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Smart Power

Temperature
Pressure
Position
Acceleration
Speed ' ' Digital Signal

Processing
Flow Rate

Humidity
Acoustic Noise
Light
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Example: Electronic Stability Program (ESP)

"

Power C3ntr6| z
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Power Control Unit contains integrated power FETs for 12
solenoids - 1-2A per solenoid (connected to car battery)
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Example: Electronic Stability Program (ESP)
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Smart Power

Smart Power = Integration of analog, digital und power
on one single IC - Advantage: higher integration

ABS
1 Generation
[1978)
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One IC to replace multiple
modules, additional monitoring
and diagnosis functions - cost reduction, increased reliabilty,
innovation through new functionality
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Smart Power

Smart Part Power Part
Digital CMOS 1.8V, 3V DMOS, Drain-extended MOS
MOS + bipolar Analog 1.8V, 3V, 5V 5V, 12V,..., 80V and ~1A

Other technology features

» Buried layer or trench isolation

» Zener diodes, schottky and power diodes
* OTP memory, EEPROM, Flash memory

h Aulomohve Smart F'ower IC Design, 2015 Summer School of Information Engineering, University of Padova, Italy 10
r z © 2015 Bernhard Wicht, Robert Bosch Center for Power Electronics, Reutlingen University, Germany




Mixed Signal Systems in Automotive

Dashboard
« LED Drivers

Body

* Window Lifter / Mirror Drivers

Power Train / Engine Control

» Sensor Signal Conditioning . Power Management
. ower Manageme » Door Lock Solenoid Drivers
* Transmission Control

+ Fuel Injection Drivers A . = _1. Passivelleyless Entry

» Power Management * Relay Drivers

« Exterior Lightning (LED Drivers)

Safety Systems Chassis Systems
+ ABS Controllers
« Vehicle Stability (ESP)

* Electronic Power Steering

« Airbag
« Passenger Recognition
« Adaptive Cruise Control

« Collision Avoidance + Collision Avoidance

Infotainment Vehicle Networking
Energy Management

« Performance Audio y bg'ZV " Ig * LIN
. rid Vehicle

» Navigation v + CAN
« Advanced Alternator System

« Power Management * Flexray

— . « Motor Management . System Base Chips
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Example: Engine Management

[T AT

Source: Bosch
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Electric Vehicle System

v/ 4 .
Targét: best trad& off between weight,

Source: Bosch
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Smart Power — Future Markets

Smart Power ICs are enabler for growth areas like
smart home and voltage conversion from renewable energy

Source: Bosch
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Automotive Trends and Drivers

Example: Driver Assistance Example: Hybrid / Electrical vehicles
Park assist, blind spot detection, lane departure Start/Stop, battery monitoring, cell balancing, supercap
warning, night vision, adaptive cruise control, traffic management, DC/DC systems, inverter systems,

sign recognition, object recognition charging solutions (including charging stations), fuel cells

=i Efficient /
“ Cleaner
Enabler:

Automotive
Electronics

_ More More
m Comfortable| Affordable

&

Example: Infotainment Example: Vehicle Safety
Central entertainment unit, navigation, car audio, Emerging countries starting legislative agendas on
emergency call, WiFi, wireless USB, flash card slot, USB vehicle safety > ABS, ESP

port, bluetooth
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The Electrical Network in a Car

Voltage systems:
— Cars: 12V standard (battery peak power: 10kW!)
— Truck: 24V (=2x 12V in series)
— New solutions for hybrid or electrical cars: 12V, 48V + HV

B85V
120v
) A ) LOAD NOISE
DUMP

Do by snginn b b
/ n o] " - I 24V JUMP START
NOMINAL
- = -c 3k 14V
o) T W) e : 6V CRANK r
REVERSE
- - BATTERY

The battery line noise is modeled by ISO test pulses (also
known as Schaffner pulses), defined by ISO 7637-2
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Automotive IC Operating Conditions

Typical Device Ratings

Minimum Maximum

Supply voltage 4 -6V
Transient on supply 36V
Reverse battery protection
Quiescent current

ESD strike (HBM)

Ambient temperature -40°C

Junction temperature -40°C
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16 - 25V
60V
-14V

1-5pA

2 - 6kV

125°C
>150°C

© 2015 Bernhard Wicht, Robert Bosch Center for Power
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Power Transistor Switches & Drivers

Low-Side High-Side Half-Bridge

VBAT VBAT

SIS
£ | -0

Full or H-Bridge

VBAT VBAT

%@%
> <t

* Transistors can be on-chip (integrated) or discrete (external)
* Most applications use n-type transistors due to lower on-

resistance Rpg,p,

Applications:
* Motor Control

* Valves / Solenoids

* Switched Mode Supplies * Relais, Warning Lamps, LEDs
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Power Transistors

Discrete Power FET
(external component)

On-resistance ~ 10...100mQ
Drain Currents > 1...10A

Integrated power FET in
High-Voltage BiCMOS
Technologies

P!

On-resistance < 1Q
Drain Currents < 1...2A
FET types for > 60V available
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Power MOSFET = DMOS
DMOS = Double Diffused MOS (lateral oder vertical)

Drain Gate Source Gate Drain Substrate

* Low on-resistance Rpg,, (< 1Q, 1-2A), large Vpsmax

» Source and Gate isolated from Drain
Substrat - negative voltages possible Gate —] Substrate
* Parasitic Diodes D-S and D-SUB Soca (Ground)

- have to be taken care of
-> can be utilized as free-wheeling or
power diode

5
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Power Transistor Sizing

* Design WI/L for targeted Ry, (over all corners!)
+ Switch = Triode-Region - W/L and Vg determine Rpg,,,

» Trade-off between area and Rpg,,
e.9. Rpgon =0.5Q > WI/L =
200-(450pm/1.8um) = (0.5 x 1.5)mm?

* W and L define gate capacitance
— to be (dis-)charged during switching > C ., ~0.1...1nF
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Power Transistors: Dropout

Dropout V4, (i.e. Rps,,) determines W/L and drives decision
for pmos or nmos

Smaller dropout Example: Linear voltage regulator
extends battery lifetime Vi,
Vin Vdo Vref

Vou!‘
R4

t RE%
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Transistor Switching Behavior and Losses

I;or inductive loads: Drain Example:
o Vgs =8V

Platoau Vth = 2V
Vr = 0.5A
" Gate DSOH =050
Vpg = 12V
: CGS t., = 100ns

Source fs = 500kHz

Paiss| = Vos - Ip

Transition Conduction TFanSItIOn LOSSGSZ
Losses Losses —
SW
Conduction Losses:
2 —_
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Parasitic Effects

For V, < 0 substrate currents though parasitic npn:

Sensitive
= Circuit
Sourcs Gate V<0 Gemd f—L:ts Consequence:
l! - Disturbance of

other circuits blocks
- Debiasing, latch-up

Countermeasure: Guardrings (GR) around the LDMOS

Sensitive
Substrate = Ground  Circuits
Source Gate vsnl —— GR around every
| drain which goes to
: an IC Pin
Drawback: Layout
Guardring area > cost!
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Isolation of Circuit Blocks

Every circuits block can be placed in isolation
-> Shielding against substrate noise coupling
-> similar to guardring with full “incapsulation” (also at bottom)

Rule for smart power
designs: Isolate every
circuit block if possible

\. I\ J
hd Y
common common
isolation of all  isolation of all
p-channel n-channel
transistors transistors
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Substrate Coupling

Voltage slopes > 10V/ns cause capacitive charging currents
in the order of 100mA on IC-level during transition

high side \p507 VIN

low side % IV—T 20V _g4 \/ns

500 ps
VDD Level I/ ”"| nn ___vout

Shifter
’C_o-rftrj’mi VSW T % J_
I} nfveoor 1 il

n-Buried Layer

———p-Epitaxial Layer

p* Substrate

- Substrate debiasing >4V o]
> Malfunctlon of analog and digital circuits =~ w2t
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Reference: J. Wittmann, Chr. Rindfleisch, B. Wicht, Substrate Coupling in Fast-Switching

Integrated Power Stages, ISPSD 2015
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Substrate Coupling: Experimental Results

MHz-Converter  Test chips with /without BSM Test chip layout

Vs\\ hl\h
T SINK

Isolation| = _MOAT”

Welliha ——M()ATzz
p-GR2

Vaing / V

0 2 1 ] 8 'liime / ns
* Back-Side Metallization (BMS) reduces coupling by ~100%
*p- Guardrlng is Iess efficient but readily available
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Reference: J. Wittmann, Chr. Rindfleisch, B. Wicht, Substrate Coupling in Fast-Switching

Integrated Power Stages, ISPSD 2015
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: &5. Gharge Pumps*

>k ~SysteﬁlDe’s:gn

*1 Qverylew and lntrod‘u-cii
2 Power SV\utcheS» = : =
3. ,Gate BI‘IVBI‘S' =

6. Voltage: Reg u&at‘é_
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Gate Driver Block Diagram and Circuits

Main circuit blocks:
» Power FET (n/p-type) o Lover
* Protection shifter
* LS / HS Driver uls

Vear

_I FET incl.
protection

. Control Dead Time
* Levelshifter Logic Control
» Gate supply Gate Y
. Supply

* Dead Time Control

(only for bridges) o Lever FET incl.

shifter protection
= . = =
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Low-Side Driver

Function: Turn-on/off power switch with sufficient gate overdrive
(voltage) and appropriate driving capability (current over time)

Principle:
Vpat
I'-"’u‘r\r I
Low-Side Load
Sote Diiver y V,,, defines the gate-
lgate, A,,J “power  SouUrce voltage of the
\ l' Transistor  power transistor
Vate| C
ool
Parameters:

* Gate driver sink / source resistance (at given |,,)
. Si_nk / source peak current
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Low-Side Driver

Circuit structure:

Levelshifter Driver Stages Low-Side
FET

Viien

Viow  Voure !El Vourn
| i _|
Control| IN ||J IN
Logic |

* Levelshifter followed by driver stage(s) (“CMOS inverter”)
« Single driver stage if small power FET (low C,)
« Cascaded driver stages if large power FET (large C)
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Practical Implementation of Gate Drivers

F

padt

Transistor

Y
width W ["W [“:W
CGT uCGT u:CGI. u'CGI

Stage 1

W/L = 32000pm / 2.5um
Driver peak current: 1.5A 15ns delay at Cgy, = 10nF

Optimization for speed, power, area: n stages, each
increasing in driver strength (W/L) by Faktor «
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High-Side Driver
Type 1 Floating Driver Type 2 Referred to GND

Vhigh Vhigh
Viat Vpat
High-Side High-Side
Driver Driver
Load Load
General: 1 T

* Overdrive needed 2 Vi, = Vi + Vs
* Vyigh from charge pump, boost converter, bootstrapping
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High-Side Driver

Example for floating driver (Type 1)

Levelshifter Driver Stages High-Side
Vhigh FET

Viow

ontrol 'w [l =

Logic

* Driver stage: Low voltage transistors even for 60V Vgur
* R,,,: Tradeoff between speed and DC current (typ. 100kQ)
* Diode(s) to clamp voltage across R, and limit Vs for driver
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High-Side Gate Supply: Bootstrapping

Similar to charge pump with oscillator replaced by bridge

Principle Circuit Implementation

Voo l: ] zboa:

vBAT  Dpoot

—D—| s i Croc
vphas& f
E | Bootstrap

Capacitor Bootstrap Capacitor

* Cp00t SUpPlies high-side driver = Vi . = Vgar + Vpp - Ve
* Cpoot gets recharged if high-side is off (low-side on, Ve =
0V) from Vp through bootstrapping diode D,

¢ Slzmg Chr}f)! > (Qyu!r' + (Qm‘ 24 ]bum’/f.wa /&I”T‘}r;r)f
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Levelshifters

Resistor-based Cross-coupled 5
Levelshifter Levelshifter g
VhicH Vs §
Vourn Voure Vourn é &
ey N IN 33
- DC current + No DC current from Vg4 High-voltage
+ Simple, small - Slow and large area \C’:;i'gge":'th
+ Default state - No default state

Advanced levelshifters combine advantages of both (often with
capacitive coupling), bus protocol to save # of levelshifters
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Cross-coupled Levelshifter with Full HS Swing

V4 of cascodes M5, M6 prevents logic ‘0’ level at driver input
-> full high-side swing achieved by active clamping > M7, M8

Vd\.,, Vdrv

I T

M4
Voot T Ve
< _D,l_
Vou Vou
Ve oI e Ve 00 Hie I\

ME  poth inverters with

L w5 Mo switching point near Va,
= . {strong pmos,
IN i IN W IN P IN s weak nmos)

Reference: Moghe et al., Nanosecond Delay Floating High Voltage

Level Shifters ..., JSSC Feb. 2011

Insertion of inverters in cross-coupling (right) = increased
loop gain > faster switching and reduced power consumption
- M7, M8 can become minimum size
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50V High-Speed dv/dt Robust Levelshifter

high side

VBOOT
¥ £ .
0 [Sone © [Soua Buck with NMOS FET
¥. ¥ [~ VBOOT VIN
A
B ./ I BV%!:HS Level
(% | % L1 Shifter
DL B ¥DL_A = R
¥ | & HS_GND =
|lcoupling leoupling , E»-
=N PWM | 7 ¢
PWM El |l E,“ L 7 :
s S p— 1 1

low side<5V ~

* Minimum pulse width < 3 ns

* 5 ns propagation delay

* Robust against transitions >20 V/ns:
No incorrect switching at >2 mA coupling currents

Reference: J. Wittmann, Th. Rosahl, B. Wicht, “A 50V High-Speed Level Shifter with High dv/dt Immunity for Multi-

MHz DCDC Convert
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Dead Time Control of HS / LS Drivers

To avoid cross-conduction of HS and LS FET (damage!):
Turn off FET = then turn on FET with dead time in between

looag  Hdeaa Vea Typ ical tyead-
Vos sée 10ns for SMPS
High-Side — Switch

(f.,, = 500kHz)

I,fg\-sv-Side :rrx .................................................... /_ _‘ Ls?; >1us for
Swith  Motor Control
(f,,, = 20kHz)

Methods:
* Constant delay: Simple, but worst case margin = large t .4
» Adaptive delay: Sensing of off-state - then turn on other FET

* Predictive delay: Cycle-by-cycle control by sensing LS body
diqde_ or swi_t_ch_ing node - good performance, but complex

b Automotive Smart Power IC Design, 2015 Summer School of Information Engineering, University of Padova, Italy 40
r z © 2015 Bernhard Wicht, Robert Bosch Center for Power Electronics, Reutlingen University, Germany

20



Synchronous Buck with Dead Time Control

Vin = 12-18V, 10 MHz buck converter with predictive mixed-
signal dead time control based on a 125 ps 8-bit differential

delay chain

* No low-side body diode conduction
. Loss reductlon of up to 30% >

90
80 |
=
270 |
~
5]
5 60
£ -
= 50 =—DT Regulated |
—DT Fixed to 5ns
40
0.1 ()‘2 0.3 04
Ol T rA

Aulomohve Sman F'ower Ic De5|gn 2015 Summer School of Information Engineering, University of Padova, Italy
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Reference: J. Wittmann, A. Barner, Th. Rosahl, B. Wicht, “A 12V 10MHz Buck Converter
with Dead Time Control Based on a 125 ps Differential Delay Chain”, ESSCIRC 2015

6% higher efficiency at 10 MHz

41
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Protection and Diagnostics in Smart Power

* Thermal protection Velw
. - Level- FET incl.
Over VOltage (VDS) - shifter -ll: protection
» Over-current ~ I
. Short-to—grou nd Control Dead Time
Logi Control
« Short-to-battery o T
. Gate
Open load Siihply
» Under-voltage (UVLO)
> Level- FET incl.
shifter protection
e ey
T 2 e Ao e Coeror ot st ot oy carmony o2 12 °

Thermal Shutdown

Protects the IC from damage at high temperature

Voo

"

o |t

R —

Rr Rrsp

Iprar
Al

Thermal
Shutdown

Usually installed as a secondary protection:
Indirect limitation of load current in regulators, drivers
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Protection Schemes - Inductive Loads

Low-side and high-side switches: Zener diode based voltage
clamps ensure Vg < Vpgmax When power switch is turned off

Drain-Source Drain-Gate

Clam Clam ..
Vi B Similar
Load | Load Load | Schemes

R R R . .
: . for high-side

L .
. protection

; VF¢
7
lvm _D_| lvm l._,ns Example:
vssl Vps < 45...50V
VDSmax = 55\/

Zener diode dissipates Preferred: FET dissipates
all the energy from L energy from inductor
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Over-Current Protection — Current Sensing

_ ECU —|(::'
e

Typical locations
for current sensing

Safe Operating Area

Open loop:
* Over-current detection - turn-off power FET
» Continuous current measurement
Closed loop:
» Current limit (example: LDO)
* Current controlled DCDC conversion
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Current Sensing

Accuracy depends on (1) mismatch in sense transistor
ratio M, (2) amplifier offset and on variation of (3) R
(use trimming), (4) total loop gain

out

Rps Sensing Sense FET + Sense Amplifier Circuit Principle -
Power Viar Sense VBatt Sense &
swich FET FET 2
g3
Vs ~ | MS MS 2 g
’ 8%
S E
=5
f' l’out l lout E 2] S
i Gad
oW
cwg
Vour Vout g @
© =
+ Lossless "‘“’l ? Rout 68
- Accuracy >
g
+ Lossless g
+ Good accuracy 8
. (=2}
- Complexity 3
3
5
g
o
2
T
2

* D. Maetal., A 1.8V singleinductor dual-output
*H. Y. H. Lam et al., Loop gain analysis and .

References:
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Monitoring: Short to GND / BAT, Open Load
Short to battery usually detected by current limit

Short to ground, open load are detected in off-state (FET off):

Vba!‘ l‘_/ia!‘
Voo A
V normal
T i Ve range in
oL _|- Load v {:/ff—state
- Rd{ag y o A refl
open loa oL=1
Vier out T SCG=0
I V.
SCG ) s ldiag —| shortto A O;_Ei
\J EE\'_I‘_"er ground ' sSCG=1

Voltage levels: Vi..r2 < Vpp — Vp —
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Charge Pump Principle

Idea (Dickson Charge Pump):  With buffer C at output:

\/,'n A B Vo ut v.'.ﬂ A B Vout L‘Eﬁ
Vol Vol
B C

o> Co
"\ N
pump buffer
capacitor capacitor

Voltage doubler: V,,,;, = 2V}, (ideally with I,,,4 = 0)
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Transient and DC Behavior

Without load current: With load -> ripple and drop of V,

Miout)
v v
e H H e
L 3=
n n
4 v, =5V 4
v : Cp =1nF, Co =8nF R
f=10kHz
Era BTNl SO SO U e i
T : TV
s ey 2ms Jirrs Ams s bins ims Birrs T 2 Jims Ams Sy bins ims

. - : . A B
With 554, Cpar @nd finite switch on-resistance R,, v % v

ne 3
" , Cyp Lioad . B] C?j |
llrrfr.f = 1:';1 + 1 - - —}-hou horrd G

T G Bl + 0 N T

b Automotive Smart Power IC Design, 2015 Summer School of Information Engineering, University of Padova, Italy
r z © 2015 Bernhard Wicht, Robert Bosch Center for Power Electronics, Reutlingen University, Germany

51

Typical Charge Pump Implementations

With diodes: With transistors:

Vi Vour

|:“:|C” I C v ;i I
oo load
Oscillator OI = aud J__-
T d - CS

Oscillator K] D"ﬁ il

Vout |t_m = 2(\/DD _VF ) Vout |t_m = 2(\/DD _VDS,on)

Reference: Pelliconi, ESSCIRC 2001 und JSSC 2003

Advantage: Dual phase operation

- 2x driving capability
- 50% ripple or reduction of C, f
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Realization of Diodes

Every diode is associated with parasitic bipolar transistor:

Parasistic pnp Parasistic npn

Anocde Cathode Anode Cathode

-~ p-sub
Anode Cathode Anode
-+ ‘ Cathode
Isolation keeps £ Minimum losses
as low as 0.1 -> preferred
b - Al]lomonve Ién;a‘n:;ov:/e-r IC- D‘esign,‘zl‘)‘15 Summer School of Information Engineering, University of Padova, Italy 53
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Charge Pump Power Efficiency

Equivalent circuit with major losses:
fl' V-'l')éi_»;

/
vin v lo ss‘

_I'I_I'——Dﬁ
v T

Charge pump efficiency

Voui‘
-'f!oss g I ‘rrwI
Ll LT

_ Pout _ Voutlout _ Voutlout } Mean values per periode to account
P; Vinlin Vinlin for ripple, current peaks, etc.

_ Pout _ (2Vin - mesl - Vluss?_ - )Iout
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EMC: Conducted Emissions

3 Rear | Rune o “
1 WV WV 1
=l i s
‘ Charge il LDO% g 5
,,,,,,,,,,,,,,,,,,,,,, e i Yoo 3%
L Battery Lol mrikiis 53
T T
= = I 2
_Application1 5,,
""'v"-‘l“‘l‘.‘l.‘"‘ Ic ""'v"."“"‘.".‘" g
g
Application2 J:‘ g%

Current spikes from switching circuits like oscillator, charge
pump —> noise on global connection lines
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Current-mode Charge Pumps

Switches replaced by current sources at bottom of C, >
reduced current spikes > EMC advantage

Conventional hard switching
charge pump:

V;‘n A B vou! hoad

B\ ¢C, »
G

fA}_ > I
CMOS-
Inverter

Periodic current spikes at ,Slow" recharge of C, over one
every recharge of C, half periode
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EMC Optimized Charge Pump

Voltage Mode Charge Pump EMC Optimized Current Mode Charge Pump

1.85MHz

Reference: Wittmann, Neidhardt, Wicht, "EMC Optimized Design of Linear Regulators Including a

25 : H

' :

fis 106 100N g

Frequency (Hz) g

i ~50dBpV improvement at | =

i fundamental peak g
i Good matching with S £
=3

@ measurements (<3dBUV) | e e

11
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Automotive Power Management

Multiple regulators to supply uCs, MPUs, DSPs, analog &
mixed-signal circuits = at ,point of load*
- Part of smart power ICs or separate power management ICs

Automotive:
o2y B oo Vi > 10 - 60V,
larger conversion ratios
s I s Comparison > Handheld
wton | [Spbown | 18 wwmge| devices, consumer products:
2orazv | L2 =1 V. ~4V, moderate
o = conversion ratios
rh z Aulcmot‘\‘v‘r‘e Smart Power IC Design, 2015 Summer School of Information Engineering, University of Padova, Italy 59
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How to Convert 12V into 2V?

Using a simple resistor... It works, but...

Vin =12V

R=10Q V=2V
WN—— "

Large power loss at the resistor:

Pr=Vg-1=10V - 1A= 10W
(even larger than P!)

- I=1A
VR Load
r b z Automotive Smart Power IC Design, 2015 Summer School of Information Engineering, University of Padova, Italy 60
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Linear Low Dropout Regulator (LDO)

Key characteristics:
+ Fast load transient response (load steps)
- Poor power efficiency (losses in power FET)

;

13

¥
vj’n E é
Vit K
N B
V:)er ) |k g
2

Re on:
pmos nmMos ,nmos + CP < pmos*

-> Dropout drives decision for pmos or nmos
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Reverse Polarity Protection

Rule: n-well at highest potential & o] @
- pn-junction to substrate reverse biased awe

p-substrate

Concept: Option 1: Option 2:

in case of %
reverse polarity
——= 0 —IE é:}(

- “D (observe max. Vgg!)

Most simple solution: Diode in battery line
-> drawback: dropout reduced by V = often not acceptable
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Shunt Regulator

Alternative to LDO, often as a crude supply for e.g.
noncritical digital block or as pre-regulator for LDO

vr'n vr'n vﬂ VJ’

é "‘b:'as
\J

‘tour
- -
v Vou! Vout
z
~V, - Vgs = V;
L \J

Comparision to LDO: Open loop - fast, but not as precise
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How to Convert 12V into 2V?

Switched mode conversion... It works and has small

Viy = 12V losses...
v Power loss at the
51 i . = .
VL e Your=2v switches: Pg= Vg - Ig
I=1A ;
Vs / c Load ideally:
vl T oe off: =0 >Pg=0

) ) on:Vg=0 > P5=0
Pulse-Width Modulation:
in reality >95% power

‘ ‘ efficiency possible

Pulse signal Output voltage

v -
[
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Switched Mode Power Supplies

Key advantage: Much higher efficiency (>95%) and much less
heat than linear regulators because L stores the energy

Vin Vin
\ h
phase VOUT
c ov
D | ‘
Gate
PUM | Orivers
and Logic State of the art: Trend: Smaller / fewer external components
Large passives - system cost reduction, improved §
22 pH reliability, integration of passives ;g
B
2.2 pH ;
H 0.22 uH
- D .
——————r - —
12 mm 5 mm 2mm
1 MHz 10 MHz 100 MHz
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Buck converter: s
V 1 ' <1ns
out )
= . —_— V > 5V g™
tom = 7 7 50 5 1L *
in L —>re—
3ns, 50V
30ns t
20V > 2v | N
ns
g ms‘
1us 30ns .
av>2v J@‘ —) D—_J‘ Pulse widths 3ns
, - Slopes >40V/ns
500ns 15ns
22 pH
2.2 uH
5 0.22 pH
- 2] s
- —r —»!
12 mm 5 mm 2mm o
f s >
1MHz 10MHz 30MHz 100MHz
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Losses

Power loss scales with switching frequency: Pioss = Eioss faw
Capacitive energy loss scales proportional to Vin?
Switching energy loss scales proportional to Vin:

Eow = Iyt Vin Aty = 1A - 50V - 1ns = 50nJ (per period)

2.2 pH

0.22 pH
L ] -
e —l
f 5 mm 2mm o
s 10MHz 30MHz 100MHz
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Challenges for Fast Switching Converters

Cost

Frequency

7N

I<—I

- Parasitic coupling
Challenqes[ Speed ][ Efficiency ][ and EMC ]

%@ﬁ

[ Architecture

[ Circuit Design ]
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Regulation Schemes: Voltage Mode Control

Control voltage V. is compared to sawtooth reference:
D=t,,/T=V./Vgu>DTifV, T

Voltage mode control {dlre% duty control)

Gate
Sawtooth ]
Generator

Driver PWM | Duty Cycle D

| 7 - Vi
Drawback:

- Poor transient response to changes of V,, > Change in D
has L-C,, time constant
- Acceptable line regulation requires voltage feedforward
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Control Loop Analysis and Stability

Vi Vin
|
Sawtooth | Vi G(S] G(S] l
- . ~[>| L SR [ over Ve
s Van Vs " | Modulator Stage
D G = »
Ervor 7 R: V.
He) | | L e 5
N E
I
Vi
Closedloop  Vour 1 G(H(s) 1 = miE
transfer function: V,.; ~ « 1+ G(s)H(s) «
. Ve
Loop gain: P — G(s)H(s)
Vres 1 1
Modulator transfer function: G(s) = - Vin [
e g L e S2LC. 0
|l n AR oA ”
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Regulation Schemes: Current Mode Control

V. is compared to a ramp voltage V. derived from the
inductor current |, forming a second, inner control loop

CLK Ve G(s]

v 1 (s) CLK J-l
Pulse-width- Power stage|| Current Output capacitor
modulator _D_l Hs endl sensing || with ESR and load

L LR PWM Duty Cycle D
_-|D D B v,
Logic | Gale =AM o
Ic VYW o
& = .:- Coue - Ve
LS Resw {Load)

| A

\ Current loop (inner loop))

His)

Voltage loop
(outer loop)

- Excellent line transient response 2>V, independent of V,,
* Inherent I_current limit (by limiting V)
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Control Loop Analysis Current Mode Control

Du?;;mf: ) Gy Voue
i £ #
His)
His)
Valtage loop
(i ~ NN | Voue
Current loop a0
transfer L - G1G; ~ 1
function: Ve 1+ G1GyRsense  Rsense Ve eyl
Gt
L His)
Modulator 6(s) 1. 4 sResnCine
. s) =
transfer function: R 1+sRC,, 2 lstordersystem
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Current Mode: Subharmonic Oscillations

Unconditional instability above 50% duty cycle - pertubation
Al of inductor current leads to subharmonic oscillations

D<0.5
(stable)
AVsense
~ Al
D>0.5
(unstable) b
~Al sense
D>05 - stable if
. ms
(with slope m > —=
compensation) ., . =
~ Al
b . Aulomonve ;m‘an Power I(; ;Jesign, 2015 Summer School of Information Engineering, University of Padova, Italy 73
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Regulation Schemes: Current Mode Control

With slope compensation: (V-V,.) is compared to a ramp
voltage V.. derived from the inductor current

oK e 86 1k _ﬂ
Pulsa-width- Power stage|| Cuent Output capacitor
modulator > Hg andl sensing || with ESR and load
5 L W R PWM Duty Cycle D

Logic | Gate L ~eeliem aan Var |

e =1

G |— R
> LS Rtsa% {Load)

74
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Slope Compensation: Example for Option 2

Difference (V; — Vgqpe) is generated in current domain, fed
into replica FET and compared to voltage across power
FET =V Vphase RDSon ’ IL

sense

Replica  Power
FET FET

Concept can also be |mplemented on high-side FET
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State-of-the-Art: Efficiency vs. fsw and Vin

100
g5

90§A %

SS'&A

£ £ sold
é\ § ?5:
@ & '
g 2 m‘;QState of
w w - Athe Art
65 < > 65|
60| 12V 24V 48V  &of
85 Automotive / e-mobility 55l
I £\ State of the art converters (commercial) | £\ State of the art converters (oommercual
0 5 10 15 20 25 30 35 40 45 50 50 5 10 15 20 25
Input Voltage [V] Frequency [MHz]

* Existing high Vin converters are operating at < 5SMHz

30

* Technology / circuits set limit at ~30 MHz (conversion ratio)

. Gap W|th|n 5 30 MHz not covered yet
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Floorplan

Rule: Separate high-voltage and low-voltage domains
Motivation: HV-Isolation = Spacing = Chip Area = Cost

i Brushless
DC Motor
5;}; ﬂ
= * b T
[ s  Phase
[ ! r
ﬁ}ﬂ}
GND
Digital Digital Core
;ﬂ aw Voltaga Anilog
Pt (™ Low Voltage Digital

Mechanical stress: avoid corners / edges for critical blocks

Source: ATMEL, Automotive Compilation, 2010
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Pinout, Grounding and Supply Guidelines

» Supply and ground pin next to each other, bypass-C
placed here close to pins = reduces inductive effect and
reduces EMI radiation level, also valid for on-chip wiring

» Keep short bond wires for power pins and fast signals
(R¥, LY) = close to the middle of one side of the die,
vice versa: corner pins for quite signals

» Use separate bond pads for each domain or at least apply
star connections, consider double /trlpple -bond

* |C-Level wiring in groups: 2

— Supply lines (high current) o 7
— Sensitive lines (analog) e l
— Noisy lines (digital, switching power) f

rbz 2”2'3?"5"2;2%nsh";i?vsflﬁf,'Flﬁb'iiségc?;i"éﬁf&i?131552?2'.2&'&'5&"23 Reutingen Unvarsiy.Gomnany *
Pinout, Grounding and Supply Guidelines
[ | [ [ | | Power || Power
Analog Analog Analog Logic ) L
s
r T \\.__ -, - ./. .
Analog \\\ Analog | | | Logic | | Power Power
3 | |
) .\'- " " -'-;'. \ n ./ = !’ "
be I [N LA NN J
Bondwires
% Package
" Lead \
AGND LGND PGND1 PGND‘I PGND2
> PCB Ground Plane ' . -
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Packaging, Metallization and Thermal Design

Selecting the proper package Thermal Analysis
= Die Size estimation = Simple hand calculations

= Power Dissipation = Detailed thermal simulations

IC Level Copper Technology
= Power bussing
= Reduces power device area
= Bond Over Active Circuitry
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Source: Texas Instruments
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Thanks for Your Attention!

Reutlingen and Surroundings

|
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