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It all started with Shannon in 1948

Shannon’s capacity formula (1948) for the additive white Gaussian
noise channel (AWGN):

C = W log2 (1 + S/N) [bits/second]

• W is the bandwidth of the channel in Hz
• S is the signal power in watts
• N is the total noise power of the channel watts

Channel Coding Theorem (CCT):
The theorem has two parts.

1. Its direct part says that for rate R < C there exists a coding
system with arbitrarily low block and bit error rates as we let the
codelength N → ∞.

2. The converse part states that for R ≥ C the bit and block error
rates are strictly bounded away from zero for any coding system

The CCT therefore establishes rigid limits on the maximal supportable
transmission rate of an AWGN channel in terms of power and band-
width.
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Normalized Capacity

For finite-dimensional channels the following discrete capacities hold:

Cd = 1
2
log2

(

1 + 2RdEb

N0

)

[bits/dimension]

Cc = log2

(

1 +
REb

N0

)

[bits/complex dimension]

There are a maximum of approximately 2.4 dimensions per unit Band-
width and Time

The Shannon bound per dimension is given by

Eb

N0
≥ 22Cd − 1

2Cd

;
Eb

N0
≥ 2Cc − 1

Cc
.

System Performance Measure In order to compare different commu-
nications systems, we need a parameter expressing the performance
level. It is the information bit error probability Pb and typically falls into
the range 10−3 ≥ Pb ≥ 10−6.

[WoJ65] J.M. Wozencraft and I.M. Jacobs, Principles of Communication En-
gineering, John Wiley & Sons, Inc., New York, 1965, reprinted by
Waveland Press, 1993.
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Examples:

Spectral Efficiencies versus power efficiencies of coded and uncoded
digital transmission systems at a bit error rate of Pb = 10−5:
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[SchPer04] C. Schlegel and L. Perez, Trellis and Turbo Coding, IEEE Press, Pis-
cataway, NJ, 2004.
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Finite Error Probabilities

If we are willing to accept a non-zero finite error rate Pb on the decoded
bits, the available resources can be stretched.

R Rout

Eb Eb,out
Channel C

Source
Encoder

Source
Decoder

Lossy Source Compression can achieve a compression from rate
R → Rout if we accept a reconstruction error probability of Pb. Then

Rout = (1 − h(Pb))R

binary entropy function : h(p) = −p log10(p) − (1 − p) log10(1 − p)

The rate now has to obey: Rout ≤ C

which leads to the modified Shannon bound:

Eb

N0
≥ 2(1−h(Pb)η − 1

η
(1 − h(Pb))
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Code Efficiency

codes perform better if they are larger. Here plotted for R = 0.5.
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[SGB67] C.E. Shannon, R.G. Gallager, and E.R. Berlekamp, “Lower bounds
to error probabilities for coding on discrete memoryless channels,”
Inform. Contr., vol. 10, pt. I, pp. 65–103, 1967, Also, Inform. Contr.,
vol. 10, pt. II, pp. 522-552, 1967.

[ScP99] C. Schlegel and L.C. Perez, “On error bounds and turbo codes,”,
IEEE Communications Letters, Vol. 3, No. 7, July 1999.
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System Complexity: Real-World Issues

Apart from the Algorithmic Computational Complexity , the following
complexity measures are important for implementations:

• Size of a VLSI Implementation

• Power Dissipation per Decoded Bit

• Implementation and Verification Complexity
Digital Decoder Implementations require a VLSI implementation size
which empirically follows an inverse power law of the the required SNR.

Analog Decoder Implementations: appear to have a substantial size
advantage:
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Power Dissipation

The power dissipated per decoded bit is an important measure of de-
coder complexity. No coherent theory is known at this point. It also
seems to follow as a power function the required signal-to-noise ratio.

Analog Decoder Implementations: appear to have an even stronger
substantial advantage in the decoding power dissipation:
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Experimental Chips

Analog Decoders have the potential to be extremely power efficient:

Code Proc. Power Speed Energy/Bit

small turbo 0.35µ 185mW 3.3V 13.3 Mb 13.9nJ/b
(8,4) Hamming 0.5 µ 45mW 3.3V 1 Mb 45nJ/b
1024 LDPC 0.16µ 690mW 1.5V 500 Mb 1.26nJ/b
convolutional 0.25µ 20mW 3.3V 160 Mb 0.125nJ/b

U of A Chips

(16,11)2 product 0.18µ 7mW 1.8V 100 Mb v 0.07nJ/b
(8,4) Low voltage 0.18µ 36µW 1.8V 4.4 Mb 0.008nJ/b
(8,4) Low voltage 0.18µ 150µW 0.8V 3.7Mb 0.042nJ/b
(8,4) Low voltage 0.18µ 2.4µW 0.5V 69kb 0.034nJ/b

Comments:

• Numbers in red are actual measurements of test chips.

• Measurements include IO power and interface losses.

• Brain uses an estimated 10pJ/processed bit
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Turbo Codes

Claude Berrou’s Turbo Codes have

• opened a new (and final) chapter in error control coding
• opened the flood gates for iterative decoding and iterative signal

processing [SchGra05].
• have motivated the novel field of analog processing of digital data.

The author and Claude Berrou enjoying a cigar

[Guiz04] E. Guizzo, ”Closing in on the Perfect Code,” IEEE Spectrum, Vol. 41,
No. 3, March 2004, pp. 36–42.

[SchGra05] . Schlegel and A. Grant, Coordinated Multiple User Communications,
Springer Publishers, 2005.
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Low-Density Parity-Check
Codes
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Low-Density Parity-Check Codes

• Low Density Parity Check (LDPC) codes where introduced in the
dissertation of Robert G. Gallager in 1960 [Gall62, Gall63].

• Like Turbo Codes, LDPC are decoded with an iterative algorithm
based on message passing.

• LDPC codes are now enjoying a renaissance and are consid-
ered an attractive alternative to parallel concatenated convolu-
tional codes for near capacity performance.

[Gall62] R. G. Gallager, “Low-density parity-check codes”, IRE Trans. on In-
form. Theory, pp. 21–28, Vol. 8, No. 1, January 1962.

[Gall63] R.G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cam-
bridge, MA,1963.

[Mac99] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices”, IEEE Trans. Inform. Theory, vol IT-45, No. 2, pp. 399–431,
March, 1999.
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Linear Block Codes: Some Background

• A binary block encoder maps binary input (source) sequences, u
of length K to binary codewords, v, of length N . The rate of such
a code is

R =
K

N

• A rate K/N linear block code can be fully described by a K × N
generator matrix G. Given G, encoding may be accomplished by
simple matrix multiplication, i.e.,

v = u · G

• In systematic form, the generator matrix takes the form

G = [IK|P] ,

where IK is the K ×K identity matrix. In this case, the codeword
takes the form

v = (u0, u1, · · · , uK−1
︸ ︷︷ ︸

K information bits

, p0, p1, · · · , pn−k−1
︸ ︷︷ ︸

N−K parity bits

)

• A linear block code may be described by a (N − K) × N parity
check matrix H. An N bit sequence r is a codeword if and only if

s = r · HT = 0

The (N − K)-tuple s is called the syndrome .

• For systematic codes,

H =
[
IN−K|PT

]
.
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Gallager Codes

Gallager defined LDPC codes using sparse parity check matrices con-
sisting almost entirely of zeroes.

An (N, p, q) Gallager code of length N specified by a parity check ma-
trix H with exactly p ones per column and exactly q ones per row and
where p ≥ 3. The desired code dimension K must also be chosen.

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Random Construction: The actual (N − K) × N parity check matrix
H may be constructed randomly subject to these constraints. Rate: If
all the rows of H are linearly independent then the code rate is

R =
N − (N − K)

N
= 1 − p

q

Linear dependence results in higher rate codes.
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Graphical Code Representation

LDPC codes are preferably represented by a bi-partite graph, where
one class of nodes represents the variables (Variable Nodes ) and the
other class represents the (Check Nodes ):

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

+ + + + + + + + + + + + + + +

Variable Nodes

Check Nodes

Regular LDPC Codes have a fixed number of branches dv leaving
each variable node, and a fixed number of branches dc leaving each
check node.
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Regular LDPC Codes

Code Specification lies in the interconnection network:

++ + + ++ + + ++ + + ++ +

Variable Nodes

Check Nodes

Interleaver – Connection Network Each connection point at a node
is called a socket . There are then dvN = dc(N − K) such sockets.

Code Definition

A regular LDPC code is completely defined by a per-
mutation π(i) of the natural numbers 1 ≤ i ≤ dvN .
The index i refers to the sockets number at the vari-
able nodes, and π(i) to the socket number at the check
nodes to which socket i connects.
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Irregular LDPC Codes

It was observed [Luby01] that irregular LDPC codes can provide a
performance of up to 0.8dB better for large codes than regular LDPC
codes.

Degree Distribution: An irregular code is specified by a degree distri-
bution:

γ(x) =
∑

i

γix
i−1; γ(1) = 1

The coefficients γi denote the fraction of edges which are connected
to a node of degree i.

Code Definition (Irregular LDPCs)

An irregular LDPC code is completely defined by
a permutation by two degree distributions λ(x) for
the variable nodes, and ρ(x) for the parity check
nodes, together with a permutation π(i) of vari-
able socket numbers to check socket i numbers.

Design Rate of an irregular LDPC code is given as

R = 1 − N − K

N
= 1 −

∑

i
ρi

i
∑

i
λi

i

[Luby01] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, ”Im-
proved low-density parity-check codes using irregular graphs”, IEEE
Trans. Inform. Theory, Vol. 47, No. 2, pp. 585–598, 2001.
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Performance of Gallager Codes: Large Codes

Simulation of Codes of Length 106
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For competitive performance, irregular LPDC codes are required at low
rates.
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Performance of Gallager Codes: Finite-Size Codes
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• This figure shows the performance of rate R = 1/2 Gallager
LPDC codes on the AWGN channel with soft decision iterative
decoding.

• Irregular codes offer better performance than regular codes, some-
times up to 0.8dB!
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Message Passing Decoding: AWGN Channels

Step 1: Initialize λi = 2
σ2

ri for each variable node.

Step 2: Variable nodes send µi→j = λi to each check node j ∈ Vi.

Step 3: Check nodes connected to variable node i send

βj→i = 2 tanh−1




∏

i∈Ci\j

tanh

(
µi → j

2

)


 ,

Step 4: Variable nodes connected to check nodes j send

µi→j =
∑

j∈Vi\j

βj→i + λi

Step 5: When a fixed number of iterations have been completed
or the estimated codeword x̂ satisfies the syndrome constraint
Hx̂ = 0 stop. Otherwise return to Step 3.

µ1

µ2

µ3

Check i

βj→i

β1

β2

β3

µi→j Variable j

λi
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The Binary Erasure Channel (BEC)

The erasure channel is a simple test example for coding ideas:

1- ε

1- ε

1

0

ε

ε

-1

+1

0

Decoding on the BEC follows the following simple algorithm:

Step 1: Initialize di = ri for each variable node. If ri = 0 then the
received symbol i has been erased and variable i is unknown.

Step 2: Variable nodes send µi→j = di to each check node j ∈ Vi.
Step 3: Check nodes connected to variable node i send βj→i =

∏

l∈Cj\i
µl→j to i. That is, if all incoming messages are differ-

ent from zero, the check node sends back to i the value that
makes the check consistent, otherwise it sends back a zero for
“unknown”.

Step 4: If the variable i is unknown, and at least one βj→i 6= 0, set
di = βj→i and declare variable i to be known.

Step 5: When all variables are known, or after a pre-described num-
ber of iterations, stop. Otherwise go back to Step 2.

+

+
+
+
+
+known

known

known
Check i

known

known

unknown

known

Variable j

yi
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Failure of LDPC on the BEC

Large LDPCs are extremely effective on the BEC channel. The era-
sure patterns that a code can not recover are all well defined they are
related to Stopping Sets

A stopping set S is a set of variable nodes, all of whose neigh-
boring check nodes are connected to this set at least twice.

This figure shows a stopping set in our original LDPC code:

+ + + + + + + + + + + + + + +

Black: Stopping Set

Neighbors

It is easy to see that if the bits in a stopping set are erased, the decod-
ing algorithm stops, since the check node operations can not proceed.

Erasure decoding will terminate at the largest
stopping set contained in the erasure set.
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Probability Propagation Analysis

Assume that the code is infinitely large and has therefore no cycles:

p
(l)
v

p
(l−1)
u

p
(l−1)
v

Level l − 1

Level l − 2

Iterations start with an erasure probability of p0 = ε for each variable
node. From this, the erasure of the outgoing message at a variable
node is given by:

p(l)
v = p0

[

p(l−1)
u

]dv−1

The probability of a sending an erasure message from a check node is
given by:

p(l−1)
u = 1 −

[

1 − p(l−1)
v

]dc−1
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Probability Propagation on the BEC

From these equations we obtain the iteration formula:

p(l)
v = p0

(

1 −
[

1 − p(l−1)
v

]dc−1
)dv−1

Example: Probability propagation on a (6,3) R = 1/2 regular code:
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v

For irregular LDPC codes the probability update formulas have to be
modified to

p
(l−1)
u = 1 −

∑dc

i=1 ρi

[

1 − p
(l−1)
v

]i−1
= 1 − ρ

(

1 − p
(l−1)
v

)

p
(l)
v = p0

∑dv

j=1 λj

[

p
(l−1)
u

]j−1
= p0λ

(

p
(l−1)
u

)
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Threshold of LDPCs

From these observation, a threshold parameter can be defined as

ε∗ = sup {ε : f (ε, x) < x, ∀x ≤ ε}
wheref(ε, x) = ελ (1 − ρ (1 − x))

that is, the transfer function f(ε, x) must lie entirely below the 450 sym-
metry line. Error-free decoding is possible if and only if

x = ελ [1 − ρ (1 − x)]

has no positive solutions for x ≤ ε.

The threshold can be rewritten as:

ε∗ = min {ε(x) : ε(x) ≥ x}

ε(x) =
x

λ [1 − ρ (1 − x)]

For regular LDPC codes we can specify this further to:

ε∗ =
1 − s

(1 − sdc−1)dv−1

where s is the positive real root of

[(dv − 1)(dc − 1) − 1] ydc−2 −
dc−3∑

i=0

yi = 0

The threshold for (3,6) codes is ε∗ = 0.4294 and capacity is at ε ≥ 0.5.
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Density Evolution for the AWGN Channel

The situation in the additive white Gaussian noise channel is somewhat
more complicated. The received signal LLR is given

fY (y) =

√

N0

16π
e
−N0

16

(
y− 4

N0

)2

The PDF of the channel LLR is Gaussian distributed with mY = 4/N0

and variance 2mY . Such a Gaussian PDF is called consistent – a
single parameter suffices to characterize the entire PDF.

Variable Node Processing
At the variable nodes signals are added and sent back to the check
nodes. Adding Gaussian signals produces a Gaussian signal. The
mean of the signal PDF that is sent to the check node is:

m(l)
v = m(0)

v + (dv − 1)m(l−1)
u

Check Node Processing
The situation here is a little more difficult: First, assuming the indepen-
dence of the tree, we obtain for the outgoing check node message:

E

[

tanh

(
U

2

)]

= E

[

tanh

(
Vi

2

)]dc−1

.

We need the following definition

φ (mu) = 1 − E

[

tanh

(
U

2

)]

= 1 − 1

4πmu

∫

R
tanh

(u

2

)

exp

[

− 1

4mu
(u − mu)2

]

du
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Check Node Transfer Functions

Function φ(m) is a non-elementary integral. It does have close approx-
imations which speed up the computations substantially.

φ(m) ≈
{

exp (−0.4527m0.86 + 0.0218) ; for m < 19.89
√

π
m

exp
(
−m

4

) (
1 − 1

7m

)
; for m ≥ 19.89
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Numerical Issues

The divergence to ∞ is somewhat cumbersome. We observe that
φ(m) → 0 as m → ∞. Let’s define r = φ(m

(l−1)
u ), and

h(s, r) = φ
[

s + (dv − 1) φ−1
(

1 − (1 − r)dc−1
)]

where we note that h(s, φ(m
(l−1)
u )) = φ(m

(l)
u ), s = 4/N0.

We now have a convergence to zero situation, which is analogous to
the probability convergence for the BEC just discussed.

The threshold is therefore defined as

s∗ = inf
{
s ∈ R+ : h(s, r) − r < 0, ∀ r ∈ (0, φ(s))

}

and the threshold noise variance is: σ∗ =
√

2
s∗
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LDPC Irregular Code Analysis

Density analysis for irregular code is essentially an extension of the
above analysis with a few noteworthy differences:

Variable Nodes:
Due to the irregularity, the messages leaving the variable are a Gaus-
sian mixture with means for a node with degree i given by

m
(l−1)
v,i = (i − 1)m(l−1)

u + m(0)
v

Check Nodes:
The signals entering the check nodes are Gaussian mixtures, and the
check node output signal is obeys for a node of degree j

E

[

tanh

(
U

2

)]

=

j−1
∏

i=1

E

[

tanh

(
Vi

2

)]

φ
(

m
(l)
u,j

)

= 1 −
[

1 −
dv∑

i=1

λiφ
(

(i − 1)m(l−1)
u + m(0)

v

)
]j−1

The average check node output signal is then simply

m(l)
u =

dc∑

j=1

ρjφ
−1



1 −
[

1 −
dv∑

i=1

λiφ
(

(i − 1)m(l−1)
u + m(0)

v

)
]j−1





This is recursive formula for mu.

Note The check node output signal may not be exactly Gaussian, but
these signals are mixed by the additive variable node which produces
a Gaussian with high accuracy, especially if dv is large.
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Success of Irregular LDPCs

dv 4 8 9 10 11 12 15 20 30 50

λ2 .3835 .3001 .2768 .2511 .2388 .2443 .2380 .2199 .1961 .1712
λ3 .0424 .2840 .2834 .3094 .2952 .2591 .2100 .2333 .2404 .2105
λ4 .5741 .0010 .0326 .0105 .0349 .0206 .0027
λ5 .0551 .1202
λ6 .0854 .0023
λ7 0159 .0654 .0552 .0001
λ8 .4159 .0146 .0477 .1660 .1527
λ9 .4397 .0191 .0409 .0923
λ10 .4385 .0128 .0106 .0280
λ11 .4334
λ12 .4037
λ14 .0048
λ15 .3763 .0121
λ19 .0806
λ20 .2280
λ28 .0022
λ30 .2864 .0721
λ50 .2583
ρ5 .2412
ρ6 .7588 .2292 .0157
ρ7 .7708 .8524 .6368 .4301 .2548
ρ8 .1319 .3632 .5699 .7344 .9801 .6458 .0075
ρ9 .0109 .0199 .3475 .9910 .3362
ρ10 .0040 .0015 .0888
ρ11 .5750

σ∗ .9114 .9497 .9540 .9558 .9572 .9580 .9622 .9649 .9690 .9718
Eb
N0

0.806 0.448 0.409 0.393 0.380 0.373 0.335 0.310 0.274 0.248
σ∗

GA .9072 .9379 .9431 .9426 .9427 .9447 .9440 .9460 .9481 .9523
Eb
N0

∗
0.856 0.557 0.501 0.513 0.513 0.494 0.501 0.482 0.462 0.423

Capacity lies at σ2 = 0.9787 corresponding to Eb/N0 = 0.188dB.

Check Node Concentration means that

ρ(x) = ρkx
k−1 + (1 − ρk) xk.
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Very Large LDPC Codes

Construction and simulations of very large LDPC codes reveal close to
Shannon limit performance:
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[Chun01] S.Y. Chung, G.D. Forney, T.J. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045dB of the
Shannon limit,” IEEE Comm. Lett., vol. 5, no. 2, pp 58–60, February
2001.
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Limited Performance of Regular Codes
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• Threshold convergence of regular LDPC codes is close to the
BPSK capacity limit for high rates.

• Regular codes perform poorly at lower rates ⇒ Irregular codes

[Schl034] C. Schlegel and L. Perez, Trellis and Turbo Coding, IEEE/Wiley,
2004, also: www.turbocoding.net: LDPC Chapter.
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Error Floor Phenomenon

Performance results for regular and irregular cycle optimized LDPC
codes of rate R = 1/2 for a block length of 4000 bits
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Like Turbo Codes, (randomly) constructed LDPC codes suffer from an
error floor which is difficult to determine analytically. We observe:

• Irregular Codes: have a higher error floor

• Regular Codes: have typically a lower error floor, but less per-
formance in the waterfall region

• LDPC Codes: rarely fail (decode erroneously) to a codeword
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Counter Measures

There have been a number of strategies to lower the error floor:

• Increasing Girth: This increases the length of the shortest cy-
cles which have been implicated in correlating the messages in
the iterative decoder.

• Special Construction: LPDC codes constructed on expander
graphs have provably large girths, but their rates and performance
in the threshold region tend to be problematic

• Triangular and Repeat Accumulate Structures: Relegating vari-
able nodes with low degrees to be parity checks has strong im-
pact. Low degree variable nodes tend to have higher error rates.

• Increasing the Extrinsic Message Degree of Short Cycles:
This method is a combination of girth and a method to insure in-
flux of sufficient extrinsic information from other parts of the code
graph. The resulting construction – Approximate cycle EMD, or
ACE, produces low error floor LDPC codes.
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Repeat-Accumulate Codes

RA codes are really serially concatenated turbo codes where the outer
code is a very similar repetition code:

R = 1/q

Repitition Code

∏
1

1 + D
Accumulator

However, if we draw the code graph of a repeat accumulate code, we
see that it can just as well be interpreted as a low-density parity check
code where the parity checks are degree-2 nodes which can be recur-
sively encoded (from right to left).

+ + + + + + + + + + + + + + +C
he

ck
N

od
es

Variable Nodes (Information Bits)

Parity Nodes (Codeword Bits)
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Irregular Repeat-Accumulate Codes

The parity-check matrix of a repeat accumulate code reflects the ac-
cumulator structure in the parity portion of the matrix:

1 1 1 1
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1

1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1

1 1 1 1

Irregular RA codes can be optimized for degree distributions also:

a 2 3 4
λ2 .139025 .078194 .054485
λ3 .222155 .128085 .104315
λ5 .160813
λ6 .638820 .036178 .126755
λ10 .229816
λ11 .016484
λ12 .108828
λ13 .487902
λ27 .450302
λ28 .017842

Rate 0.333364 0.333223 0.333218
σ∗ 1.1981 1.2607 1.2780

σGA 1.1840 1.2415 1.2615
Capacity (dB) -0.4953 -0.4958 -0.4958

Their rate is given as R = a/(a +
∑

i iλi).
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Extended Irregular Repeat Accumulate Codes

Yang et. al. [YanRya04] have constructed such codes using the optimal
degree distributions for a number of rates. They have found that by
increasing the column weight in the information portion of the parity-
check matrix they could improve the error floor.

Example: (4161,3430) eIRA codes constructed

Code 1: λ(x) = 0.00007 + 0.1014x + 0.5895x2 + 0.1829x6 + 0.1262x7

ρ(x) = 0.3037x18 + 0.6963x19

Code 2: λ(x) = 0.0000659 + 0.0962x + 0.9037x3

ρ(x) = 0.2240x19 + 0.7760x20

Code 3: λ(x) = 0.0000537 + 0.0784x + 0.9215x4

ρ(x) = 0.5306x24 + 0.4694x15
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[YanRya04] M. Yang, W.E. Ryan, and Y. Li, “Desin of efficiently encodable
moderate-length high-rate irregular LDPC codes,” IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 564–571, April 2004.
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ACE Construction Algorithm

Extrinsic Message Degree (EMD) of a Set is defined as the number
of connections from variable nodes of the set to the “outside”:

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Smaller Set, EMD = 3Stopping Set, EMD = 0

A Stopping Set has an EMD of zero. No outside edges join the vari-
able nodes.

Approximate Cycle EMD (ACE) is a “practical measure”, where we
simply ignore intraset constraints, i.e., the set above has an ACE of 5.

In general the ACE of a circle of length 2d equals

ACE =
∑

i

(di − 2)

Iterative Decoding via Analog Processing
Seminar Notes, 2005, c©Christian Schlegel



ACE Construction of LDPCs

An LDPC has (dACE, nACE) if all cycles
of length l ≤ 2dACE have ACE ≥ nACE.

Tian et. al. [Tia03] construct such codes by randomly generating codes
until a code meets the ACE criterion. Good codes can be constructed
this way:
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[Tia03] T. Tian, C. Jones, J.D. Villasenor, R.D. Wesel, “Selective avoidance of
cycles in irregular LDPC code construction,” IEEE Trans. Commun.,
submitted.
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LDPC Code Design via EXIT Charts

There have also been efforts to design LDPC codes via EXIT analysis.
EXIT is similar to density evolution:

+

+
+

+

“Repetition Code”

IE,var

Channel LLR

IA,var

Parity Check Code

IE,chkIA,chk

The following code parameters were designed by Howard et. al. and
show a high-performing irregular LDPC code:
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Specialized Designs

Construction of Margulis [Mar82] produces codes of length N =
2(p2 − 1)p codes, for each prime p with a girth which grows as log p.

Ramanujan Graphs have small second eigenvalues of their adjacency
matrix which guarantees large girths.

For p = 11, the resulting has girth 8 and N = 2640.
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[Mar82] G.A. Margulis, “Explicit construction of graphs without short cycles
and low-density parity check codes,” Combinatorica, vol. 2, no. 1, pp.
71-78, 1982.
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Problems with Algebraic Constructions

The Margulis Code suffers from decoding failure due to near-codewords:
A Hamming weight w sequence which causes a weight v parity check
violation is called a (w, v) near-codeword. The offending near code-
words are (12,4) adn (14,4) near-code words.

The Ramanujan Code has weight-24 actual codewords, which are
low-weight enough to cause the error floor.

In General: Algebraic Constructions are problematic also:

• A large girth does not guarantee a low error floor under iterative
decoding

• Codes may have low weight codewords even though they have
large girth

• Constructions usually generate only codes with few and very spe-
cific parameters such as length, rates, etc.

[1] [MaPo03] D.J.C. MacKay and M.S. Postol, “Weaknesses of Margulis
and Ramanujan-Margulis low-density parity-check codes,” Electronic
Notes Theor. Comp. Sci., vol. 74, 3003.
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The Encoding Problem

• In general, encoding of linear codes is accomplished by finding
the generator matrix G:

v = uG

• To find G, the parity check matrix is first put in systematic form
(using Gaussian elimination techniques) and then

H → [trP|IN−K] → G = [IK|P] .

• Example: Consider a (10, 3, 5) LDPC code with

H =










1 1 0 1 0 1 0 0 1 0
0 1 1 0 1 0 1 1 0 0
1 0 0 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 0 0
1 0 1 0 1 0 0 1 0 1
0 0 0 1 0 0 1 1 1 1










⇒










I6

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 0 0 1
0 0 1 0
1 1 1 1
1 1 1 1
0 1 0 0










Thus,

G =




I4

∣
∣
∣
∣
∣
∣
∣

1 0 0 1 1 0
0 0 0 1 1 1
0 0 1 1 1 0
0 1 0 1 1 0






In general, G is no longer sparse, and due
to the matrix multiplication, the encoding
complexity of LDPC codes is O(N 2).
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LInear-Time Encoding

Ideally, we would wish to have a triangular parity-check matrix, in
which case encoding could be performed via simple successive back-
substitution.

An approximate triangularization has been used by Richardson and
Urbanke [RiUr01] of the form

A

D E

0

C

B
T

m-g

g = "gap"

n-m g

m

n

Split Hinto [Hu | H∗p], giving the equation

Hpx
T
p = Hux

T
u ⇒ xT

p = H−1
p Hux

T
u .

The parity-check rule then gives the following encoding equations

AxT
u + BpT

1 + TpT
2 = 0,

(C − ET−1A)xT
u + (D − ET−1B)pT

1 = 0.

Define φ = D − ET−1B, and assume φ is non-singular, then:

pT
1 = φ−1

(
C − ET−1A

)
xT

u ,

pT
2 = −T−1

(
AxT

u + BpT
1

)
.

[RiUr01] T.J. Richardson and R. Urbanke, ”Efficient encoding of low-density
parity-check codes,” IEEE Trans. Inform. Theory, pp. 638–656,
February 2001.
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Practical Linear-Time Encodable LDPC codes

Extended IRA LDPC Codes
have a lower triangular parity-check matrix and can be encoded using
an accumulator:

1 1 1 1
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1

1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1

1 1 1 1

Lower Triangular LDPC Codes
Imposed the lower triangular constraint on H.

Iterative Encoding: Assign a set of N − K nodes to be parity-check
nodes which does not contain a stopping set, and use erasure de-
coding as the encoding mechanism. Proceed as follows. Declare the
parity check as erasures, set all the information bits to their values, and
use the erasure decoding algorithm to determine the parities.
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Some Leading Commercial Products

32

64 / 32

16

10 / 7

31 / 17

Itera-

tions

300 / 600

Mbit/s
4 or 875MHzXilinx

(100% Virtex Pro 70)
LDPC

UofAlberta

(study)

8 or 16

1

0.37 / 0.5

0.51 / 0.93

Bits/Cycle

LDPC

Parallel

Duo-Binary

Turbo Code

Parallel

Turbo Code

Serial Turbo

Code

Code

512 / 1024

Mbit/s
64MHzASIC

(7.5mm x 7mm)

Blanksby&

Howland

68 Mbit/s68 MHzXilinx
(100% Virtex 2V4000)

iCoding

50 / 68

Mbit/s

135

MHz
Xilinx
(50% Virtex Pro 70)

L3

54 / 98

Mbit/s

105

MHz

Standard Cell

ASIC
TrellisWare

ThroughputClockPlatformCompany

High-Speed Decoders The important measure is the number of bits/clock
cycle that can be attained.

[BlHo02] A.J. Blanksby and C.J. Howland, “A 690-mW 1-Gb/s 1024-bit, rate-
1/2 low-density parity-check code decoder,” IEEE J. Solid-State Cir.,
vol. 37, no. 3, pp. 404–412, March 2002.
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LDPC: Summary Remarks

• LDPC codes can be constructed that achieve very excellent per-
formance near the Shannon limit.

• Encoding of LDPC codes is not an complexity issue

• Controlling the error floor of LDPC is possible – even though not
fully understood – via
1. Assign low-degree variable nodes as the parity nodes; they

may have high error rates
2. Avoid short cycles
3. Avoid short cycles with low extrinsic message degrees

• Error control codes can be efficiently built on ASIC or FPGA plat-
forms

Turbo Codes and LDPC Codes effectively solve
the channel coding problem for the additive-
white Gaussian channel (and similar channels)
with implementable encoders and decoders.
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Analog Decoding
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Analog Computation and APP

Digital implementations of APP decoders can be very complex and
resource-intensive. Analog decoding provides an alternative with some
attractive features:

• Parallel design provides speed and robustness under process
variation.

• The APP algorithm preserves high precision at the system level
in spite of reduced precision at the component level.

• CMOS designs in subthreshold allow fabrication using all-digital
processes. Subthreshold CMOS circuits consume very little power,
making analog decoding attractive for ultra-low power applica-
tions.

• Continuous-time processing replaces iteration, giving analog cir-
cuits both elegance of design and an additional degree of re-
source efficiency.

• Subthreshold current mode operation can substantially reduce
power requirements.
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Translinear Devices

• A translinear device is a voltage-controlled current-source for which
the current is an exponential function of the voltage. Typical ex-
amples are diodes and bipolar transistors.

• Exponential current response allows translinear devices to be
used as analog current multipliers:

I 2

I4

V1 V3

V4

V2

I1 I3

-

+

+ -

+

-

+ -

Ii = I0eαVi

• Summing voltages around the loop gives V1 + V4 = V2 + V3. We
can rewrite this as log(I1) + log(I4) = log(I2) + log(I3), and thus:

I1 I4 = I2 I3

Translinear Principle :
In a closed loop consisting of translinear devices with equal
numbers of clockwise and counter-clockwise currents, the
product of currents in the clockwise direction is equal to the
product of currents in the counterclockwise direction.
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Subthreshold MOS Model

A MOS transistor with a gate-to-source voltage VGS lower than its
threshold voltage VTh has a very low drain current which responds
exponentially to VGS. It can therefore be operated as a translinear de-
vice.

IDS

VDSG

D

S

18
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2
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0

Triode

Region

Saturation
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VGS = VT+8

VGS = VT+6

VGS = VT+4

IDS (mA)

VDS (V)

IDS = I0
W

L
exp

(
κ(VG − VS)

UT

)[

1 − exp

(
−VDS

UT

)]

• where I0 is a process constant, W
L

is the transistor’s width-to-
length ratio, UT

∼= 26mV , and κ ≈ 0.7.

• If VDS > 100mV , the transistor is said to be in saturation, and we
may make the following approximation:

IDS
∼= I0

W

L
exp

(
κVGS

UT

)
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MOS Translinear Loop

The translinear principle may directly be applied to analyze networks
such as

-

+ +

- I4I1

I2 I3

VRef VRef

+

--

+
I2 I4 = I1 I3

• Following a loop from VRef to VRef , we find that I2 and I4 flow
with the loop, while I1 and I3 flow against the loop. Therefore
I2 I4 = I1 I3.

• The same analysis applies to the more realistic differential circuit:

I
B

Iin
1

Io
ut 1

Io
ut 2

Iin
2

VRef VRef

Iout1
=

Iin1
· IB

Iin1
+ Iin2

; Iout2
=

Iin2
· IB

Iin1
+ Iin2

• This is the basis of the Gilbert Multiplier or
Vector Normalization circuits.
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Gilbert Multiplier

• The differential pair circuit may be expanded by adding more
source-connected transistors. This arrangement is known as the
Gilbert multiplier.

Iy1 Iy2

Ix3

Ixn

Ix2

Ix1

Iz
11

Iz
12

Iz
13

Iz
22 Iz

23 Iz
2n

Iz
1n

Iz
21

Let Itot =
∑

i Ixi. Then

Izij =
Ixi · Iyj

Itot

Building Block
The Gilbert Cell forms the building block for vector normalization, current-
mode sum, product, and normalization functions – everything needed
for soft message passing decoding.
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Basic Cell Structure

From the Gilbert Multiplier Cell a basic cell structure is derived

IU

Vp-ref

Vn-ref

Vn-ref

Vp-ref

Z(1)

Z(0)

Connectivity Network

X(0)

X(1)

Y(0)

Y(1)

I11I01I10I00

Multiplication The internal circuits Iij = X(i)Y (j) are all possible
products of the input currents.

Addition Is performed by simply adding wires in the connectivity net-
work to accomplish a given function.

Output Stage The p-type current mirrors at the output reorient the
currents to be used in another cell as input.
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Example: Check Node Circuit

A parity-check node needs to compute at its outputs:

Z(0) = X(0)Y (0) + X(1)Y (1)

Z(1) = X(1)Y (0) + X(0)Y (1)

This is accomplished with the following circuit:

IU

Vp-ref

Vn-ref

Vn-ref

Vp-ref

Z(1)

Z(0)

X(1)

X(0)

Y(1)

Y(0)

I11I01I10I00
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Example: Equality Node Circuit

The equality node (variable node in an LDPC) needs to compute:

Z(0) = ∝ X(0)Y (0)

Z(1) = ∝ X(1)Y (1)

This is accomplished with the following circuit:

IU

Vp-ref

Vn-ref

Vn-ref

Vp-ref

Z(1)

Z(0)

X(1)

X(0)

Y(1)

Y(0)

I11I00

Transistor Count : 15
(Analog, 10-bit precision: 180
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Analog Decoding: Promise

With these simple elements, an LDPC decoder (and others) can be
bulit:

+ + + + + + + + + + + + + + +

Advantages:

• The MOS transistor is biased in the weak-inversion or subthresh-
old region, where is consumes typically less than 100nA.

• The transistor is never turned “on” and operates with “leakage
current”

• The power consumed is in the nano-Watt range

• The transistor is slow – throughput is achieved through massive
parallelism Large codes can achieve throughputs in excess of
1Gb/s.

• CMOS technology can be used, which has many advantages,
such as cheap fabrication and small transistor sizes.

• CMOS are well-suited for systems-on-a-chip ASICS

• The analog decoder produces no high-frequency interference
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Example – [8,4] Extended Hamming Code

The [8,4] Extended Hamming code has the following tailbiting trellis:

1

0

3

1

0

1

2

0

1

0

1

2

3

0

0 / 00

1 / 11

0 / 01

1 / 10

This code is decoded via APP decoding, which can use the same ana-
log building blocks. The code’s fundamental Butterfly structure has
the following simple implementation:

α r
(0

)

α r
(1

)

α r-1 (0)

α r-1
(1)

γ
r(a) γ

r(b)

Vref

Vref

γ
r α rα r-1

b

b

a

a

00

1 1
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Input Stages:

The input signals are received as voltage values which need to be
converted to probability values. Since

LLR = log

(
Pr(x = 1|y)

Pr(x = 0|y)

)

=
4y

N0

we need to convert the input signal y which appears as a voltage into
proportional probability currents. This is done by a differential input
stage:

I
B

Io
ut 1

Io
ut 2

V1 V2

The differential stage generates:

log

(
Iout1

Iout0

)

=∝ (V1 − V2)

The currents are normalized to
Iout1 + Iout0 = IB, which represents
unit probability.

Serial Interface
A Serial Interface is used to move serial channel samples into a sample-
and-hold chain whose outputs are presented to the decoder in parallel.

[Win04] C. Winstead, J. Die, S. Yu, C. Myers, R. Harrison, and C. Schlegel,
“CMOS Analog MAP decoder for an (8,4) Hamming code,” IEEE J.
Solid State Cir., Vol. 29, No. 1, pp. 122–131, January 2004.
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Output Stages

At the output, the signal needs to be converted back to voltages
which are being fed into conventional comparator circuits.

Io
ut 1

Io
ut 2

Clk

Clk

Vbias

Clk Clk

Data Bus

Analog Output Stage

Differential stage
generates:

∆V = ∝ exp

(
Iout1

Iout0

)

= λ

The complete Hamming decoder then has the blocks layout:

û

û

û
λ

λ

λ

1 2

4 3

α

βα

β

1

α

α

2

u

λ0

λ1

0

1

λ2 λ3

4

5

6λ7

1

2

3

β2

3

β3

00
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Complete Decoder

The complete decoder comprises a differential analog input line, serial-
to-parallel conversion, and a parallel-to-serial output line:

DAC

(optional)

tN
S/H

tN
S/H

tN
S/H

tN
S/H

tN
S/H

tN
S/H

tN
S/H...

+  +  +  +  +  +  +  

SRSRSRSRSRSRSR

conversion

Serial to parallel

D
ig

it
al

 I
n
p
u
ts

 (
if

 n
ee

d
ed

)

Analog differential voltage input

Decoder (fully parallel)

......S/H S/H S/H S/H S/H S/H
tN

S/H
t1 t2 t3 t4 t5 t6

...

Binary outputs
(serial)

Binary shift registers

Comparators

• Fabricated in AMI 0.5 micron
process

• Die size is 1.5mm by 1.5 mm
• Fabricated through Canadian

Microcorporation (CMC) Univer-
sity program
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Does It Work?

• Fabricated in TSMC 0.18 micron
process

• Fabricated through Canadian
Microcorporation (CMC) Univer-
sity program
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Codes of Practical Size

For practical communication systems larger codes with larger gain are
required. We built a (16, 11)2 product code.

While these codes with iterative decoding are not fully competitive with
turbo or LDPC codes, they do possess some advantages:

• Easy codeword geometry which allows finding dmin and nearest
neighbors easily

• Small numbers of iterations to achieve limit performance

• Small core sizes for high-speed implementations – see AHA core
products

BPSK

Turbo
65536 (16,11)2

(32,26)2

(64,57)2

(64,57)

(32,26)

(16,11)

(8,4)

(8,4)2(4,1,14) CCTurbo
65536

Hamming
Product
Codes

Hamming
Codes

0.1

0.2

0.3

0.4

0.5

0.6

0.7
0.8
0.9
1

b
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d
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Decoder Architecture

The decoder architecture is a mixture of an analog trellis decoder like
the [8,4] Hamming, and an LDPC code:

= y

u

co
lu

m
n 

de
co

de
r

row decoder

Rows and Columns are decoded via a trellis decoder, and bits that
are shared are connected with an equality node. The structure of the
decoder can be seen on the chip layout:

• Built in TSMC 0.18 micron
process

• Die size is 2.3mm by 2.5mm
• Fabricated through CMC’s

University program
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Performance Measurement Results

The product decoder chip is currently undergoing extensive testing.

 10-6

 10-5

 10-4

 10-3

 10-2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Uncoded BPSK

d_min

Software Decoder

Measured

bi
t e

rr
or

 r
at

e

Eb/N0

• Software Decoder
This is a simulation result using the iterative digital decoding al-
gorithm discussed earlier

• dmin Curve
This is an approximation of the optimial decoder performance
given by

Pb ≈ Ndmin
Q

(
dmin√
2N0

)

where Ndmin
is the number of codewords that have a given bit in

error and are at a distance dmin from the transmitted codeword

• Measurements are actual measured BERs on a single bit of the
analog product decoder
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Simulation and Verification
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Monte Carlo Simulations

The decoder chain is simulated and a number NMC of instances xi of
the process are run in order to obtain an estimate of the error proba-
bility P :

P̃ ≈ 1

NMC

NMC∑

i=1

I(xi)

where I(xi) = 1 if there is an error.

Reliability of Simulation
The expected value of P is

E
[
P̃
]

=
1

NMC
NMC E[I(xi)] = P

That is, P̃ is an unbiased estimator of P .

Variance of the Estimation

σ2
MC = E

[
P̃ 2
]
− E

[
P̃
]2

=
1

N 2
MC

E





NMC∑

i=1

I(xi)
NMC∑

j=1

I(xj)



− P 2

=
P

NMC
+

NMC − 1

NMC
P 2 − P 2 =

P (1 − P )

NMC

The variance, in turn, can be estimated as

σ̃2
MC =

1

NMC

NMC∑

i=1

I(xi) −
(

1

NMC

NMC∑

i=1

I(xi)

)2

NMC

which is an unbiased estimator for the variance σ2
MC.
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Evaluating Decoder Performance – Importance Sampling

• Software simulation of very low error rates are usually not feasible
with Monte-Carlo Simulation.

• Under certain circumstances, an accelerated technique Impor-
tance Sampling can be used.

Formulation
This issue is one of finding an integral of the general form

y =

∫

Ω

f(x)dx; Ω is the integration domain

IS evaluates this integral as
∫

Ω

f(x)dx =

∫

Ω

f(x)

ρ(x)
ρ(x) =

∫

Ω

w(x)ρ(x)dx

The weighting function w(x) = f(x)/ρ(x) changes the distribution of
the samples over Ω.

• Using finite point approximations, we have

y ≈ 1

Ns

Ns∑

i=1

w(xi)

where the new random samples are drawn according to ρ(x).

• It can be shown that the optimal weighting function using

ρopt(x) =
|f(x)|

∫

Ω
|f(x)|dx

; x ∈ Ω

leads to a constant weighting function w(x) =
∫

Ω
|f(x)|dx – which

would require only a single sample.
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Importance Sampling

Using importance sampling, the error is estimated as

P̃ =
1

Ns

Ns∑

i=1

w(xi)

with variance:

σ2
s =

1

N 2
s

E





Ns∑

i=1

w(xi)
Ns∑

j=1

w(xj)



− P 2

=
1

Ns
E

[
Ns∑

i=1

w2(xi)

]

+
Ns − 1

Ns
P 2 − P 2

=
1

Ns
E

[
Ns∑

i=1

w2(xi)

]

− P

Ns

An unbiased estimator for the variance is given by

σ̃2
IS =

1

N 2
s

Ns∑

i=1

w2(xi) −
1

Ns

(

1

Ns

Ns∑

i=1

w(xi)

)2

Gain: The gain of IS versus Monte-Carlo is expressed as

GIS =
σ2

MC

σ2
IS

The key is to ensure that the gain GIS > 1 order to save on the number
of simulation runs.
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Gain of Importance Sampling

Note that

1

Ns

Ns∑

i=1

w2(xi) −
(

1

Ns

Ns∑

i=1

w(xi)

)2

≥ 0

due to Jensen’s Inequality , with equality if and only iff w(xi) is a con-
stant.

If we set

w(x) =

∫

Ω

|f(x)|dx = constant

the variance σ̃2
IS goes to zero.

The related shifted probability density function ρopt(x) moves probabil-
ity mass into the area of integration, and biases the count. Ideally, all
mass is moved into the area of interest.

Domain Ω

ρopt(x)
f(x)

ρopt throws
every sam-
ple into Ω
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Application to FEC Performance Evaluation

Error Probability of Codeword x0

P0 is obtained by integrating the conditional channel pdf p(y|x0) over
the complement of the decision region D0 of x0.

P0 =

∫

∪Di;i6=0

p(y|x0)dy =
M∑

i=1

∫

Di

p(y|x0)dy

Ω

x0

x1

x2

x3

x4

x5

x6

D0

P0 can be approximated by concentrating on the most probable er-
ror neighborhoods by restricting the explored error neighborhoods to
those in the immediate proximity of x0.
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Importance Sampling via Mean Translation

In general, we try to bias the noise towards producing more errors.
This can be accomplished in a number of ways:

• Excision – certain samples are recognized as not causing an
error and can be discarded without simulating. E.g., if simple slic-
ing causes all of the bits to be correct, the decoder will complete
successfully.

• Variance Scaling – the noise variance is simply increased and
thus causes more errors. Since the weight function

w(y) =
σB

σ
exp

(

−|y − x0|2
σ2

B − σ2

σ2
Bσ2

)

≈ exp
(
−|y − x0|2/σ2

)

is exponential in the SNR, variance scaling does not work well.

• Mean Translation – samples are generated according to p∗(y) =
p(y−µ), where µ is a shift value towards the decision boundary .
We get

Pi0 =

∫

Di

p(y|x0)

p(y − µ|x0)
p(y − µ|x0)dy

=⇒ Pi0 ≈ 1

Ns

Ns∑

j=1

p(y|x0)

p(yj − µ|x0)
p(yj − µ|x0)I(yi)

The most successful way of performing IS has been via a simple trans-
lation of the mean. Typical shifts are to the (approximate) decision
boundary

µ =
x0 + xi

2
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Error Probability via IS

If the codeword structure of the immediate neighborhood is well known,
we can successively bias towards each error codeword and sum up the
error rates to obtain the estimate:

P0 =
M ′
∑

i=1

P0i; M ′ ≤ M

where P0i is calculated via IS and biasing to µ = (xi − x0)/2:

Ω

x0

x1

x2

x3

x4

x5

x6

D0
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Gain of IS

Monte-Carlo
the variance of Monte-Carlo simulations is

var(P0) =
P0(1 − P0)

NMC

Importance Sampling
The variance of the IS technique is

var(P0) =
1

Ns

Ns∑

j=1

I(yi) − P 2
0

Gain Example: The ratio of the number of samples to achieve the
same variance is the gain. The gain of IS over Monte-Carlo can be
astronomical:

G
ai

n

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  2  3  4  5  6  7  8  9  10
Eb/N0 (dB)

Gain for ML decoder

IS Simulation Gain of a (7,4) Hamming code

Iterative Decoding via Analog Processing
Seminar Notes, 2005, c©Christian Schlegel



Application to the Product Decoder

Note: For a single bit, only the bit neighbors need to be considered,
using just the minimum-distance codeword, extremely low error rates
can be simulated.

Note: IS can be effective if the decoder is not maximum likelihood, and
the conventional union bound is not appropriate.

Simulation results using IS:
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[Dai01] J. Dai, Design Methodology for Analog VLSI Implementations of Er-
ror Control Decoders, PhD thesis, University of Utah, 2001.
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Effects of Physics

One has to carefully address physical effects that could have influence
on the behavior of the code. The prominent such effects are:

• Device Mismatch
the circuit relies on a multitude of current mirrors, these can only
be build within a certain tolerance.

• Comparator Offset Errors
Comparator exhibit undesired random offset voltages. The issue
is largely one of comparator yield, i.e., what is the probability that
all the comparators on a given circuit are functional.

• Substrate Leakage Currents
affect “life” of the sampled signals. Stored voltages leak through
the substrate, whereby the leakage currents are nearly constant
– hence differential storage.
Strong leakage also affects the computational units’ accuracy.

• Channel Leakage Currents
make it difficult to mirror small currents due to large source-drain
voltages across the mirror transistor.

• Charge Injection
The S/H inject residual charge onto the storage capacitor when
switches are opened. This has the effect of scaling the differential
voltages.
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Mismatch Effects in the Core

Probably the most disturbing issue is the one of transistor mismatch in
large decoder circuits: Are they going to function properly?

Assume the following mismatch model where the mismatch parame-
ters ε are assumed to be Gaussian distributed.

IU

Vp-ref

Vn-ref

Vn-ref

Vp-ref

Z(1)

Z(0)

Connectivity Network

Ix0

Ix1

Iy0

Iy1

I11I01I10I00

ε00 ε11

ε01ε10

ε0 ε1

I 1 I 2

VRef VRef

ε

Mismatch Model:

I2 = (1 + ε)I1

We can calculate the actual output currents as

Iij = f(x, y, ε) =
Ix0

Iy0
(1 + εj)(1 + εij)

Ixi(1 + εij) + Ix
i
(1 + εij)
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Density Evolution Analysis

We now assume the inputs are Gaussian distributed with mean and
variances µx, µy and σ2

x, σ
2
y. The output mean can now be calculated

via numerical integration as:

µz =

∫

f(x, y, ε)pG(x)pG(y)pG(ε)dxdydε

The basic functions are then put together to build the node processors
for an LDPC code and the thresholds are computed. The figure below
plots the loss function

floss(σε) =
s∗(σε)

s∗(0)
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[Win04] C. Winstead, Analog Iterative Error Control Decoders, PhD Thesis,
University of Alberta, 2004.
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Some Recently Fabricated Analog Chips

Power efficiencyPower efficiency

Who or WhatWho or What TechnologyTechnology PowerPower ThroughputThroughput

(info bits)(info bits)
Energy /Energy /

decoded bitdecoded bit

(16,11)(16,11) 22 decoderdecoder 0.180.18 µµmm 7mW @1.8V7mW @1.8V 100 Mbps100 Mbps 0.07 0.07 nJ/bnJ/b core, IOcore, IO

Factor g raph decoderFactor g raph decoder 0.180.18 µµmm .283mW @1.8V.283mW @1.8V 444 kbps444 kbps 0.64 0.64 nJ/bnJ/b core, IOcore, IO

Trellis decoderTrellis decoder 0.180.18 µµmm .036mW @1.8V.036mW @1.8V 4.44 Mbps4.44 Mbps 0.0082 0.0082 nJ/bnJ/b core, IOcore, IO

Vorig et. al., JSSC'05 0.35µm 10mW @3.3V 2Mbps 12.6 nJ/b core,IO

Moerz et. al., ISSCC'00 0.25µm 20mW @3.3V 160Mbps 0.13 nJ/b core

Gaudet et.al., JSCC'03 0.35µm 185mW @3.3V 13.3Mbps 14 nJ/b core,IO

Winstead et.al., JSCC'04 0.5µm 45mW @3.3V 1Mbps 45 nJ/b core,IO

Blanskby et.al., JSCC'02 0.16µm 690mW @1.8V 500Mbps 1.25 nJ/b (digital) 

Bickerstaff, JSCC'02 0.18µm 290mW @1.8V 2Mbps 142 nJ/b (digital)
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Outlook for Analog Technology
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