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Abstract—In this paper, we investigate useful channel represen-
tations for Incremental Redundancy Hybrid ARQ. When these
techniques are employed, parts of the codeword are transmitted
over different channel realizations. We focus on coding perfor-
mance models where the error probability is asymptoticallyzero
if the channel parameters of these realizations fall withina given
region. To map this region in a compact but still precise manner,
we adopt a Finite-State Channel model, a methodology which has
been often used in the past for the study of the performance of
ARQ protocols, and we propose a novel method to derive efficient
channel partitioning rules, i.e., a code-matched quantization of
the channel state. We present results showing the performance
of our proposed method and its capability of representing the
channel in a compact and accurate way.

Index Terms—Channel modeling, hybrid automatic repeat
request, Markov processes, error correction techniques, channel
coding.

I. I NTRODUCTION

Incremental Redundancy (IR) implementations of Hybrid
Automatic Repeat reQuest (HARQ) schemes have been widely
employed for error control in noisy channels. An assumption
commonly made about the codes used in IR-HARQ schemes
is that they are characterized by a threshold behavior, i.e.,
the error probability can be regarded as zero if the channel
realization is inside a region (the so calledreliable region), and
as one otherwise [1]. Although this is an abstraction, it works
reasonably well to approximate the performance of practical
codes, e.g., Turbo codes [2] and Low–Density Parity–Check
(LDPC) codes [3].

Even under this simplification, it is important to know
whether the channel parameters fall within the reliable region
or not. Thus, an accurate representation of the channel is
still key in evaluating the performance of HARQ policies. On
the other hand, IR-HARQ systems are usually employed in
time–varying channel contexts, among which a very important
example is represented by wireless fading channels. In such
cases, tracing the channel evolution may require to store an
excessive amount of information; for this reason, it is also
important to opt for a compact channel representation, able
to preserve the tractability of the problem while obtaining
meaningful results.

A solution in this sense can be represented by a Finite-State
Markov Channel (FSMC) description, employing a proper

channel quantization rule, i.e., representing the channelstate
with an index spanning over a discrete set. However, the
FSMC approaches presented in the literature [4], [5] are
mostly based on physical layer characteristics, rather than
higher layer performance aspects. Instead, in the present paper
we propose to utilize aCode-Matched (CM) channel quantiza-
tion, meaning that we explicitly take into account the coding
performance in partitioning the channel. Our quantization
directly aims at giving an efficient approximation, with a given
number of states, of the reliable region, so as to properly
characterize the performance of the IR-HARQ scheme.

In a sense, the contribution given by the present paper does
not strictly depend on the channel representation through a
Markov Chain, which requires several assumptions such as
exponential sojourn time in the states. The rationale proposed
by our investigation might be applied identically to other
models such as Hidden Markov Models (HMM) or Semi-
Markov Models (SMM), which seek to improve the accuracy
in the channel representation [6]. The choice of applying a
code-matched channel representation to FSMC is due only to
the widespread usage of this model, but it could be identically
applied to HMM or SMM as well.

In particular, in this paper we instantiate our proposal of
utilizing a CM approach to analyze, by means of a Markov
model, an IR-HARQ system based on a Stop-and-Wait policy.
We give a detailed analytical characterization of the case
where the HARQ system adopts a two-transmission limit. The
extension to cases with a higher number of maximum retrans-
missions can be done along the same lines. We also present
numerical results to quantify the goodness of our proposed
approach in assessing IR-HARQ performance, together with
existing channel quantization techniques (e.g., equiprobable
states [4]). We numerically evaluate the performance bringing
examples of different codes, namely LDPC and Turbo, which
can be used in the IR-HARQ scheme.

These evaluations show that, compared to other techniques,
the proposed CM quantization obtains the same or a better
characterization while employing a very limited number of
states, thus achieving a channel description characterized by
much lower complexity and/or memory requirements. There-
fore, such a model can be extremely useful in both analytical
investigations and simulation studies aimed at assessing the



performance of IR-HARQ schemes.
The rest of this paper is organized as follows. In Section II

the problem statement is provided. Here, we describe the IR-
HARQ mechanism assumed in the analysis and we introduce
the concept of reliable region of the code, which is key in
deriving the code matched channel quantization. Section III
focuses on the two-transmission case, for which we state
the main analytical results about the code matched channel
quantization reported in detail in the appendices. In Section
IV we present numerical evaluations which assess the superior
match with the exact distribution of our channel representation
with respect to uniform quantization, an interesting term of
comparison since it is commonly used to obtain a discrete
channel representations. Finally, we draw the conclusionsin
Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

An IR-HARQ system is characterized by the sequential
transmission ofinformation frames, each one of which is
in turn associated with multipleHARQ packets. In practical
cases, this is achieved by coding the information frame into
a single longcodeword, subdivided into multiplefragments,
which are transmitted one at time in a single HARQ packet.
For this reason, in the following we will utilize the terms
frame andcodeword interchangeably, and similarly forpacket
andfragment. In order to keep the analysis simple, we assume
that all fragments are of the same size. This assumption can
be removed with additional complications in the formulae,
however the approach to follow is entirely similar. Also,
we assume that even a single correctly received fragment
is sufficient to decode the entire codeword. Sometimes, this
situation is referred to as Type III ARQ [7].

When a packet arrives at the receiver’s side, a feedback
packet is sent back to the transmitter, indicating either positive
(ACK) or negative acknowledgement (NACK). This feedback
response refers to the whole information frame, since the
receiver can try to decode the codeword combining symbols
contained in different fragments. Thus, an ACK message
means that the receiver was able to decode the frame based
on all received HARQ packets associated with this frame
(we will speak in this case offrame resolution), whereas a
NACK means that the frame could not be decoded since the
channel impairments exceeded the correction capability ofthe
code formed by the set of currently received fragments. The
key characteristic of IR-HARQ is that a NACK does trigger
a retransmission, but differently from other retransmission-
based techniques, a physically different packet (though still
associated with the same information frame) is transmitted.
Hence, we adopt a slight terminology abuse by speaking, when
this event happens, offrame retransmission.

For the sake of simplicity, we focus on Stop-and-Wait (SW)
HARQ, i.e., packets associated with the same information
frame are sequentially transmitted, one at a time, after a
feedback packet is received back at the transmitter. Extensions
to other ARQ schemes, such as Go-Back-N and Selective
Repeat, can be investigated within a conceptually similar
framework.

In SW ARQ, the transmission of packets associated with
the same information frame goes on until either of these two
conditions is met: (i) the set of received packets is sufficient
to decode the frame; (ii) a maximum numberF of transmitted
packets is reached without the receiver being able to decode
the information frame, which is discarded (F may correspond
to the total number of fragments generated for each codeword).
In both cases, the transmission is then moved to another
information frame.

In the caseF = 1, i.e., when a single transmission is
allowed (a pure FEC situation), the analysis is straightforward.
The outcome of the only packet transmission is either ACK or
NACK according to the channel conditions and the correction
capability of the code, which exhibits in this sense a binary
(i.e., threshold-wise) behavior. However, ifF is increased to
large values, an exact description of this process can become
cumbersome since it possibly includes the evaluation ofF -
dimensional thresholds.

One important case of application of HARQ is for obtaining
reliable data transmission over a wireless fading channel.In
the following we refer primarily to this scenario, even though
the same rationale is directly applicable to other kinds of
noisy channels. The outcome of the transmission over a radio
channel depends on the Signal-to-Noise Ratio (SNR) at the
receiver.

Due to their good trade-off between accuracy and complex-
ity, FSMC models have gained foothold in both analytical
and simulation frameworks. Such techniques are based on
partitioning the possible received SNR values into a given set
of intervals. However, the most common approaches presented
in the literature [4], [5], perform such a quantization according
to physical layer aspects, such as the equiprobability of the
intervals. Our proposal is to employ a quantizationmatched to
the channel/code characteristics. This means that we seek for
a set of SNR intervals which optimally describe the decoding
process of a sequence of packets in terms of accuracy of the
acknowledgement/not acknowledgement decision, based on a
Maximum Likelihood (ML) criterion. This approach allows
us to decrease the complexity of the HARQ description and
enables a fully analytical evaluation.

We remark that the FSMC approach is not perfect. In fact,
it requires the key assumption that the sojourn time in a state
is exponentially distributed, which may not be true in practice
[6]. Moreover, as shown in [8], the FSMC does not match
perfectly the statistics of the real process, and there is a gap
which can not be filled regardless of how many states are used.
To cope with these inefficiencies, HMM or SMM can be used.
We stress that our rationale can be extended to these models
as well. As a first step towards a joint Markov formulation
of the channel/protocol behavior, in this paper we considera
block fading model, where the channel conditions are constant
during the transmission of an HARQ packet, and independent
across different transmissions. Extension to the case of fading
channels with memory is currently being developed.

We refer to the codeword fragment received at thekth
transmission aswk, k = 1, 2, . . . , F . Under the block flat
fading assumption, each codeword fragment is characterized
by a single received SNR coefficient, which is denoted for the



kth fragment withsk ∈ R+. Since we are interested in deter-
mining a statistical model of the channel, we take a probability
mapping of the SNR values, e.g., ifγ is the random variable
describing the SNR, we translate any SNR valuesk ∈ R+ into
a valueqk ∈ [0, 1] such thatqk = q(sk) = Prob{γ ≤ sk}.
The exact mapping functionq depends on the statistics of
the channel, but it is always an increasing (and therefore
invertible) function ofsk.

At the kth transmission, the receiver bases the decoding of
the codewords on all fragments received up towk. We formally
define, to this end, thereliable channel probability region
R(k) ⊆ [0, 1]k, which contains thek-tuples of theq-values
of channel SNR coefficients where the failure probability
becomes negligible if the packets sent are sufficiently large.
Thus, the receiver is able to decode a codeword after the
reception of its fragmentsw1, w2, . . . , wk if (q1, q2, . . . , qk) ∈
R(k).

The exact specification ofR(k) is determined by the used
code, the decoding algorithm and the codeword fragments
construction. We will derive our model under the hypotheses
that R(k) is connected, convex and symmetric with respect
to permutations of coordinates, i.e., for alli and j, 1 ≤
i, j ≤ k, (q1, . . . , qi, . . . , qj , . . . , qk) ∈ R(k) implies that
(q1, . . . , qj , . . . , qi, . . . , qk) ∈ R(k) as well. These assump-
tions hold true for the specific choices used later in the results’
section, which represent realistic scenarios, and are reasonable
for most practical cases.

Note also that it is always verified that(q1, . . . , qk−1, qk) ∈
R(k) and q′k > qk imply that (q1, . . . , qk−1, q

′

k) ∈ R(k).
Thanks to this property, we can use a representation ofR(k)
through a threshold functionϑk : [0, 1]k−1 → [0, 1], defined
as follows:

ϑk(q(k−1)) = inf{qk : (q1, . . . , qk−1, qk) ∈ R(k)}, (1)

whereq(k−1) = (q1, q2, . . . , qk−1). In other words, the edge of
R(k) is the curve identified byϑk(q(k−1)) in [0, 1]k. Note that,
when one transmission is considered, this curve degenerates to
a single pointϑ1 ∈ [0, 1], which is the value ofq1 associated
with the (constant) SNR threshold to obtain correct codeword
delivery with a single fragment, and the reliable channel region
R(1) corresponds to the interval[ϑ1, 1].

Additionally, observe that(q1, . . . , qk) ∈ R(k) also implies
that (q1, . . . , qk, qk+1) ∈ R(k + 1) for all qk+1 ∈ [0, 1],
since the fragmentsw1, w2, . . . , wk were already sufficient to
decode the codeword. Hence, the transmission of a codeword
can be dismissed after a success is achieved. Note that this
holds under the assumption of perfect feedback. Therefore,
in the system under investigation, after the reception of a
fragmentwk the receiver is able to decode the packet ifqk is
above the thresholdϑk(q(k−1)). In this case, no further frag-
ment transmission is required (for this reason, the case where
q(k) ∈ R(k) and q(k+1) ∈ R(k +1) never occurs in practice,
but is considered only for completeness). Otherwise, another
fragment is requested, which would be received as fragment
wk+1 and will be compared with thresholdϑk+1(q

(k)) and so
on.

To exactly evaluate the process described above, a very large
amount of information is required at each step. In fact, to

determine whether the frame could be acknowledged after the
transmission of fragmentwk+1, thek–dimensional vectorq(k)

must be kept trace of. However, high complexity and memory
requirements are implied to accurately track the evolutionof a
vector of continuous variables. For this reason, it is meaningful
to consider a quantization of the SNR to enable a finite-state
representation of the channel, where each state representsan
interval of SNR values, and which can be used in a FSMC
context.

Thus, we partition[0,1] into N + 2 non overlapping1 adja-
cent regionsI0, I1,..., IN , IN+1. The purpose of this partition
is to describe the SNR with a finite number of states, in order
to use a discrete description of the channel. We will talk in the
following of a quantized channel, where the exact SNR values
are no longer known, but only which region the SNR falls
within. In fact, according to this representation, any sequence
of q-valuesq(k) (which, in turn, determines a sequence of
SNR valuess(k)) is described with a sequence of discrete
valuesd(k) = (d1, d2, . . . , dk) ∈ {0, 1, . . . , N, N + 1}k.

The k-tuple d(k) indicates that for theith received SNR,
si ∈ q−1(Idi

), for all i = 1, 2, . . . , k. By checking the
relative placement of the regionI(d(k)) = Id1

× Id2
× · · · ×

Idk
⊆ [0, 1]k, which is a hyper-parallelepiped in[0, 1]k, and

R(k), one can infer, in an approximate manner, whether the
reception of the fragmentsw1, w2, . . . , wk allows the frame to
be acknowledged or not. In general,I(d(k)) may contain both
points belonging to and outsideR(k). Hence, in the quantized
channel every region is to be called as corresponding to frame
resolution or not according to a Maximum Likelihood (ML)
criterion, which means to check whetherI(d(k)) ∩R(k) has
a larger hyper-volume thanI(d(k)) \ R(k) (in which case
I(d(k)) is considered as a “resolved” region) or vice versa.

Our objective is to reduce the quantization errors introduced
by this representation, i.e., the probability thatk-tuple s(k) is
an erroneous SNR sequence which corresponds to a discretek-
tupled(k) which determines a “resolved” region, or conversely
thats(k) implies resolution but the ML criterion ford(k) gives
retransmission.

Although the framework has been outlined for the general
multi-dimensional case up to this point, for ease of analysis
and explanation in the next section we specifically focus on
the case of a maximum number of two transmissions (F = 2),
where a frame is discarded after a single unsuccessful retrans-
mission (i.e., both the first transmission and the subsequent
retransmission receive a NACK in response).

III. C HANNEL CHAIN CONSTRUCTION(TWO

TRANSMISSIONS)

If two transmissions are considered, regionR(2) is the
portion of [0, 1]2 that lies above the curveq2 = ϑ2(q1). A
sample curve is plotted in Fig. 1. Even though the shape of
this region may be different according to the code used, the
curve q2 = ϑ2(q1) is always a non-increasing function. We
assume that the curve is also concave and symmetric, which
is true in many real cases.

1They can be thought as closed intervals, since the set of extreme points
has zero measure. Also, we takeN +2 intervals since a meaningful partition
can not have fewer than2 intervals.
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Fig. 1. A sample curve inR2 and the reliable regionR(2).

To find a suitable partition for the 2 transmission case, we
therefore proceed as follows. We need to defineN +1 thresh-
old valuesα1, α2, . . . , αN , αN+1 which identify the intervals
Ik = [αk, αk+1]. For consistency, we conventionally take
α0 = 0 andαN+2 = 1. As explained in the previous section,
the optimal partitioning of regionR(1) always corresponds to
choosing a single threshold pointϑ1. Thus, if one threshold
value is to be chosen, which happens whenN = 0, we simply
take αN+1 = ϑ1. This choice, which is optimal for a single
transmission, will be used for any partitioning of the two-
dimensional space[0, 1]2 also.

If N > 0, which means that we have additional threshold
values to place, we can put them between0 andϑ1; in fact, the
region whereq1 ≥ ϑ1 corresponds to a frame resolution (after
the first packet transmission), and so does the region where
q1 < ϑ1 andq2 ≥ ϑ1 (though this time the frame is resolved
after the second packet transmission). Thus, all the remaining
N thresholds, i.e.,α1, α2, . . . , αN must be put between0 and
ϑ1.

There are two possible general strategies to place theα’s.
In the first one, which in the following we will refer to as
internal approach, or i-approach for short, the thresholds are
placed so that in the two-dimensional rectangular regionIj×Ik

the frame is assumed to be acknowledged ifj + k > N ,
and not acknowledged ifj + k ≤ N . In the second strategy,
referred to asexternal approach, or x-approach, inIj × Ik the
frame is assumed to be acknowledged ifj + k ≥ N , and not
acknowledged ifj + k < N . In Fig. 2 we plot a graphical
comparison of these two approaches, to show their difference.
The i-approach corresponds to approximating the regionR(2)
with the white area only, whereas the x-approach considers
both white and grey boxes as part of the reliable region.

For both approaches, we want to choose the thresholds
so as to minimize the so-calledarea error, i.e., the parts of
those regions which are classified as correct but fall outside
R(2) or the parts of those regions which are considered as
erroneous even though they are withinR(2). This corresponds
to minimizing the probability of wrong decision by the quan-
tized channel, i.e., both false positive and false negative(the
continuous channel is in error but the quantized channel calls

ϑ1

α3

α2

α1

ϑ1α3α2α1

q1

q2

Fig. 2. A graphical comparison of the i-approach and the x-approach.

the frame as correct or vice versa). These two types of error
are accounted for with the same weight, but it would possible
to extend the analysis to consider different weights as well.

One of the main findings of our investigations is that for
both approaches the values of the optimal thresholds followa
general expression, which can be derived in closed-form, for
any curveϑ2(q1). The final expression contains a reference
to ϑ2(q1), however the numerical solution of this condition is
rather simple sinceϑ2 is a decreasing function and therefore
the optimal thresholdsα1, α2, . . . , αN can be directly found
via simple numerical methods. Moreover, the uniqueness of
the solution is guaranteed.

In the appendices, we prove that:
• Appendix A: the optimal thresholds of the i-approach

always satisfy:

ϑ2(αi) =
αN+2−i + αN+1−i

2
, for i = 1, . . . , N (2)

This set of relationships can be seen as a system ofN
equations withN unknowns, which, due to the mono-
tonicity of the ϑ2 function, always admits a unique
solution.

• Appendix B: the optimal thresholds of the i-approach
always offer a better solution than the optimal thresholds
of the x-approach.

Thanks to these theoretical findings, it is possible to identify
an efficient partitioning method of the SNR values which is
matched to the characteristics of the code and is therefore
more suitable to describe the HARQ process through a Markov
model. In the next section, we will evaluate the effectiveness of
this approach against traditional partitioning techniques, such
as the uniform-probability quantization of the SNR.

IV. PERFORMANCEEVALUATION

We present numerical results to quantify the goodness of
our proposed approach in assessing IR-HARQ performance.
According to the considerations previously made, we focus
on a case whereF = 2, i.e., up to two fragments can be
transmitted per codeword, which is thus discarded after the
reception of two subsequent NACKs.
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Fig. 3. Area error of the CM and UP quantization methods versus the number
of channel states,R = 2.6 bps/Hz,γ0 = 10 dB, two transmissions.

We use the SNR thresholds derived in [9], [10] for good
binary LDPC and Turbo codes ensembles, transmitted over
parallel channels with random assignments. We refer the
interested reader to these papers for details on the thresholds
derivation and assumptions. For the analytical framework
reported above, the reliable channel region is described by
means of

ϑ1 = 1 −

(
ρ

e−c0 + 1 − ρ

)1/γ0

ϑ2(q1) = 1 −

(
ρ

e−c0 + 1 − ρ(1 − q1)−γ0

)1/γ0

where γ0 is the average SNR,ρ is the symbol assignment
probability andc0 is the code ensemble noise threshold, that
depends on the code ensemble and the code rate.

In the following we compare two different approaches: a
uniform probability (UP) SNR quantization method [4], and
our proposed CM technique which best fits the thresholds
on the reliable channel region. In particular, for this latter
model we utilize the system of equations resulting from (2),
solved through standard numerical tools to determine the
thresholdsα1, α2, . . . , αN . Remember that we always consider
the number of states to beN +2, so the number of thresholds
placed by our approach between0 andϑ1 corresponds to the
x-axis value decreased by2. Both approaches are tested for
LDPC codes with code rate1/5 (labeled in the figures as
“LDPC 1/5”) and Turbo Codes with code rate1/3 (“Turbo
1/3”). Similar results can be obtained for other code ensembles
and/or code rates with different threshold functions.

In Fig. 3 we report the area error (that corresponds to the
probability that the actual channel and its quantized version
correspond to different transmission outcomes) obtained by
both CM and UP approaches. Since the UP approach does
not involve any optimization of the area error, we achieve
a significant advantage in this sense. Note also that the
oscillations in the behavior of the UP curve can be explained
by considering that we adopt a ML criterion on the two-
dimensional regionsIj ×Ik. Whereas in the CM approach the
addition of a threshold is always beneficial, since it permits to
better approximate the reliable region, in the UP case this is
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Fig. 4. Relative entropy of the CM and UP quantization methods versus the
number of channel states,R = 2.6 bps/Hz,γ0 = 10 dB, two transmissions.

not necessarily true, since a finer partition (i.e., increasing the
number of thresholds) does not always correspond to a closer
fit of the region. Quantitatively, our model permits to utilize
much fewer states than UP. For example, for the LDPC code
a very good approximation (less than1% of false positives
and false negatives) is achieved withN = 3 only, i.e.,5 states
in the channel model, where UP requires10 states to have
the same degree of approximation. A similar comparison also
holds for the Turbo code: the CM approach obtains the same
performance of the UP quantization with40% fewer states
(e.g.,7 states instead of12).

In Fig. 4 we consider a metric directly describing HARQ
performance, i.e., the number of erroneous transmissions per
packet. This variable can equal0, 1 or 2 (in the case of frame
discarding) and, for the analyzed scenario, can be seen as
representative also of other HARQ metrics, e.g., throughput. In
the quantized channel, the evaluation of this random variable
is possibly approximate, and we can compute the relative
entropy between the true distributionp(Ntx) and the estimated
distribution p̃(Ntx). This corresponds to the Kullback Leibler
divergence (see [11, p. 18]), which is a well-known measure
of the inefficiency in distribution estimations.

The Kullback Leibler distance arises as an expected loga-
rithm of the likelihood ratio of the two distributions:

D(p(Ntx) ‖ p̃(Ntx)) =
2∑

Ntx=0

p(Ntx) log2

p(Ntx)

p̃(Ntx)
. (3)

In the above definition, as in [11], we conventionally assume
that when certain probability terms go to zero, we adopt the
interpretations0 log(0/x) = 0 and x log(x/0) = ∞. This
is necessary to deal with degenerate cases, e.g., where the
estimator always considers the frame to be acknowledged.

Fig. 4 shows that our proposed approach is better able to
represent higher layer HARQ processes: the CM approach
can push down the Kullback Leibler distance to very small
values, whereas the conventional quantization strategy obtains
a significant relative entropy even for a large number of
thresholds, and an oscillatory behavior is still present (which
has the same interpretation as previously discussed).

Figs. 5 and 6 report the same curves obtained by varying
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Fig. 5. Area error of the CM and UP quantization methods versus the average
SNR, R = 1 bps/Hz, two transmissions,6 channel states.

the average SNRγ0 (in dB), for the caseN = 4 (i.e., 6
channel states). For both figures, note that not only does the
UP strategy perform worse than CM in terms of area error
and relative entropy, but also it keeps oscillating. Thus, the
UP approach does not guarantee an improvement if the SNR
is increased, and the error may be significant even for high
γ0. On the other hand, we notice not only a general better
adherence to reality (which enables an improved performance
evaluation) obtained by means of our proposed model, but also
a steeper descent of the metrics when the channel quality is
improved.

To sum up, the code matched quantization technique is
shown to offer a channel representation better adhering to
HARQ performance, from both viewpoints of low layers
(minimum area error) and high layers (significantly better
description of metrics related to HARQ frames). For these
reasons, our proposed technique can be an extremely useful
tool to assess HARQ performance.

V. CONCLUSIONS

In this paper, we proposed a novel channel quantization
method especially useful for Incremental Redundancy Hy-
brid ARQ error control schemes. Motivated by the renewed
attention gained by practical coding techniques that show a
threshold behavior (e.g., LDPC and Turbo codes), we focused
on coding performance models where the error probability
asymptotically vanishes if the channel parameters fall within
the so-called reliable region, i.e., a given set of channel
parameters.

Next, the quantized channel representation is used to de-
velop a Finite-State Channel model and to assess the perfor-
mance of a Stop-and-Wait IR-HARQ scheme. We presented
numerical evaluations showing the superior performance in
terms of channel representation accuracy of the proposed
quantization with respect to another alternative technique
widely used in the literature, i.e., the quantization with uniform
probability.

Hence, we believe that our proposed methodology can be
extremely useful to achieve a compact and accurate channel
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Fig. 6. Relative entropy of the CM and UP quantization methods versus the
average SNR,R = 1 bps/Hz, two transmissions,6 channel states.

representation for both analytical and simulation evaluations
of HARQ systems.

APPENDIX A
OPTIMAL THRESHOLDS IN THE I-APPROACH

In this appendix, we will prove that the optimal thresholds
of the i-approach satisfy the condition in (2). For graphical
aid, refer to Fig. 7 where an application of the i-approach for
the caseN = 3 is plotted.

Denote the error region (shaded in Fig. 7) withE and its
area withE. From the partition of[0, ϑ1] made by theα-
thresholdsα1, α2, . . . , αN , a subdivision ofE can be made
into N + 1 parts, callederror subregions, denoted withFk,
k = 0, 1, . . . , N and formally defined asFk = E∩(Ik×[0, 1]).
They are plotted in Fig. 7 with different shades of grey. Let
ϕk be the area of thekth error subregionFk.

The error subregions are disjoint so we can evaluate the
area of the error region as the sum of the areas of all error
subregions. Notice also that all the points of the first error
subregion,F0, have a value ofq2 which is betweenϑ2(q1)
and ϑ1. For k > 0, Fk comprises two parts, one above and
one below theϑ2(q1) curve. Thus, we can write:

ϕk =

∫ αk+1

αk

|ϑ2(q1) − αN+1−k|dq1 = (4)

=

∫ ϑ2(αN+1−k)

αk

(ϑ2(q1) − αN+1−k)dq1 +

+

∫ αk+1

ϑ2(αN+1−k)

(αN+1−k − ϑ2(q1))dq1

The symmetry of the curveϑ2 implies thatϑ2(ϑ2(q)) = q.
By exploiting this property in the relationshipE =

∑N
k=0 ϕk

one can take the first order derivative with respect toαk,
obtaining:

dE/dαk = 2αN+1−k − 4ϑ2(αk) + 2αN+2−k ,

where all the resulting termsϑ2(ϑ2(αk))−αk are equal to 0.
By imposing all derivatives to be equal to0, (2) is obtained.
This is also shown to correspond to a minimum as the second
order derivative is d2E/dα2

k = −4(dϑ2/dαk) > 0.
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Fig. 7. Thresholds and area error regions of the i-approach for N = 3.

APPENDIX B
COMPARISON OF I- AND X - APPROACHES

Given a functionϑ2 : [0, 1] → [0, 1] which is decreasing and
concave, there are two possibilities to approximate the regions
identified by the curve in[0, 1]2 traced by(q1, q2) : q2 =
ϑ2(q1) by means of rectangular regions which are obtained as
described in Section III. For the sake of simplicity, we givethe
proof only forN = 1, i.e., a single threshold is added between
0 and ϑ1. This situation is depicted in Figs. 8 and 9 for the
i-approach and the x-approach, respectively. The extension to
N > 1 is straightforward.

Let us callαI the optimal threshold in the i-approach. As a
consequence of (2),ϑ2(αI) = 1

2 (αI +ϑ1). For the x-approach
instead, the only optimal thresholdαX can be shown to satisfy
ϑ2(αX) = αX/2. It is alsoαX > αI > αX/2. As a result,
points (αX , αX) and (αI , αI) are always above and below
the curveϑ2(q1), respectively, as shown in Figs. 8 and 9. The
proofs of these statements can be derived following the same
approach of Appendix A.

From Fig. 8, observe that the error area term marked with
a darker shademinus the error areas marked with a lighter
shade equals

∫ ϑ1

0
ϑ2(q1)dq1 + α2

I − 2αIϑ1.
Therefore, the area error of the i-approach is

EI =

∫ ϑ1

0

ϑ2(q1)dq1 + α2
I + 2αIϑ1 − 4

∫ αI

0

ϑ2(q1)dq1.

Since because of the symmetry of the curve (see Fig. 8)
∫ αI

0

ϑ2(q1)dq1 = αI(αI + ϑ1)/2 +

∫ ϑ1

αI+ϑ1
2

ϑ2(q1)dq1

we have

EI =

∫ ϑ1

0

ϑ2(q1)dq1 − α2
I − 4

∫ ϑ1

αI+ϑ1
2

ϑ2(q1)dq1 .

Instead, the area error of the x-approach can be written as

EX = 2

∫ ϑ1

αX

ϑ2(q1)dq1 +
α2

X

2
−

∫ αX

αX/2

ϑ2(q1)dq1,

where the first and the remaining terms comprise the regions
with light grey and dark grey shade, respectively, in Fig. 9.

αΙ

αX

(αΙ+ϑ1)/2

ϑ1

αΙ αX         (αΙ+ϑ1)/2 ϑ1

q1

q2

Fig. 8. Single-threshold case of the i-approach and resulting area errors.

αΙ

αX/2

αX

ϑ1

αΙ   αX/2 αX ϑ1

q1

q2

Fig. 9. Single-threshold case of the x-approach and resulting area errors.

We can re-arrange this expression by observing that:
∫ αX/2

0

ϑ2(q1)dq1 =

∫ ϑ1

αX

ϑ2(q1)dq1 + αX
αX

2
,

and therefore

EX =

∫ ϑ1

0

ϑ2(q1)dq1 − 2

∫ αX

αX/2

ϑ2(q1)dq1 .

Thus, to end the proof we need to show that

α2
I + 4

∫ ϑ1

(αI+ϑ1)/2

ϑ2(q1)dq1 ≥ 2

∫ αX

αX/2

ϑ2(q1)dq1. (5)

Because of concavity,ϑ′

2(
αI+ϑ1

2 ) ≥ −1, so that
∫ ϑ1

(αI+ϑ1)/2

ϑ2(q1)dq1 ≥ α2
I/2.

The concavity of the curve also implies that the region
below ϑ2 betweenαX/2 and αX is all contained within the
trapezoid with vertices(αX/2, 0), (αX , 0), (αX , αX/2), and
(αX/2, αX), whose area is38α2

X . Therefore, (5) is proved
since its left-hand member is not less than3α2

I ≥ 3
4α2

X which
is in turn not less than the right-hand member.
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