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Abstract— This paper aims at introducing possibilities of self
organization for packet-switched networks at the scheduling man-
agement level. By discussing already existing scheduling strate-
gies, we identify several contrasting needs that should be jointly
addressed. The employment of the same algorithm for the whole
network leads to low performance. On the other hand, adjusting
the management cell-by-cell is not feasible and requires coordina-
tion. Hence, we propose a general framework for the scheduler,
which can be easily tuned by means of a neural network. In this
way, cells are grouped and self-similarities are identified, so that
the differentiation in the management is lighter and a significant
performance improvement can be achieved. Moreover, a general
tunability of the system is introduced, allowing to cut the right
trade-off between system complexity and QoS in a simple way.

I. INTRODUCTION

Wireless communication systems are expected to offer a
wide range of rich multimedia services. This implies high
and time-varying requirements in terms of bandwidth, and het-
erogeneous behavior in terms of QoS constraints (mainly ex-
pressed by BER and delay tolerance). The traffic load is usu-
ally considered to be concentrated essentially in the downlink
(where the capacity bottleneck is therefore expected). Finally,
a packet-switched communication is generally assumed.

In this context, efficient radio resource allocation needs ad-
vanced algorithms [1] for the packet scheduling. Some mul-
timedia applications present certain QoS elasticity: the con-
straints might be sometimes relaxed (soft QoS concept) and the
extent and duration of this relaxation can be directly related to
the service and, moreover, to the user charge plan. The sched-
uler must consider the system flexibility [2], in order to enhance
the packet allocation. For example, Non Real Time (NRT) ser-
vices allow a small degradation even for all users in order to
admit the scheduling of another packet source, which results in
a more efficient resource usage.

In general, the scheduling must be performed by an ad-
vanced Radio Resource Manager block. In wireless cellular
systems, it is possible to identify a trade-off between two differ-
ent strategic choices: to priorize the transmission of users with
good channel state, or to encourage fairness among the users.
The former leads to the well-known channel-state-dependent
scheduling (indicated in the following as “C/I”) [3], whereas
the latter can be achieved even with simple strategies but in
general associated with low peak performance [4]. This means
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that an efficient allocation is not trivial. From the operator’s
point-of-view, this implies a choice between two possibilities,
both unpleasing: to have different QoS levels for users possibly
having the same tariff and the same quality constraints, or to
miss some opportunity to allocate high data rates.

A joint strategy [5] to consider both issues and the tunabil-
ity between fairness and channel state should be considered.
This can be done by considering the perspective of the service
provider, that prefers to maximize the number of satisfied users.
This objective does not always agree with the maximization of
the system efficiency.

Moreover, one should consider that in general, users’ ser-
vice appreciation depends on different aspects of the resource
management. To adopt the same strategy for the whole network
might lead to an inefficient resource usage. On the other hand,
exchange of information to regulate the scheduling in a cell-
wise manner implies a large and probably unnecessary over-
head. Besides this, also the mobility would severely affect the
performance, as users experience an unjustifiably high differ-
ence of treatment before and after every handover.

To manage these problems, a novel strategy is presented,
called Neural Self-Organizing Map (NSOM) algorithm, in
which the trade-off between throughput and fairness is cut by
means of an auto-tunable neural strategy [6]. The cells are clus-
tered by considering representative parameters which allow the
identification of similarities. In this way the operator is able
to setup the network in a simple manner, without excessively
increasing the computational complexity. In particular, in this
work we apply the NSOM algorithm to a UMTS High Speed
Downlink Packet Access (HSDPA) channel, by showing per-
formance improvements which are in particular significant for
achieving high users satisfaction, which is what the system is
designed for.

This paper is organized as follows: in Section II the trade-
off between fairness and Qos is stated. In Section III the NSOM
algorithm is proposed as a possible solution. Its main features
are described and its application to the case study is discussed.
In Section IV simulation results are presented to validate the
algorithm. Finally, Section V concludes the paper.

II. THE GENERAL TRADE-OFF BETWEEN PEAK

PERFORMANCE AND FAIRNESS

Considering the instantaneous wireless channel conditions
is a key task, as location-dependent and bursty errors are typi-
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Fig. 1. throughput-fairness dispersion graph - C/I heuristic
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Fig. 2. throughput-fairness dispersion graph - LSF heuristic

cal. A user in a fading dip may experience a bad radio condition
and may be unable to transmit. The scheduling framework has
to take into account the channel conditions and to give priority
to users which experience a good channel.

However, a joint approach to fairness and C/I is necessary;
hence, it is important to identify how to tune the perfomance
between these two contrasting objectives. In Figures 1 and 2
we present a possible way to analyze the trade-off. Here, sim-
ple scheduling strategies have been considered to depict the ex-
treme cases: a pure C/I strategy, and a strategy where the least
served user is labelled with the maximum priority, called Least
served first (LSF). This latter strategy aims at emphasizing fair-
ness of the system. We used the dispersion graphs to represent
the behavior of these algorithms, by selecting the variance of
the throughput as a measure of unfairness. On the vertical axis
instead, the total throughput is plotted to depict the efficiency of
the scheduler. Different points on the graphs correspond to sim-
ulations with a different number of users. The way in which the
points are dispersed in the plane might be considered descrip-
tive of the strategy behavior. It is clear from the Figures that
with the existing algorithms one can only obtain good through-
put but low fairness or vice versa. However, how to adjust them
in a tunable way is still an open issue.
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Fig. 3. throughput-fairness dispersion graph - LC heuristic
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Fig. 4. System Architecture for Tunable Management

A possibility to obtain a Tunable Scheduling Strategy aimed
at QoS is achieved by considering a Linear Combination Algo-
rithm, as done in [7], which enables us to take into account con-
trasting requirements. As can be seen in Figure 3, this strategy
allows to improve the performance. In particular, the disper-
sion points are closer to the top-left part of the graph, which is
the more suitable for the users, as it means high throughput but
also a satisfactory degree of fairness. However, the propagation
condition changes in a quick manner, hence the parameters of
the linear combination may no longer be valid after a certain
amount of time. To follow the variations and to account for a
reactive system, we consider the framework of Figure 4, where
the general scheduling strategy discussed above is presented,
and the scheduler weights are dynamically adjusted by means
of a QoS-driven network monitoring process [8], as shown in
Figure 4. This procedure is assumed to be implemented in the
same manner in each cell. However, the scheduling weights
and the feedback functions might or might not be the same. In
general, a trade-off must be cut between adopting the same pro-
cedure for the whole network or a different strategies for each
cell.

III. THE NSOM ALGORITHM

The basic idea of Neural Self-Organizing Map (NSOM) is
simple yet effective. The trade-off between applying the same



scheduler to the whole network or specializing scheduling for
each cell can be cut by means of clustering. If the cells are clus-
tered in a manner representative of their similarities, the over-
head increasing can be reduced. This is especially true when
the network size becomes considerably high.

To obtain the clustering, the NSOM algorithm defines a
mapping from high dimensional input data space onto a regular
two-dimensional array of neurons. Every neuron i of the map
is associated with an n-dimensional reference vector, where n
denotes the dimension of the input vectors.

The reference vectors together form a codebook. The neu-
rons of the map are connected to adjacent neurons by a neigh-
borhood relation, which dictates the topology, or the structure,
of the map. The most common topologies in use are rectangular
and hexagonal. Adjacent neurons belong to the neighborhood
Ni of the neuron i.

In the basic NSOM algorithm, the topology and the number
of neurons remain fixed from the beginning. The number of
neurons determines the granularity of the mapping, which has
an effect on the accuracy and generalization of the NSOM. On
the other hand, note that this is a degree of freedom for the
provider to tune the computational complexity of the clustering.
During the training phase, the NSOM forms an elastic net that
folds onto the “cloud” formed by input data. The algorithm
controls the net so that it strives to approximate the density of
the data. The reference vectors in the codebook drift to the areas
where the density of the input data is high.

Eventually, only few codebook vectors lie in areas where the
input data is sparse. The learning process of the NSOM goes as
follows:

1) One sample vector x is randomly drawn from the input
data set and its similarity (distance) to the codebook vec-
tors is computed by using e.g. the common Euclidean dis-
tance measure.

2) After the Best Matching Unit (BMU) has been found, the
codebook vectors are updated. The BMU itself as well as
its topological neighbors (i.e. neurons in a defined radius
distance from the BMU) are moved closer to the input
vector in the input space, i.e., the input vector attracts
them. The magnitude of the attraction is governed by
the learning rate (α parameter). As the learning proceeds
and new input vectors are given to the map, the learning
rate gradually decreases to zero according to the specified
learning rate function type. Along with the learning rate,
the neighborhood radius decreases as well.

The update rule for the reference vector of unit i ( Mi is the
i-th neuron weight) is the following:

Mi(t + 1) = Mi(t) + h(t)d(x(t),Mi(t)) (1)

where x(t) is the input data vector, d(·) is the Euclidean dis-
tance between the two vectors, and finally h(t) is the bubble
neighborhood function. This function updates neighborhood
neurons at each training input step (training data x(t), neuron
ni, repeated for each neighborhood neuron nj), as:

h(t) = α(t)e−(d(x(t),Mi(t))
2)/(2d(ni,nj)

2); (2)

The parameter α, called learning rate, decreases linearly at
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Fig. 5. Neuron vs. data
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each step:
α = α0(1.0 − (t/T )) (3)

The neighborhood of a neuron is determined by means of a
parameter ρ, which is also linearly decreased:

ρ = ρ0(1.0 − (t/T )) (4)

so that nj is in the neighborhood of ni if d(ni, nj) < ρ.
Steps 1 and 2 together constitute a single training step and

they are repeated until the training ends. The number of training
steps T must be fixed prior to training the NSOM because the
rate of convergence in the neighborhood function and the learn-
ing rate is calculated accordingly. After the training is over, the
map should be topologically ordered. This means that n topo-
logically close (using NSOM distance measure, e.g., Euclidean)
input data vectors map to n adjacent map neurons or even to the
same single neuron.

The coefficients of the LC algorithm are hence tuned neu-
ron by neuron, by considering a uniform way to cut the tradeoff
between throughput and fairness. The linear combination of the
scheduler algorithm is adjusted accordingly, in order to reduce



TABLE I
ACTIONS FOR THE AUTOTUNING POLICY

Throughput Fairness Action
++ ++ ok
++ ∗∗ ok
++ −− >
∗∗ ++ <
∗∗ ∗∗ ok
∗∗ −− >
−− ++ <
−− ∗∗ <
−− −− <

the variations. An example of the autotuning policy may be the
one sketched in Table I. Here, if differences higher by a fixed
amount (which in the case study has been considered equal to
the 15%) are detected between a neuron and the average value
of its neighborhood, the coefficients can be changed. The deci-
sion are taken depending on the values being above (++), be-
low (−−) or within (∗∗) the admitted range centered in the av-
erage value. Adjustments are made with the finest granularity,
sufficient to have convergence to a uniform solution (in the case
study we considered a 5% increase). The “<” action means an
increase of the C/I coefficient with respect to the Least-Served-
First coefficient, whereas the “>” means the opposite and “ok”
means no changes. The algorithm of Table I slightly priorizes
throughput over fairness but other choices are still possible. For
more details about possible choices, see [11].

Samples of results for the NSOM algorithms are represented
in Figures 5 and 6. Figure 5 shows the final configuration of the
neuron approaching the data plotted on the same graph. Fig-
ure 6 instead, shows the frequency of input data given to each
neuron.

In this paper we apply this strategy to a UMTS - High Speed
Downlink Packet Access (HSDPA) network. In these network,
the traditional scheduling methods are similar to C/I scheduler,
i.e., the channel state is used as decision parameter to sort users
to schedule. In more advanced schemes others information such
as queue state and head packet delay are used to obtain a trade
off between throughput and fairness performance [7]. All the
information are combined together in a weighted manner to ob-
tain a scheduling priority parameter. There are several possi-
bilities to define such a combination. To keep the framework
as general as possible, we will speak in the following of a sim-
ple combination in which there are two components (possibly
containing more terms), which can be related to the C/I effect
improvement or to the LSF component, so that the point of
trade-off between Throughput and Fairness can be adjusted by
tuning the parameters accordingly. In particular, increasing the
C/I weight has, theoretically speaking, the same effect than de-
creasing the LSF one. In traditional systems scheduling weights
are yet fixed a priori; hence, the decision on the relative weights
is taken at the beginning and kept even if it is inefficient. Rather,
in this paper we apply the NSOM strategy to implement an au-
totuning system in which, after a data monitoring task, weights
are updated to be adapted to the current state of the network,

TABLE II
PARAMETERS OF SIMULATION SCENARIO

Parameter (symbol) value
cell radius (d) 250 m

number of cell (K) 49
Hata path loss exponent (α) 3.5

shadowing parameter (σ) 4dB
Doppler frequency (fd) 2Hz

gain at 1 m (A) −30dB
SIR target (γt) 2.5dB

orthogonality factor (f ) 0.3

as in Figure 4. In the first step network performance data as
average throughput and fairness (measured by means of stan-
dard deviation of users’ throughput) in each cell are collected
and encoded to be examined by the autotuning subsystem. This
system analyzes data and create a NSOM to find similarities
between cell data and to obtain a clustering of the cells. After
this step clusters are used to update cell scheduling system in
an easy and faster way, due to a grouped regulation based on
parameter similarities.

This might be useful in hot-spot scenarios in which we have
a high correlation between a cell and its neighbors. Here the
service provider has to efficiently allocate the radio resource,
for different main reasons: the traffic is expected to be intense,
and also the service is usually assumed to be highly demanding
in terms of QoS, like video streaming or entertainment appli-
cations. Thus, the application of NSOM algorithm to such a
situation can lead to an appealing simplification of the manage-
ment for complex and congested networks.

IV. RESULTS

We use a UMTS - High Speed Downlink Packet Access
(HSDPA) simulator, in which NSOM functionalities are applied
to packet scheduling. The simulation parameters are reported in
Table II. Note that the cells of the simulated area are wrapped
around so that border effects are avoided.

The simulator includes performance monitoring, realized
with a sliding window mechanism updated on a time-scale of
the order of milliseconds [9]. The C/I algorithm is imple-
mented, as well as the NSOM algorithm derived starting from
a C/I algorithm applied to a neural clustered network, so that
each cluster refreshes its scheduler weighting coefficients inde-
pendently.

In Figure 7 the total throughput obtained by the network is
compared, and it is shown that the NSOM algorithm is able to
improve the performance up to 7% with respect to the C/I algo-
rithm. Figure 8 shows the effects of application of NSOM strat-
egy in terms of trade-off between throughput and fairness. It
is emphasized that also the average throughput is increased by
6% with respect to the C/I algorithm, whereas the unfairness,
measured by means of the standard deviation of the throughput
is also increased, even though by a smaller factor (about 4%).
This is of course justified since the clustering allows a more
suitable scheduler for each cell. Thus, in this case the increase
of the unfairness index should not be seen only as a negative ef-
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fect, as it implies also that the network management is adapted
in a more close way to the differences present within the net-
work.

Finally, Figure 9 shows the improvement achieved by
NSOM algorithm in terms of users’ satisfaction. Here, the op-
erating point for two metrics is represented, the former being
the users’ satisfaction rate, whereas the latter is the revenue ob-
tained with a flat pricing strategy. These two metrics are related,
as the satisfaction is measured as the number of users which
meet the SIR target, divided by the total number of users. The
revenue is obtained by considering as paying users only those
which not only meet the SIR target, but also a higher threshold,
0.5dB higher. In this case, the same tariff is paid by the users.
Else, no fee is required as the offered QoS is considered too
low.

As a matter of fact, the revenue in this Figure is proportional
to the number of users which perceive even a higher satisfaction
degree. It might be seen that the NSOM procedure is able to
improve the management so that the number of satisfied users
is improved by 6%, but this improvement is more significant
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by considering only the paying users (which is a higher SIR
requirement), as the revenue is increased up to 16%. This ulti-
mately justifies the use of such a strategy for an operator, due
to its possibility of guaranteeing higher data rates especially for
services which require higher QoS.

V. CONCLUSIONS

Algorithms for packet scheduling can be improved with dif-
ferent strategies. The added overhead and complexity must be
justified by the gain obtained by introducing new features to
the scheduler. However, for multimedia network it is impor-
tant that the provider, besides improving the performance, is
also able to tune the behavior of the network. Moreover, due
to economic considerations, which we addressed also from the
technical side, the users’ satisfaction is another important as-
pect.

In this paper we achieve improvements by means of the
Neural Self-Organizing Map algorithm, which offers a general
framework that can be easily adjusted to different topologies,
as it makes the network self-tunable. The results show that the
application of a classical efficient strategy, like the C/I sched-
uler, can be suitable for small networks where there is no need
for coordination or differentiation. On the other hand, when the
network size increases, our strategy is able to achieve a perfor-
mance gain by grouping cells into clusters. Beyond the perfor-
mance gain in terms of throughput, which heavily depends on
network size and number of users, there is also a large increase
in terms of percentage of satisfied users.

A tunable scheduling algorithm could be a good and
portable solution even for networks characterized by the pres-
ence of hot spots, rather than locally centralized solutions,
which require a heavy interchange of information with the rest
of the network. Moreover, the virtual clustering mechanism is
an efficient solution to counteract the increased computational
complexity of the system. Thus, our scheme can be of sig-
nificant interest for large-scale networks with challenging QoS
requirements.



As a general conclusion, the QoS of the network is im-
proved and several further observations open up about the im-
provement gained for the network welfare (which ultimately af-
fects the operator’s revenue). Finally, the operator gains another
degree of freedom in the service supply, as the proposed algo-
rithm offers a way to control, in a simple but effective way,
several parameters like system complexity and QoS offered to
the users.
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agement for UMTS Networks”, Computer Networks, Volume 38, pp 477–
496, 2002.

[9] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switched networks,” Proceedings of the IEEE, Volume 83, pp 1374–
1396, 1995.

[10] A. Ultsch, H.P. Siemon, “Kohonen’s Self Organizing Feature Maps for
Exploratory Data Analysis,” Proceedings of the International Neural Net-
work Conference, pp 305–308, Dordrecht, the Netherlands, 1990.
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