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Abstract— In this paper we study benefits of speculative
scheduling in wireless networks with elastic services. Common
goals of Radio Resource Management (RRM) have traditionally
been maximisation of throughput and provisioning of QoS
guarantees. Providers of wireless access, however, need to acquire
adequate revenue to sustain their business. While throughput
maximisation and QoS guarantees increase the quantity or
quality, respectively, of the chargeable goods, it has also been
shown that by accounting for users’ perceptions of what is
acceptable from QoS and pricing perspective, provider revenue
may increase. We propose and evaluate a packet scheduler
for realtime streaming services with the aim to maximise user
satisfaction and, thus, improve operator revenue. We also extend
an existing service acceptance probability model with a service
continuation probability model. The proposed scheduling scheme
is compared to a proportional fair scheduler. Preliminary results
show that revenue can be increased significantly, while keeping
user satisfaction approximately constant. Alternatively, the user
satisfaction can be correspondingly improved for fixed revenue.

I. BACKGROUND

In this paper we study benefits of speculative scheduling in
wireless networks with elastic services [1], [2].

Common goals of Radio Resource Management (RRM)
have traditionally been maximisation of throughput and pro-
visioning of QoS guarantees. Providers of wireless access,
however, need to acquire adequate revenue to sustain their
business models and while throughput maximisation max-
imises the chargeable goods and QoS guarantees increase
the attractiveness of the goods, the users’ appreciation of a
service also depend on the price of the service. That is, over-
pricing is as unattractive as substandard quality. It has been
shown that by accounting for users’ perceptions of reasonable
pricing of services, provider revenue may be increased [3],
[4]. Also, the introduction of appropriate pricing schemes
makes it possible for the service provider to improve the
efficiency and robustness of the radio resource management
[5], [6]. In fact, when the resource to allocate is scarce and
users compete for it, the pricing strategy might be aimed at
increasing cooperation among users and preventing allocation
to users who have low satisfaction from the service.

Awareness of and information about users’ service appreci-
ation can be exploited further. It can be used to improve the
match between the requested service quality and the supplied
service quality.

In a packet switched system, it is the task of a scheduler
to distribute the radio resource among users so as to make
the “best use” of the resource under the constraint that QoS
requirements and/or some fairness criteria are met. The “best
use” of the resource is generally taken to be equivalent to
maximising throughput, revenue or some fairness criterion. To
this end, numerous scheduling algorithms have been presented
in the literature, a few of the most important being: Round
Robin (RR), Equal Throughput (ET), Fractional Fair (FF),
Proportionally Fair (PF) and Relatively Best (RB) scheduling.

The RR scheduler cycles through the users, giving them
equal time on the channel. ET scheduling, as the name implies,
seeks to provide users with equal throughput and can be
viewed as a weighted RR scheduler with (per user) weights
that are inversely proportional to the achievable rates. An
FF scheduler tries to improve total throughput by giving
priority to users with higher achievable rates and can also
be described as a weighted RR scheme, with weights that are
proportional to the achievable rates. More intricate schemes try
to combine the objectives of these simple schedulers. The PF
scheduler seeks to improve system throughput by exploiting
multiuser diversity, while at the same time providing some
degree of (long term) throughput fairness [7]. Similarly, RB
scheduling exploits multiuser diversity, but maintains time
fraction fairness [8]. There are also schemes that consider
delay fairness, for instance: the Largest Weighted Delay First
(LWDF) scheduler and its derivatives.

The underlying assumption of all of these algorithms is that
higher system throughput translates to greater revenue and/or
that fairness is important (or even matters). This is, however,
arguable. First because services might not be priced directly
proportional to their rate requirements. Second, and maybe
more important, users are generally not aware of the situations
of other users and so can’t compare. Thus, they have no notion
of fairness. A user is likely to judge the system based on the
perception of receiving decent service, rather than on fairness
from a time or throughput or even price point of view.

In this paper, we focus on users’ service appreciation and
take fairness to mean that users perceive the combination of
QoS and price they are offered to be decent. Then, from this
fairness point of view and assuming that disappointed users
may shorten their sessions, the “best use” of the resource could
be to maximise the willingness of the users to stay connected.
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The provider may also allow a speculative allocation of
resource to some users at the expense of lowering the service
level of other users. This can be beneficial if the expected
marginal revenue associated with the variation is positive.
However, lowering of the service level of a user is risky. If the
user no longer perceives the service as usable and affordable
he may leave the system, resulting in a loss of revenue.
Thus, to enable the use of speculative over-assignment, service
appreciation of and resources allocated to already admitted
users must be carefully monitored and managed to maximise
users willingness to stay in the system.

To highlight the importance of considering users’ overall
perception, i.e. price and quality, of the service, we propose
and evaluate a packet scheduler for realtime streaming services
with the aim to maximise user satisfaction for the set of
admitted users [9], [10]. In particular, we focus on the forward
direction of a high speed packet access system and realtime
streaming services [11]–[13]. It is further assumed that the
provider can estimate the impact of his decisions, quantified
with a degree of satisfaction perceived by the users.

The remainder of this paper is organised as follows: in
Section II a model for describing users’ willingness to accept
a service offer is presented and extended to suit the needs
of a scheduler evaluation. In Section III the user satisfaction
or service perception aware scheduler is introduced followed
by a proportionally fair reference scheduler for comparison.
Finally, a numerical evaluation is presented in Section IV, and
in Section V some conclusions are drawn.

II. THE MEDUSA MODEL

The speculative allocation requires a framework describing
users’ willingness to accept a service. In this work, we refer
to the MEDUSA model presented in [14]. The MEDUSA
framework describes users’ acceptance of service offers from
the provider with a probability A which accounts for the trade-
off between utility (or perceived QoS), u, and price, p; that is
A = A(u, p).

The values of u and p are determined as functions of a
parameter r which describes the allocated amount of resource.
In our context it is reasonable to identify r with the achieved
data rate. The utility functions must satisfy certain properties.
In particular, as every user is willing to have as much resource
as possible,

du(r)
dr

≥ 0 , (1)

The law of diminishing marginal utilities from economics,
stating that:

lim
r→∞

du(r)
dr

= 0 . (2)

should also apply. In fact, there are intrinsic limitations which
prevent the users from experiencing QoS beyond a certain
limit; i.e. there is an upper bound to the appreciation of a
service. Thus, we replace Eq. (2) with the stricter requirement:

lim
r→∞u(r) = l. (3)

In particular, in this paper we model the utilities as sigmoid
curves which are well-known functions often used to describe
QoS perception [1], [2]. These curves can be represented for
example by the following expression:

u(r) � (r/K)ζ

1 + (r/K)ζ
. (4)

Also the price is represented by a function p(r) (in general,
dependent on the rate) for which no particular assumptions are
made, even though it seems reasonable to require that p′(r) ≥
0. For this reason in the following we consider a linear pricing
[4] model, though other similar expressions can be used as
well, without changing substantially the framework.

A suitable expression for the MEDUSA model [14] is:

A(u, p) � 1 − e−C·uµ·p−ε

(5)

where C, µ, ε, are appropriate positive constants. The value of
C is simply chosen according to the normalisation of utility
and price, whereas µ and ε describe the users sensitivity to
changes in utility and price, respectively.

The original proposal of the MEDUSA framework only
treated initial service offerings and suggested a service ac-
ceptance probability. Here we are, however, concerned not
only with users’ initial acceptance of a service contract at the
time of admission, but also with users’ continuing willingness
to hang on to the contract once they have entered. Hence we
extend the Acceptance Probability model to an Accept and
Stay Probability model defined on the service interval [tin, tout].
To do this, assume that the user achieves a decent level
of satisfaction with the initial request rreq . It is reasonable
to assume that, if the rate actually supplied determine a
higher satisfaction of the user, the service will be even more
appreciated and the session kept active. However, would r
change in a way that would reduce the satisfaction, we assume
that the user only sticks to the service with a probability
conditioned on the previously being satisfied. Thus, we define
the probability that a user hangs on to the service at time t2,
given that the contract at time t1 has been accepted, to be:

S(t1, t2) =


min

(
1,

min
t1≤t≤t2

A(t)

H(t1)

)
if tin ≤ t2 < tout,

0 otherwise.
(6)

where tin ≤ t1 ≤ t2 ≤ tout, A(t) is A(u, p) evaluated at time
t and

H(t1) =

{
A(u(rreq), p(rreq)) if t1 = tin

min
tin≤t≤t1

A(t) if tin < t1 ≤ tout
(7)

represents the lowest satisfaction level that has already been
accepted (Fig. 1).

The probability of accepting the session for the wanted
interval [tin, tdone], i.e. the probability of a successful exit, then
becomes:

AS(tin, tdone) = min


1,

min
tin≤t≤tdone

A(t)

A(u(rreq), p(rreq))


 , (8)

where tdone ≥ tout.
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Fig. 1. Illustration of the MEDUSA extension.

If we further assume that the user always requests the rate,
r̂, that yields the best compromise between the given utility
and price, and therefore maximises A(u, p), Eq. (8) simplifies
to:

AS(tin, tdone) =
min

tin≤t≤tdone

A(t)

A(u(r̂), p(r̂))
. (9)

That is, the probability of successful exit equals the MEDUSA
acceptance probability for the worst utility-price combina-
tion of the session, given that the requested combination is
satisfactory. The probability of successful exit is difficult to
determine a priori. In fact, if the session is prematurely aborted
(tout < tdone), determining it a posteriori is equally difficult.

The above model does not explicitly account for the fact
that user decisions are neither instantaneous nor based on in-
stantaneous values. This is, however, partially compensated for
by the moving-average procedures of the schedulers described
in Sec. III. More involved modelling is outside the scope of
this paper and left for further research.

III. SERVICE PERCEPTION AWARE SCHEDULING

The scheduling of packets can be seen as a particular
case of resource assignment, the goal of which is to obtain
a satisfactory provider’s revenue. To this end the scheduler
should, according to our previous discussion, give priority to
assignments which leave the users satisfied with respect to
both QoS and price paid. Unsatisfied users are expected to be
likely to leave the service, thus, deteriorating revenue.

Rather than equalising the data rates or on-air times we
want to maintain a high service appreciation. Time-slots are,
therefore, assigned to the users that would end up the least
satisfied would they not get the resource. More formally,
assume that users initially request the rates, r̂i, that maximise
their service acceptance probabilities, that is:

r̂i = arg max
r

A(ui(r), pi(r)), (10)

resulting in the initial acceptance probabilities

Âi = A(ui(r̂i), pi(r̂i)). (11)

Let r̄i(n) be a moving average of the achieved data rate by
the time of slot n:

r̄i(n + 1) =

{
[1 − 1

τ ]r̄i(n) + ri(n)
τ if i served in slot n

[1 − 1
τ ]r̄i(n) otherwise

,

(12)
where ri(n) is the instantaneous data rate during slot n and τ
is the time constant of the smoothing filter. Then, the user to
be scheduled for slot n, j(n), is

j(n) =

arg max
i: r̄i(n)[1− 1

τ ]<r̂i

Âi − A
(
ui(r̄i(n)[1 − 1

τ ]), pi(r̄i(n)[1 − 1
τ ])

)
Âi

.

(13)

For comparisons with a scheduler that is more focused
on technical performance we choose a PF scheduler. Like
Maximum C/I scheduler, it exploits multi user diversity to
increase the aggregated throughput, but unlike a Maximum-C/I
scheduler it is also concerned with the individual throughputs
of the users.

In [7], proportional fair resource allocation is shown to be
equivalent with the constrained optimisation problem:

maximise F (E[−→r ]) ≡
k∑

i=1

log(E[ri]) (14)

subject to
k∑

i=1

E[ri] < C (15)

over E[ri] ≥ 0, 1 ≤ i ≤ k, (16)

where C is the system capacity and k the number of users
competing for the resources. The solution to this problem can
in theory be computed explicitly. In practise, however, the
solution is not constant because both the system capacity and
the number of users vary. It can be shown that the best one
can do is to move towards the “instantaneously” best solution.
Instead of the mean rate one would consider using a moving
average of the rate, Eq. (12) and we get the scheduling rule:

arg max
i

ri(n)
r̄i(n)

. (17)

Since we do not consider buffering in this paper, we shall
modify this scheduling rule not to schedule users with average
rate higher than the requested and get:

jPF(n) = arg max
i: r̄i(n)[1− 1

τ ]<r̂i

ri(n)
r̄i(n)

, (18)

IV. NUMERICAL EVALUATION AND CONCLUSIONS

To demonstrate the value of taking users’ service perception
into account in the radio resource management we compare the
two schedulers described in Section III by means of computer
simulation. To assess performance we define the following
four performance measures:

• the blocking rate as the fraction of the users that were
refused service because the system was either unable or
unwilling to service them



• the Premature Session Termination Rate (PSTR) as the
fraction of the users that decided to leave the system
earlier than they intended because of poor service

• the dissatisfaction rate as the sum of blocking and PSTR
• the goodput or chargeable throughput as the throughput

that the user has requested and, thus, is willing to pay
for. Any excess throughput the user is supplied with is
considered nonchargeable.

The PSTR is an important addition to the traditional system
performance measures blocking rate and outage rate. Unlike
the outage rate, which is a network-centric measure of service
availability, the PSTR is a user-centric measure of the per-
ceived service quality. A high PSTR indicates unreliable or
unstable service and may, in the long run, motivate users to
change service providers.

The proposed scheduling scheme is compared to the pro-
portional fair scheduler described in Section III in a single
cell hexagonal environment. The cell radius is rcell and we
assume that the propagation loss L between a base station
and a terminal can be written

L(t, f, x, y) = L1m A(d)B(x, y)F (t, f), (19)

where t, f , x and y are time, frequency and two-dimensional
spatial coordinates, respectively. L1m is a reference loss factor
measured at 1 meter from the base station, A(d) is a distance
attenuation factor, B(x, y) is a large-scale shadowing factor
and F (t, f) is a small-scale frequency selective fading factor.
We assume that the distance attenuation A(d) increases with
the α-th power of the distance. The shadowing factor B(x, y)
is log-normally distributed with expectation 1 and standard
deviation σ. Mobility is not modelled and, hence, the shadow
fading is assumed to be constant for the duration of a session.
The small-scale, or fast fading F (t, f) is assumed to be an
exponentially distributed random variable with expectation 1.
This corresponds to Rayleigh Fading and is modelled with
a Markov model to achieve time-correlation. The Doppler
frequency of the channel is fdoppler.

The base station transmits at full power, pmax, in time-slots
of duration tslot and bandwidth W . For simplicity, extra-cell
interference is assumed to be constant, lumped with the noise
and denoted Iconst. Depending on the channel conditions the
base station may use different data rates from a set of rates S.
The C/I estimation is error free and the achievable data rate
on the channel is given by Shannon’s formula:

R = W log2(1 +
C

I
) (20)

Users and their terminals are assumed to be uniformly
distributed over the cell area and session inter-arrival times
are exponentially distributed with mean Tarr. For simplicity
we assume that sessions have fixed, and rather short, duration
equal to Tdur. Users’ behaviour during sessions are based on
the sigmoid utility functions defined in Eq. (4), and at session
setup, they are assumed to always request the rate r̂, defined
in Eq. (10), that maximises their utility function.

When a session request arrives at the base station, an
admission control mechanism evaluates if there is enough free
resources (time-slots) to accommodate the request. We assume
that the session is admitted if the data rate corresponding to

TABLE I
SUMMARY OF SYSTEM PARAMETERS

Parameter Symbol Value
cell radius rcell 500 m
loss @ 1 m from tx L1m 28 dB
propagation loss exponent α 3.5
log-normal fading std.dev. σ 8 dB
Doppler frequency fdoppler 100 Hz
slot duration tslot 2 ms
max tx power pmax 33 dBm
bandwidth W 5 MHz
interference + noise (constant) Iconst -80 dBm
available rates S { 0, 64, 128, 256,

512,1024,2048} kbps
C/I thresholds G 2R/W − 1, R ∈ S
smoothing filter time constant τ 25 slots
Ptx = 33dBm → SINR = −9.4dB @ cell border → 770 kbps

TABLE II
ACCEPT-AND-STAY PROBABILITY PARAMETERS

Parameter Symbol Value
utility parameter ζ 2 ÷ 20
utility parameter K [0.05 ÷ 1] · 256 kbps
acceptance prob. parameter µ 2.0
acceptance prob. parameter ε 4.0
acceptance prob. parameter C −(2048 · 103)4 · log(0.9)

price p 1 unit per bps

the mean C/I on the link, is sufficient to carry the rate rreq

in the available time-slots, i.e. if:

rreq ≤ (rate of free time-slots) · R(C/I), (21)

and refused or blocked otherwise. However, with the SPA
scheduler, the user has a second chance. If the estimated
resource requirement is greater than the available resources,
the admission control system may offer the user an admission
at reduced rate if the expected revenue would thereby increase.
The operator may reduce the rate only for the user under
consideration or speculate in the effects of a global reduction
of the QoS and distribute the reduction over some or all of
the users. In this paper, we assume that the operator bases
his speculation on equal relative rate reduction for all users.
A user which rejects the counteroffer is classified as being
denied service.

The numerical values of the system parameters and the
parameters of the accept-and-stay probability model are sum-
marised in Tables I and II, respectively. The evaluation is
performed by means of simulation.

Results show that, with a scheduler that give priority to users
that gain the most in terms of willingness to continue service,
revenue can be increased significantly, while keeping user sat-
isfaction approximately constant, compared to a proportionally
fair scheduler, (Fig. 2). Alternatively, the user satisfaction can
be correspondingly improved for fixed revenue. Fig. 3 displays
the effective chargeable throughputs (the “goodputs”), and
Fig. 4 the service denial rates, both as functions of cell load.

It is highlighted that, especially at high data rates, the SPA
scheduler obtains significant performance gains. Importantly,
the increase in the goodput, shown in Fig. 3, depends simply
on the “best usage” of the allocatable data rates, since also
the PF scheduler can be seen to fully utilise the available
resource. Thus, our improvement consists in a more efficient,
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Fig. 2. Goodput plotted versus dissatisfaction rate.

rather than higher, resource allocation to the users. This is also
visible in Fig. 4, where in particular we can reasonably infer
that the strong improvement of the performance in terms of
lower PSTR implies a high benefit for the provider, due to the
improvement in the user’s/customer’s satisfaction.

Indeed, a further way to exploit the improvement offered by
speculative resource allocation could be to play in the trade-off
between blocking and Premature Session Termination rates. In
fact, even though their relative weights strongly depend on the
kind of service, it is likely that many calls could be saved from
being terminated due to poor quality by a less annoying block
in the admission phase. This identifies another direction to
exploit these results, which corresponds to the design of an
appropriate proactive Admission Control (AC) strategy, which
can improve the performance at a more general level.

V. CONCLUSIONS

In this paper, we developed the application of speculative
strategies to the downlink scheduling of a high-speed packet-
switched systems. We showed by means of simulation that in-
troducing awareness about how users react to QoS supply and
pricing is an important issue, which should be carefully taken
into account while determining the suitability of a scheduling
strategy. This, in fact, improves both (or alternatively) users’
service appreciation and revenue generation.

The importance of the scheduling order varies with the
stringency of the quality requirements. With loose require-
ments, trying to increase users appreciation on a packet basis
is less beneficial. Taking user appreciation into account is still
important, however, for improving fairness with respect to
user location. Results also show that, while a good scheduling
policy is essential, proper admission control is important too.
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