
protection

VBAT

Level-
shifter

Level-
shifter

FET incl. 
protection

High-
Side 
Driver

Low-
Side 
Driver

Dead Time 
Control

Gate 
Supply

Control 
Logic
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Low-Side Driver
Function: Turn-on/off power switch with sufficient gate overdrive 
(voltage) and appropriate driving capability (current over time)

Parameters: 
• Gate driver sink / source resistance (at given Igate)
• Sink / source peak current

Principle:

Vdrv defines the gate-
source voltage of the 
power transistor
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Low-Side Driver

Circuit structure:

• Levelshifter followed by driver stage(s) (“CMOS inverter”)

• Single driver stage if small power FET (low Cgate)

• Cascaded driver stages if large power FET (large Cgate)
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Practical Implementation of Gate Drivers

W/L = 32000µm / 2.5µm

15ns delay at Cgate = 10nF

R
ef

er
en

ce
: 

S
. H

er
ze

r,
 B

. W
ic

ht
 e

t 
al

.,
 E

S
S

C
IR

C
 2

00
9

Driver resistance: 3
Driver peak current: 1.5A

Optimization for speed, power, area: n stages, each 
increasing in driver strength (W/L) by Faktor 
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High-Side Driver

General:
• Overdrive needed  Vhigh = Vbat + VGS

• Vhigh from charge pump, boost converter, bootstrapping

Type 1  Floating Driver Type 2  Referred to GND
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High-Side Driver

Example for floating driver (Type 1)

• Driver stage: Low voltage transistors even for 60V VBAT

• Rpu: Tradeoff between speed and DC current (typ. 100k)
• Diode(s) to clamp voltage across Rpu and limit VGS for driver
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High-Side Gate Supply: Bootstrapping
Similar to charge pump with oscillator replaced by bridge

• Cboot supplies high-side driver  Vboot = VBAT + VDD - VF

• Cboot gets recharged if high-side is off (low-side on, Vphase = 
0V) from VDD through bootstrapping diode Dboot

• Sizing: 
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Levelshifters

+ No DC current from VHIGH

- Slow and large area
- No default state

- DC current
+ Simple, small
+ Default state

High-voltage 
version with 
cascodes

Advanced levelshifters combine advantages of both (often with 
capacitive coupling), bus protocol to save # of levelshifters
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Cross-coupled Levelshifter with Full HS Swing

VSG of cascodes M5, M6 prevents logic ‘0’ level at driver input 
 full high-side swing achieved by active clamping  M7, M8

Insertion of inverters in cross-coupling (right)  increased 
loop gain  faster switching and reduced power consumption 
 M7, M8 can become minimum size
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50V High-Speed dv/dt Robust Levelshifter

Buck with NMOS FET

• Minimum pulse width < 3 ns

• 5 ns propagation delay

• Robust against transitions >20 V/ns: 

No incorrect switching at >2 mA coupling currents R
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Dead Time Control of HS / LS Drivers

To avoid cross-conduction of HS and LS FET (damage!):

Turn off FET  then turn on FET with dead time in between

Typical tdead:    

10ns for SMPS
(fsw = 500kHz)

>1µs for 
Motor Control
(fsw = 20kHz) Methods:

• Constant delay: Simple, but worst case margin large tdead

• Adaptive delay: Sensing of off-state then turn on other FET

• Predictive delay: Cycle-by-cycle control by sensing LS body
diode or switching node good performance, but complex
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Synchronous Buck with Dead Time Control

Vin = 12-18V, 10 MHz buck converter with predictive mixed-
signal dead time control based on a 125 ps 8-bit differential 
delay chain

• No low-side body diode conduction
• Loss reduction of up to 30%  6% higher efficiency at 10 MHz 
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Protection and Diagnostics in Smart Power

• Thermal protection 

• Over-voltage (VDS)

• Over-current

• Short-to-ground

• Short-to-battery

• Open load

• Under-voltage (UVLO)
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Thermal Shutdown

Protects the IC from damage at high temperature

Usually installed as a secondary protection: 
Indirect limitation of load current in regulators, drivers
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Protection Schemes - Inductive Loads
Low-side and high-side switches: Zener diode based voltage 
clamps ensure VDS < VDSmax when power switch is turned off

Zener diode dissipates 
all the energy from L

Preferred: FET dissipates 
energy from inductor 

Similar 
schemes 

for high-side
protection

Example:
VDS < 45...50V 
VDSmax = 55V
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6V

1A

Over-Current Protection – Current Sensing

Open loop: 
• Over-current detection  turn-off power FET
• Continuous current measurement

Closed loop:
• Current limit (example: LDO)
• Current controlled DCDC conversion

Safe Operating Area 
(SOA)
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Current Sensing

+ Lossless
− Accuracy

+ Lossless
+ Good accuracy
− Complexity

Rout

Iout

Vout

I

ML MS

VBatt

M   :   1

Sense 
FET

C

Circuit Principle

Accuracy depends on (1) mismatch in sense transistor 
ratio M, (2) amplifier offset and on variation of (3) Rout

(use trimming), (4) total loop gain R
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Monitoring: Short to GND / BAT, Open Load

Short to battery usually detected by current limit

Short to ground, open load are detected in off-state (FET off):

Voltage levels:
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Charge Pump Principle

Idea (Dickson Charge Pump): With buffer C at output:

Voltage doubler: Vout = 2 Vin (ideally with Iload = 0)
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Transient and DC Behavior

Without load current: With load ripple and drop of Vout

With Iload, Cpar and finite switch on-resistance Ron
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Typical Charge Pump Implementations

 onDSDDtout VVV ,


2

Advantage: Dual phase operation
 2x driving capability
 50% ripple or reduction of C, f

With diodes: With transistors:
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Cascading of N stages possible: Vout = (N+1) Vin
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Realization of Diodes

Every diode is associated with parasitic bipolar transistor:

Isolation keeps 
as low as 0.1

Minimum losses
 preferred

Parasistic pnp Parasistic npn
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Charge Pump Power Efficiency

Equivalent circuit with major losses:

Charge pump efficiency

Mean values per periode to account 
for ripple, current peaks, etc.
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EMC: Conducted Emissions

Current spikes from switching circuits like oscillator, charge 
pump  noise on global connection lines
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Current-mode Charge Pumps

Switches replaced by current sources at bottom of Cp 
reduced current spikes  EMC advantage

„Slow“ recharge of Cp over one 
half periode

Periodic current spikes at 
every recharge of Cp

Conventional hard switching 
charge pump:
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EMC Optimized Charge Pump

~50dBµV improvement at 
fundamental peak

Good matching with 
measurements (<3dBμV) R
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1. Overview and Introduction
2. Power Switches
3. Gate Drivers
4. Protection, Monitoring and Sensing
5. Charge Pumps
6. Voltage Regulators
7. System Design
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Automotive Power Management

Multiple regulators to supply µCs, MPUs, DSPs, analog & 
mixed-signal circuits at „point of load“
 Part of smart power ICs or separate power management ICs

In Comparison Handheld 
devices, consumer products: 
Vin ~ 4V, moderate 
conversion ratios

Automotive:
Vin > 10 - 60V, 
larger conversion ratios
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How to Convert 12V into 2V?

Using a simple resistor… It works, but…

Large power loss at the resistor:

PR = VR · I = 10V · 1A = 10W 
(even larger than Pout!)
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Linear Low Dropout Regulator (LDO)

 Dropout drives decision for pmos or nmos

pmos nmos
Area comparison:

„nmos + CP < pmos“
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Key characteristics:
+ Fast load transient response (load steps)
− Poor power efficiency (losses in power FET)
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Reverse Polarity Protection

Option 1: Option 2:Concept:

Rule: n-well at highest potential 
 pn-junction to substrate reverse biased

(observe max. VSG!)

Most simple solution: Diode in battery line
 drawback: dropout reduced by VF  often not acceptable
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Shunt Regulator

Alternative to LDO, often as a crude supply for e.g. 
noncritical digital block or as pre-regulator for LDO 

Comparision to LDO: Open loop  fast, but not as precise
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How to Convert 12V into 2V?

Switched mode conversion… It works and has small 
losses…

Pulse-Width Modulation:

Pulse signal Output voltage

Power loss at the 
switches: PS = VS · IS

ideally:
off: IS = 0  PS = 0
on: VS = 0  PS = 0

in reality >95% power 
efficiency possible
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Switched Mode Power Supplies
Key advantage: Much higher efficiency (>95%) and much less 
heat than linear regulators because L stores the energy

VOUT
Vphase
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Trend: Smaller / fewer external components 
 system cost reduction, improved 
reliability, integration of passives

State of the art: 
Large passives
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Impact of Fast Switching and High Vin

Buck converter: 

100MHz30MHz

1µs

500ns

10MHz

30ns

15ns

4V  2V

1MHz

30ns

3ns

50V  5V

30ns

3ns

20V  2V 3ns

<1ns

50V

Pulse widths 3ns
Slopes >40V/ns
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Losses

100MHz30MHz10MHz1MHz

Switching energy loss scales proportional to Vin: 

(per period)

Power loss scales with switching frequency:  

Capacitive energy loss scales proportional to Vin²
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Challenges for Fast Switching Converters

Cost
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Regulation Schemes: Voltage Mode Control

Drawback: 
- Poor transient response to changes of Vin  Change in D

has L-Cout time constant
- Acceptable line regulation requires voltage feedforward

Control voltage Vc is compared to sawtooth reference:
D = ton / T = Vc / Vsmax  D  if Vc 
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Control Loop Analysis and Stability

Closed loop 
transfer function:

Loop gain:

Modulator transfer function:
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Regulation Schemes: Current Mode Control

Vc is compared to a ramp voltage Vsense derived from the 
inductor current IL, forming a second, inner control loop

• Excellent line transient response  Vout independent of Vin

• Inherent IL current limit (by limiting Vc)
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Control Loop Analysis Current Mode Control

Current loop 
transfer 
function:

Modulator 
transfer function:  1st order system
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Current Mode: Subharmonic Oscillations

D < 0.5 
(stable)

D > 0.5 
(unstable)

Unconditional instability above 50% duty cycle  pertubation
IL of inductor current leads to subharmonic oscillations

 stable ifD > 0.5 
(with slope 
compensation)

Vc

Vsense

V’sense

Vsense 
~ IL

Slope m1

Vc

Vsense

V’sense

Vsense 
~ IL

Slope m2

Vc – Vslope

Vc

Vsense 
~ IL

V’sense

Slope m1

Slope m2

Slope m
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Regulation Schemes: Current Mode Control

With slope compensation: (Vc-Vslope) is compared to a ramp 
voltage Vsense derived from the inductor current

Two options to implement slope compensation
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Slope Compensation: Example for Option 2

Difference (Vc – Vslope) is generated in current domain, fed 
into replica FET and compared to voltage across power 
FET = Vsense = Vphase = RDSon ∙ IL

Concept can also be implemented on high-side FET
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• Existing high Vin converters are operating at < 5MHz 
• Technology / circuits set limit at ~30 MHz (conversion ratio)
• Gap within 5-30 MHz not covered yet

State-of-the-Art: Efficiency vs. fsw and Vin

State of 
the Art

Automotive / e-mobility
12 V 24 V 48 V

Vout
0.8–5 V

Not covered

Limit: Technology / circuits
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1. Overview and Introduction
2. Power Switches
3. Gate Drivers
4. Protection, Monitoring and Sensing
5. Charge Pumps
6. Voltage Regulators
7. System Design
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Floorplan

Rule: Separate high-voltage and low-voltage domains
Motivation: HV-Isolation = Spacing = Chip Area = Cost

Mechanical stress: avoid corners / edges for critical blocks
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• Supply and ground pin next to each other, bypass-C 
placed here close to pins  reduces inductive effect and 
reduces EMI radiation level, also valid for on-chip wiring

• Keep short bond wires for power pins and fast signals 
(R, L) close to the middle of one side of the die, 
vice versa: corner pins for quite signals

• Use separate bond pads for each domain or at least apply 
star connections, consider double / tripple-bond

• IC-Level wiring in groups: 
 Supply lines (high current)

 Sensitive lines (analog)

 Noisy lines (digital, switching power)

Pinout, Grounding and Supply Guidelines
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Pinout, Grounding and Supply Guidelines
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Packaging, Metallization and Thermal Design

Thermal Analysis
 Simple hand calculations 

 Detailed thermal simulations

Selecting the proper package
 Die Size estimation

 Power Dissipation
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IC Level Copper Technology
 Power bussing

 Reduces power device area 

 Bond Over Active Circuitry
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Thanks for Your Attention!

Reutlingen and Surroundings


