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Abstract—Infrastructure sharing has been recently investi-
gated as a viable solution to increase the performance of
coexisting wireless networks. In this paper, we analyze a scenario
where two wireless networks are willing to share some of their
nodes to gain benefits in terms of lower packet delivery delay and
reduced loss probability. Bayesian Network analysis is exploited
to compute the correlation between local parameters and overall
performance, whereas the selection of the nodes to share is made
by means of a game theoretic approach. Our results are then
validated through use of a system level simulator, which shows
that an accurate selection of the shared nodes can significantly
increase the performance gain with respect to a random selection
scheme.

I. INTRODUCTION AND RELATED WORK

Cooperation is one of the most promising enabling tech-

nologies to meet the increasing rate demands and quality of

service requirements in wireless networks, especially since

nowadays many techniques to share the spectrum resources

among different networks are envisioned. Beyond spectrum

sharing, also infrastructure sharing is possible, namely, when a

network decides to cooperate, it shares some or all of its nodes,

that become relays for another network. In such a scenario,

cooperation can leverage the benefits of diversity, obtaining

a considerable gain in the efficiency of shared resources.

Usually, sharing the whole set of nodes can grant the biggest

advantage to both networks. However, this clearly comes at

the cost of additional traffic that should be handled by some

of the shared nodes. In addition, in a realistic environment,

an operator may not be willing to share too many nodes

to improve the traffic of another operator, e.g., for security

or privacy reasons. Therefore, the operator may decide to

share only a limited number of nodes, receiving the same

treatment from the operator of the other network. If this is

the case, an optimal choice of the shared nodes, according

to certain criteria, is needed. Indeed, some nodes may be

deployed in crucial positions, and they may be particularly

suited for helping the other network; on the contrary, nodes

placed close to the network border are likely to be less useful

or even useless. Furthermore, sharing a node implies that a

higher amount of traffic will be routed through it, which may

result in a higher latency for the traffic of its own network.

In this paper we consider two wireless networks deployed in

the same region but operated by different entities. In the first

scenario, the two coexisting networks perform their operations

separately: each network only uses its own resources to deliver

the data packets generated by its nodes. Clearly, since they are

assumed to share the same spectrum resources, cross–network

interference may limit the overall performance. For such a

scenario, we select a set of local parameters: some of them

are directly observable and depend only on the topology of

the network, like the number of neighbors at a given node,

and some others are not observable and depend on the link

characteristics and on the traffic load. We exploit Bayesian

Network (BN) [1] analysis to estimate the joint probability

distribution of this set of parameters, and we use BN also to

predict, given the evaluation of the observable parameters, the

values of the other parameters that will be used to calculate

a performance metric. The use of this probabilistic tool is

very promising for wireless network optimization, and it has

been recently exploited, e.g., for predicting the occurrence of

congestion in a multi-hop wireless network [2].

Such an approach can also be used to improve the perfor-

mance of both networks in our scenario. The key idea is that

a higher node density may help both networks to augment the

available diversity, and thus to find shorter routes for multi-

hop communications. It is straightforward that this may be

obtained if each network can take advantage of some of the

nodes of the other one. We model the interaction between

the two networks through Game Theory. In spite of the

considerable theoretical gain that a cooperative transmission

allows, modeling the involved agents as smart selfish decision-

makers usually leads to inefficient non-cooperative equilibria.

For example, [3] shows that the IEEE 802.11 distributed

Medium Access Control (MAC) protocol leads to an inefficient

Nash Equilibrium (NE) and in [4] a situation similar to the

Prisoner’s Dilemma occurs in a slotted Aloha MAC protocol.

To improve the performance of the network, cooperation

among the players is often desirable. In the present paper, we

achieve this goal formulating the problem as a repeated game,

which consists in a number of repetitions of a base game. It

captures the idea that a player has to take into account the

consequences of his current action on the future actions of

other players. Cooperation is in fact obtained by punishing

deviating users in subsequent stages. Similar approaches have

been used for example in [5]–[7].

In brief, the main contributions of this paper are:

• the definition of the cooperation problem of two networks

sharing the same spectrum resources as a strategic game;

• the use of BN theory to learn the probabilistic relation-

ships among a set of parameters of interest in the network,

in order to infer the performance metric parameters from

some observable topological parameters;



• the proposal of a game theoretic algorithm to choose the

best nodes to share;

• the implementation of the strategic game and the BN

predictor in an actual wireless network simulator, that

simulates the network behavior at the Physical, the MAC

and the network layers of the protocol stack;

• to numerically show the effectiveness of our algorithm in

improving the performance of the wireless networks by

accurately selecting the nodes to be shared.

The rest of the paper is divided as follows. In Section II

we briefly review the Bayesian Network and Game Theory

approaches, then in Section III we introduce our network

scenario. In Section IV we describe the cooperation strategy

adopted, while in Section V we detail the simulation setup and

show the main results. Section VI concludes the paper.

II. MATHEMATICAL PRELIMINARIES

In this section we briefly describe the mathematical tools,

i.e., Bayesian Networks and Game Theory, that we adopt to

identify techniques for the selection of the best cooperating

nodes in the network. The former is a method to learn an

approximate joint probability distribution among a set of

random variables from a set of instances of such variables.

The latter is a branch of mathematics studying interactions

between decision makers.

A. Bayesian Networks (BNs)

A Bayesian Network (BN) is a probabilistic graphi-

cal model [1] describing conditional independence relations

among a set of M random variables through a Directed

Acyclic Graph (DAG). This graph is used to efficiently

compute the marginal and conditional probabilities of the

M variables. A node i in the DAG represents a random

variable xi, while an arrow that connects two nodes i and

j represents a direct probabilistic relation between the cor-

responding variables xi and xj . The absence of a direct

arrow between two variables implies that the variables are

independent, given certain conditions on the other variables

of the graph. The orientation of the arrow is also relevant

to describe the relationship between the two variables. If the

arrow is directed from node i to node j, we say that i is

a parent of j, and we write xi ∈ pa(xj). To clarify this

concept, consider the following example. If nodes h, i, and

j are represented in a BN such that h is a parent of i and

i is a parent of j, the joint probability of the corresponding

variables is

P (xh, xi, xj) = P (xh)P (xi|xh)P (xj |xi) , (1)

that is simpler than a general joint probability among three

variables. See [1] for further details on the BN properties.

a) Learning the structure: The technique to learn the

approximate joint probability distribution through a BN is

divided into two phases, structure learning and parameter

learning. The former is a procedure to define the DAG that

represents the qualitative relationships between the random

variables, i.e., the presence of a direct connection between

a couple of variables, not conditioned by other variables.

According to the score based method, e.g., see [8], we do

not assume any a priori knowledge on the data, but we

just analyze the realizations of the variables and we score

each possible DAG with the Bayesian Information Criterion

(BIC) [9], that we have chosen as a score function. The BIC

is easy to compute and is based on the Maximum Likelihood

(ML) criterion, i.e., how well the data suits a given structure,

and penalizes DAGs with a higher number of edges. If each

variable is distributed according to a multinomial distribution,

i.e., it has a finite number of possible outcomes, then the BIC

becomes very simple to compute, involving only summations

for all possible outcomes of the variables and all possible

outcomes of the parents of each variable, see [8].

b) Learning the parameters: The parameter learning

phase consists in estimating the parameters of the simplified

joint distribution according to the probability structure defined

by the DAG chosen in the structure learning phase. In order to

have the joint distribution, it suffices to estimate the probability

of each variable conditioned by the variables that correspond

to its parent nodes in the graph. Coherently with the choice

of the BIC as a scoring function, we use the ML estimation

technique also to determine all the conditioned probabilities

for each variable considered.

B. Game Theory

Game Theory [10] is a branch of mathematics that studies

games, i.e., strategic situations where many players interact

together. The aim of game theory is to provide interaction

models and predict the outcomes of a game. In game theory,

utility functions are used to represent the players’ appreciation

of the outcomes. A utility function is associated to each player

and its value depends on the actions taken by all the players. It

is common to assume that the players are selfish and rational.

The former implies that each of them only wants to maximize

its own utility, independently on the utilities of the others. The

latter means that they choose their strategies on the basis of

all the information they have about the game.

We describe a game in the normal form as a triplet:

G = (P,S,U) , (2)

where P = {1, . . . , N} is the set of the N players, S =
(S1, . . . , SN ) is the N -tuple of strategy sets, where Si is the

set of all actions that i can take, and U = (u1, . . . , uN ) is

the N -tuple of utility functions, where ui : S → R is the

utility function of player i. A vector s = (s1, . . . , sN ), where

sj ∈ Sj for all j = 1, . . . , N , is called a strategy profile.

An important concept in Game theory is the Nash

Equilibrium (NE), defined as the strategy profile s
NE =

(sNE
1 , . . . , sNE

N ) where each player obtains its maximum

utility given the strategies of the other players, i.e., such that

uj

(

s
NE

)

≥ uj

(

sNE
1 , . . . , sNE

j−1, sj , s
NE
j+1, . . . , s

NE
n

)

, (3)

for all j = 1, . . . , N , for all sj ∈ Sj . In other words, it

is an equilibrium against unilateral deviations. However, the

existence and uniqueness of such an equilibrium point in

S are not guaranteed. Further, NEs can be inefficient from

a social point of view, leading to the so called tragedy of



the commons [11], an inefficient situation occurring when

individuals share a common resource in a selfish manner.

A possible way to increase the efficiency of an NE is to

formulate the problem as a repeated game, i.e., a base game

repeated in time. In this case a rational player is forced to take

into account how his current action can influence the future

actions of other players. A cooperative behavior is induced by

punishing deviating users in subsequent stages.

III. SYSTEM MODEL

In this section, we describe the network scenario under

investigation from the physical up to the routing layer. In

our scenario, two ad hoc wireless networks coexist and share

the common spectrum resource. Each network consists of N
terminals randomly deployed, and each node is a source of

traffic, which generates packets according to a Poisson process

with intensity λ. The end destination of each packet is another

node in the network, chosen at random. Furthermore, time is

divided in slots and slot synchronization is assumed across the

whole network.

A. Physical Layer

At the physical layer, CDMA with fixed spreading factor is

employed to separate simultaneous transmissions, since both

networks share the same spectrum resources, and a training

sequence is transmitted at the beginning of each transmission

to help channel estimation. The receiving node, D(0), uses a

simple iterative interference cancellation scheme to retrieve the

desired packet when M simultaneous communications, namely

T (1), . . . , T (M), are heard. In order to describe this scheme,

we need to define the Signal to Interference plus Noise Ratio

(SINR) at D(0) for the incoming transmission T (i) from node

D(i), i.e.,

Γ(i) =
NsP

(i)

N0 +
∑

j 6=i P
(j)

, (4)

where N0 is the noise power and Ns is the spreading factor.

P (j) indicates the incoming power due to T (j), i.e., for all

j = 1, . . . ,M :

P (j) =
PT |hD(j),D(0) |2d−α

j

A
, (5)

where PT is the transmission power, which is considered to

be the same for all the nodes in the network, A is a fixed

path-loss term, dj is the distance between the receiving node

and the source of T (j), α is the path loss exponent, and

hD(j),D(0) is a complex zero mean and unit variance Gaussian

random variable, which represents the effect of multi-path

fading. More precisely, in our scenario, we consider a time

correlated block fading. Therefore, for the channel between

nodes D(j) and D(0), the multi-path fading coefficient in time

slot t is

hD(j),D(0)(t) = ρ hD(j),D(0)(t− 1) +
√

1− ρ2 ξ , (6)

where ρ is the time-correlation factor and ξ is an indepen-

dent complex Gaussian random variable with zero mean and

unit variance. Now we can describe the iterative interference

cancellation scheme as follows:

• the destination node D(0)sorts the M incoming transmis-

sions according to the received SINR, in decreasing order

(for simplicity, we assume Γ(1) ≥ · · · ≥ Γ(M));

• starting from transmission T (1), D(0) tries to decode the

corresponding packet, with a decoding probability that is

a function of Γ(1);

• if the packet is correctly received, its contribution is

subtracted from the total incoming signal;

• D(0) attempts to decode the transmission with the next

highest SINR, T (2), and goes on until it can try to decode

the packet of interest.

B. MAC Layer

At the MAC layer, we implement a simple transmission pro-

tocol based on a Request-To-Send/Clear-To-Send (RTS/CTS)

handshake. Every time node D(i) wants to send a packet to

node D(j), it checks the destination availability by sending

a RTS packet; if D(j) is not busy, it replies with a CTS so

that D(i) can start transmitting the packet. Correct reception

is acknowledged by means of an ACK packet. In the case

of decoding failure, after a random backoff time, node D(i)

schedules a new transmission attempt, or discards the packet,

if the maximum number of retransmissions has been reached.

The signaling packets are very short, i.e., they are transmitted

within a single time slot, and are protected by a simple

repetition code of rate 1/2. Instead, data packets may span

several time slots, so error detection coding is used to verify

their correct reception, i.e., redundancy bits are added at the

end of each packet.

C. Network Layer

The source node and the destination node are not neces-

sarily within coverage range of each other, so we consider

multi-hop transmissions. Two nodes are neighbors, i.e., they

can communicate directly, if their distance is lower than a

threshold value ℓ. In order to transmit to a node that is not

within coverage, the nodes use a static routing table, which

is built using Optimized Link State Routing (OLSR) [12], a

traditional routing protocol, and is available at every node of

the network. Each time a node generates a new packet, or

receives a packet to be forwarded, the packet is put in the

node queue, with FIFO policy. The maximum queue length is

fixed and equal for all nodes. If a new packet arrives when

the queue is full, it is simply discarded.

IV. COOPERATION STRATEGY

In this section we describe how the two networks that

coexist in our scenario can share efficiently the spectrum

resources by means of cooperation.

A. Performance metric

Given the path from D(i) to D(j), we define the delivery

delay ζ(i,j) as the average end-to-end delay of a packet sent

along the path, given that the packet is received; and the

packet loss probability p
(i,j)
c as the probability that a packet

is lost along the path. The former depends on the channel



and interference conditions, which may require one or more

retransmissions, and on the overall traffic level. Indeed, for

multi-hop routes, a packet has to wait at each relay node

until all the packets it finds in the FIFO queue have been

sent. Regarding the latter, the packet loss, there are two main

events to be accounted for. One is a high interference level,

that may lead to a packet drop due to an excessive number of

retransmissions; the other is buffer overflow, i.e., the packet is

discarded if the next relay has no room for it in its queue.

We consider a metric to measure the gain offered by the

various cooperation strategies, which takes into account the

average end-to-end delay of a packet sent along the path

from D(i) to D(j). Since no end-to-end packet retransmission

mechanism is implemented in our network, the effect of lost

packets must also be considered. Ignoring lost packets (i.e.,

computing the delay statistics only on correctly delivered

packets) may lead to an optimistic evaluation of the network

performance under heavy traffic, where few packets actually

reach the destination. In this case, a high-loss path might

end up being considered better than a more reliable path

with a slightly higher delivery delay. The other extreme, i.e.,

defining the delay contribution of a lost packet as infinite,

makes the delay evaluation meaningless since the average

delay would also be infinite for any positive loss probability.

Clearly, neither option is desirable in our case.

Therefore, we propose another definition that gives a finite

bias to the average delay in case of a packet loss. In particular,

when a packet is lost when going from D(i) to D(j), we

increase the delay of the following packet in the same path

by the interarrival time between packets routed on that path. 1

This additional delay is given by (N − 1)/λ, i.e., the inverse

of the per-path average traffic intensity (recall that each packet

generated at D(i) has a randomly chosen destination among

the remaining nodes of the network, so that the per-node traffic

λ needs to be divided by the number of possible destinations,

N − 1).

According to this reasoning, we recursively define the

weighted delivery delay of a data packet sent via multi-hop

transmission by node D(i) to node D(j) as:

W(i,j) =
(

1− p(i,j)c

)

ζ(i,j) + p(i,j)c

(

N − 1

λ
+W(i,j)

)

.

(7)

In this calculation, the channel and interference conditions,

and thus the loss probability, are assumed to be independent

for different packets. This is due to the fact that the destination

for each packet is chosen at random, and the time between two

subsequent packet transmissions over the same path is deemed

to be long enough.

From Eq. (7) we obtain:

W(i,j) =
N − 1

λ

p
(i,j)
c

1− p
(i,j)
c

+ ζ(i,j) . (8)

The delivery delay ζ(i,j) and the loss probability p
(i,j)
c

depend on the nodes that the routing protocol selects as

1Equivalently, we assign to lost packets a delay contribution equal to the
interarrival time, to received packets the actual delay incurred, and then divide
the sum of all contributions by the number of correctly received packets only.

relays. In a static network, it is possible to estimate these

values during a training period. Instead, if the network is

dynamic (mobile nodes or time-varying traffic statistics), this

is not possible. We propose a different way of estimating the

delay and the loss probability, based only on instantaneous

geographic and routing information. Since a packet sent over

a multi-hop path has to traverse a number of nodes before

reaching the destination, we make the assumption that both the

overall path delivery delay and the overall path loss probability

can be decomposed into contributions given by the various

traversed nodes. More precisely, the overall delivery delay is

given by the sum of the average delays required to traverse

every single node (time in queue plus transmission time),

whereas the overall loss probability is obtained from the loss

probabilities at every node (probability of transmission failure

and probability of buffer overflow). If R(i,j) is the set of nodes

belonging to the path between D(i) and D(j) (excluding D(i)

and D(j)), we have:

ζ(i,j) = ζ(i)q +
∑

h∈R(i,j)

ζ(h)q , (9)

where ζ
(h)
q is the average time between the arrival of a packet

at node D(h) and its reception at the next hop. This delay

depends on the next relay; indeed, while the time needed

for traversing the queue is the same for all packets, the time

required for a successful transmission depends on the channel

condition, and hence on the next hop chosen. We estimate ζ
(h)
q

averaging over all the possible next-hop relays, thus over all

the neighbors of node D(h).

The packet loss in the multi-hop path is calculated in a

similar way, i.e.,

p(i,j)c = 1− (1− p
(i)
t )(1− p(j)q )

∏

h∈R(i,j)

(1− p
(h)
t )(1− p(h)q ) ,

(10)

where p
(h)
t is the probability that a transmission from node

h to the next hop fails because the maximum number of

retransmissions is reached, and p
(h)
q is the probability that a

packet correctly received at node D(h) is discarded due to

buffer overflow. Furthermore, we notice that p
(h)
q depends on

the queue of the receiving node D(h), while p
(h)
t depends also

on which node is used as next hop. For this reason, similarly

to what we have done for ζ
(h)
q , we consider a value averaged

over all the neighbors of D(h).

With (9) and (10) we can calculate the weighted deliv-

ery delay W(i,j), defined in (8). This parameter should be

estimated for each couple of nodes, with a sufficiently long

training period. From (8), we define W as the average over all

the couples of nodes belonging to the network. This will be

used in the following as the performance metric of the whole

network.

B. Stochastic estimation of local parameters

In a real network, the values of the parameters ζ
(i)
q , p

(i)
t ,

and p
(i)
q should be estimated based on local information. Our

idea is to use some parameters that can be easily calculated

at each node D(i). We consider in particular the number of



Fig. 1. Bayesian Network showing the probabilistic relationships among the
5 parameters of interest: ζq , pt, pq F , and N .

flows F (i), that can be easily calculated from the routing table,

and the number of neighbors, N (i). We have estimated the

probabilistic relationships among ζq , pt, pq , F , and N . Notice

that we removed the dependence on the specific node. In fact,

the Bayesian Network approach exploits the collected data,

which are specific for each node, to find out the correlation

between the local parameters and the values of N and F . The

result is a set of general conditional distributions (one per each

local parameter) which can be therefore applied to any node

of the network. It follows that once the number of flows or

neighbors of a given node is known, the distributions of ζ
(i)
q ,

p
(i)
t , and p

(i)
q for that node are also known.

We first collected the measures of these parameters in our

scenario as a function of the traffic load λ, for different topolo-

gies. Then we calculated the structure of the Bayesian Network

(BN). We should notice that this procedure is different from

using a training period to directly derive the local parameters.

In fact, in this case a training period would be needed every

time the topology changes, so as to evaluate their value for

each specific node or path. On the contrary, with our procedure

we can estimate the general joint probability among these

parameters, that does not depend on the specific topology.

The structure of the BN is reported in Fig. 1. The struc-

ture of this BN is the same for all the values of λ, while

quantitatively the probabilistic relationships change with λ.

We notice that N does not influence, to a first approximation,

the values of the three performance parameters, once the value

of F is observed. In other words, once we calculate from the

routing table the value of F , we can have an estimate of the

probability distribution of the three performance parameters.

From these estimated parameters, we can calculate also the

overall network performance W .

C. Cooperation

When cooperation is exploited, some nodes are shared

between the two networks, and the routing tables calculated

via OLSR change accordingly. By using the framework in-

troduced above, we can estimate the overall performance of

the two networks with and without cooperation. We denote

with Wk(D1,D2) the weighted delivery delay of network

k, with k = 1, 2, when the two networks share the set of

nodes D1 and D2, respectively. In particular, Wk(∅, ∅) is the

performance metric of network k when no nodes are shared.

Thus, for any choice of the nodes shared we can calculate

TABLE I
SIMULATION PARAMETERS

Number of nodes per network 10

Transmission power [dBm] 24

Noise floor [dBm] -103

Modulation used BPSK

Time slot duration [ms] 1

Packet length [bit] 4096

λ [pkt/s/node] 1 to 5

Spreading factor 16

Fading correlation factor ρ 0.9

the variation in Wk for the two networks. Then, we can

model the cooperation strategy by means of Game Theory,

by considering each network as a selfish agent whose utility

function can be any decreasing function of Wk. To sum up,

the following steps are followed in our framework:

• we learn the network behavior by measuring the parame-

ters of interest over several random topologies with fixed

setup;

• we use the BN method to infer the joint distribution

among ζq , pt, pq , F , and N ;

• we evaluate the utility functions Wk(D1,D2), for the two

networks k ∈ {1, 2}, for all the possible choices of the

sets D1 and D2.

• we select the two subsets D1 and D2 to be shared, based

on the game theoretic approach described in Section

IV-D.

D. Game theoretic approach

The problem is formulated as a repeated 2-player game,

where the players are the two networks. We name the nodes of

the networks from 1 to 2N , where the nodes in the sets Q1 =
{1, ..., N} and Q2 = {N+1, ..., 2N} belong to network 1 and

2, respectively. The strategy of each network is represented by

the set of nodes D1 and D2 they decide to share, therefore in

the most general formulation the strategy sets are the power

sets S1 = 2Q1 and S2 = 2Q2 . The utility function of each

network, uk : 2Q1 × 2Q2 → R, k = 1, 2, is the reciprocal

of the average weighted delay per path for that network, that

is, W
−1

k (D1,D2). Each of these metrics jointly depends on

the strategies of both players: if a network decides to share

a given node, that node is loaded by the traffic of the other

network that passes through it. On the other hand, an additional

shared node decreases the overall amount of traffic that passes

through the other nodes.

In this paper, we assume for simplicity that the networks do

not have the freedom to choose the number of nodes to share.

They can share either no nodes or exactly 2 nodes, therefore

the cardinality of each strategy space is
(

N
2

)

+1. Although our

approach can be extended to a larger number of cooperating

nodes, our numerical results show that a large fraction of the

available cooperation gain is already achieved with this simple

choice.

If we consider a single stage of this game it is immediate

to see that the unique NE is the strategy profile s = (∅, ∅),
i.e., no network cooperates. In fact, given the strategy of the
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Fig. 2. BN estimation of the average delivery delay
ζq as a function of the number of flows F passing
through the node.
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Fig. 4. BN estimation of the probability of transmis-
sion failure pt as a function of the number of flows
F passing through the node.

other, each network prefers to share no nodes in order not

to increase the total traffic through its nodes. However, in the

repeated formulation it can be shown that each strategy profile

that allows to reach a better utility for both players is a NE.

A player deviating from that strategy profile can be punished

by the other player during subsequent stages. The duration of

this punishment can be set so that the gain obtained during

the deviating stage does not compensate the loss during the

subsequent stages. Punishment strategies in repeated games

allow multiple equilibria with varying utilities for each player.

Inspired by the Nash bargaining solution [10], we decide

to maximize the product
(

u1 − uNC
1

) (

u2 − uNC
2

)

, where

uNC
1 and uNC

2 are the status quo utilities, i.e., the utilities

W
−1

1 (∅, ∅) and W
−1

2 (∅, ∅) obtained when networks do not

cooperate. We additionally impose the mathematical constraint

uk − uNC
k ≥ 0, k = 1, 2, to avoid the situation where the

maximum corresponds to a decrease in the utilities of both

networks. The solution found results in increased utilities for

both networks compared to the non cooperative case, therefore

it is a NE for the repeated game formulation.

V. RESULTS

In this section we present the simulation setup and the main

results of our approach for cooperation.

A. Simulation Setup

In order to prove the effectiveness of our cooperation strat-

egy, we developed a network simulator which encompasses the

layers from physical to routing, as described in Section III. The

system parameters are reported in Table I. Each simulation run

is performed with randomly generated connected networks,

and lasts for 10000 time slots, including an initial transient

phase. Different values of the traffic generation intensity λ
were considered, from 1 packet/s, corresponding to a lightly

loaded network, up to 5 packet/s, which is instead the case

of an overloaded network. In each scenario, 500 simulation

runs were performed to collect the data required for the BN

inference. Based on this information, the empirical distribu-

tions and the average values of ζq , pt and pq, conditioned on

F , were derived.

In the subsequent steps, a new set of 500 simulation runs

was performed for each value of λ. In each run, two networks

are again randomly deployed; the overall system performance

is theoretically evaluated by computing the values of Wk,

based on the routing tables, and the values of Wk(D1,D2),
with k ∈ {1, 2}, where D1 and D2 are the optimal sets of

nodes to be shared, according to the game theoretic framework

proposed in Section IV.

The aim is to verify how much gain is achievable with

our approach with respect to a random selection of the

nodes shared and a fully cooperative strategy. Therefore, the

network performance obtained by using our Game Theoretic

node selection strategy is compared to those achieved by the

following strategies: 1) no cooperation, 2) two nodes shared,

randomly chosen by each network, and 3) all nodes shared.

B. Bayesian Network estimation

Exploiting the stochastic estimation of local parameters

through the BN approach proposed in Section II-A, we can

evaluate the expected value of the three parameters of interest,

namely the average delivery delay ζq , the probability of buffer

overflow pq and the probability of transmission failure pt, as

a function of the number of flows F passing through the node

and of the traffic intensity λ. The expected values of ζq , pq,

and pt are shown in Figs. 2, 3 and 4, respectively. We notice

that the highest number of flows through a single node is

reached when that node becomes the only connection among

three separate clusters of nodes. If these groups have similar

cardinalities, and the number of nodes in each network is N ,

we can rise up to a maximum of about 4(N − 1)2/3 flows

through a single node, that is close to the maximum value of

F represented in the figures. We also observe in Fig. 2 that

for very high values of F and λ, the average delivery delay

decreases. We conjecture that this happens for two reasons:

(1) the queue of these nodes are always almost full, so that

the time to traverse them cannot grow much further, whereas

(2) a node traversed by a high number of flows is often chosen

as receiver by most of his neighbors. For these reasons, when

it transmits, a lower number of communications can interfere,

thus leading to a lower time needed to deliver a packet to the

next hop.
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Fig. 5. Weighted delay as a function of the packet generation intensity λ,
for the four compared scenarios: with no nodes shared (No Coop); with two
nodes shared, randomly chosen (2 Rand); with two nodes shared, chosen via
Game Theory (2 GT); and with all the nodes shared (Full Coop).

C. Cooperation performance

In Fig. 5, we present the actual gain, in terms of delay

reduction, offered by the considered cooperation strategy. The

curves are obtained by averaging over 500 random topologies,

each consisting of two networks of N = 10 nodes. The other

system parameters are reported in Tab. I. We plot the average

weighted delay of each network (due to the symmetry of

the scenario, it is not necessary to distinguish between the

networks) in four different cases, that is: (1) when no nodes are

shared, namely No Coop; (2) when 2 nodes randomly chosen

are shared, namely 2 Rand; (3) when 2 nodes, selected through

the proposed Game-theoretic approach, are shared, namely 2

GT; (4) when all nodes are shared, namely Full Coop.

It can be observed that, as intuition suggests, full cooper-

ation grants the highest benefits, due to the higher diversity.

Hence, this is the maximum achievable gain for the scenario

investigated. This gain is more pronounced when the networks

are heavily loaded, since congested paths are more frequent,

and spatial diversity becomes more advantageous.

When only two nodes can be shared, the choice of the

shared nodes makes the difference. In fact, Fig. 5 shows

that a careful selection of the resources to be shared can

significantly increase the achievable gain when compared to

a blind random selection. A random selection can not offer a

significant gain for lightly loaded networks, while, for heavily

loaded networks, it can offer only one third of the gain granted

by full cooperation. On the contrary, if the same number of

nodes are shared, but chosen by means of our game-theoretic

approach, the maximum achievable gain is fully obtained for

lightly loaded networks and closely approached for heavily

loaded networks.

VI. CONCLUSIONS

In this paper, we developed a framework which can be used

to select the best cooperation strategy between two coexisting

wireless networks sharing some of their nodes. Bayesian

Network theory was used to derive the statistical correlation

between local parameters and global system performance.

Based on this information, a game theoretic selection of the

nodes which can guarantee the highest benefit was made.

Even when a small fraction of nodes is shared, we obtained

a significant gain. In particular, both for lightly and heavily

loaded scenarios, the selection scheme based on Game Theory

can achieve almost the same performance as a full cooperation

scheme.
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