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Abstract—Many papers analyze selective repeat automatic re-
peat request schemes by means of a Markov chain representation
for the channel and, by extension, the whole transmission system.
This Markov approach precisely characterizes the queueing
behavior and the statistics of several delay terms. In the vast
majority of the investigations, the round-trip time of the channel,
which determines the instant of reception of the feedback from
the receiver, is taken as a fixed value. This letter explores the
relaxation of this assumption, still framing the system within
a Markov chain. The main conclusion is that the impact of a
variable round trip time on the delay statistics is rather limited.
The used approach can be promptly applied to any similar
analysis of retransmission-based error control systems.

Index Terms—Queueing analysis, automatic repeat request,
Markov processes, error analysis.

I. INTRODUCTION

AUTOMATIC retransmission request (ARQ) is a widely
employed technique for error control. Its implementation

through a selective repeat (SR) scheme consists of transmitting
data as a continuous and ordered stream of packets, which is
preempted by retransmissions of packets that were in error
at their previous transmission attempt. Retransmissions can
be performed when the transmitter is notified of the errors
by the receiver, i.e., after one round-trip time (rtt) from the
first transmission. If no retransmission needs to be performed,
normal transmissions are resumed from the last packet sent [1].

For each received packet, the receiver sends back to the
transmitter either a positive or a negative acknowledgement,
and a new transmission or a selective retransmission is per-
formed accordingly. This procedure can trigger error protec-
tion on-demand, i.e., only when errors are present, in contrast
with proactive techniques such as forward error correction
(FEC). With unlimited retransmission attempts, the achieved
reliability can be arbitrarily high. However, there are some
prices to pay. First, a separate feedback channel is needed.
Second, SR ARQ also requires a resequencing buffer to store
pending packets that have been received out-of-order. Finally,
and most importantly from the performance standpoint, the
packet delays may grow, since retransmissions are involved.
It is worthwhile noting that even the so-called hybrid ARQ
schemes [2], which are a mixture of ARQ and FEC, still retain
the rationale of ARQ, i.e., they perform retransmissions and
therefore potentially increase the packet delay. The character-
ization of packet delays in SR ARQ is an important topic, and
has been the subject of many research papers [3]–[10].
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In the literature, several delay terms are defined. The
existing taxonomy is here summarized by considering two
main delays, i.e., the queueing and the delivery delay, which
together form the overall packet delay. The former is the
time from the arrival of a packet in the queue until its first
transmission. The latter is the further time spent by the packet
before being released from the receiver’s resequencing buffer,
which implies the correct reception of not only this packet,
but also all those with lower sequence numbers [5].

In the aforementioned studies, these delay terms have been
studied with many techniques, always considering a fixed rtt.
One notable exception is [6], giving an approximate queueing
analysis under Bernoulli packet service; to some extent, this
randomness in the service process can be seen as an indirect
consequence of a variable rtt, although the authors do not
make such a connection and only consider a fixed rtt. Instead,
the present letter develops an exact Markov analysis, where
both queueing and delivery delays are evaluated by directly
considering a variable rtt for each packet, which is shown to
lead to interesting conclusions. The used approach is fairly
general and can be applied to any Markov analysis of SR
ARQ, e.g., [3], [11], [12], and even those considering different
types of ARQ [7], [13], or hybrid ARQ [2], [14].

II. NOTATIONS AND ASSUMPTIONS

Throughout this letter, a bold lower-case letter, such as y,
denotes a column vector, whose length is written as Ly; the
same letter in italic with an index refers to an element, i.e., yi
is the ith element of y, where 1 ≤ i ≤ Ly. If y only contains
non-negative integers, y− is obtained by decreasing all non-
zero elements of y by one, i.e., y− = [y−1]+, where 1 is an
all-one vector and [·]+ = max(·, 0) is applied element-wise.

If y contains � elements equal to 1, for any 0 ≤ k ≤ �
denote with y(k)− the vector where all the elements larger
than 1 and the first k elements equal to 1 are decreased by 1:

(y(k)−)i =

⎧⎪⎪⎨
⎪⎪⎩

yi − 1 if yi > 1
yi − 1 if yi = 1 and i ≤ pos1(y, k)
yi if yi = 1 and i > pos1(y, k)
yi if yi < 1

(1)

where pos1(y, k) is the position of the kth “1” in y. Finally,
ei denotes the ith element of the canonic basis, i.e., the ith
column of the identity matrix I.

The analysis considers a slotted time where identical pack-
ets are transmitted from a first-in-first-out (FIFO) buffer,
unless retransmissions need to be performed, which, in the SR
ARQ scheme, have priority over normal transmissions. The rtt
is denoted by M , taken without loss of generality as an integer
value (otherwise, it is rounded up). Thus, M is the number
of slots elapsed between the transmission of a packet and the
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Fig. 1. Examples of pM [m]: from left to right, two truncated Gaussian
distributions with different standard deviations and a uniform distribution.
The right-most one is the reference deterministic case, where M = 3.

notification of its outcome back at the transmitter’s side. In
most of the literature, M is assigned a constant value m̄,1 also
called the ARQ window [1], i.e., the number of packets that
are still pending acknowledgement. For a Markov description
of the system, the number of states is exponential in m̄ [9].

This letter considers a variable rtt M with discrete dis-
tribution pM[m] = Pr{M=m}. For the sake of analytical
tractability, let pM [m] be zero outside {mmin, . . . ,mmax} and
rtt values of different packets be independently drawn. The as-
sumption of ideal ARQ [5], [13] implies that pM[m]=δ[m−1],
i.e., equal to 1 for m=1 and 0 elsewhere. A larger, but still
constant, rtt is considered by [1], [3], [4], [7]–[10], which
means that pM is still a delta-function, i.e., pM[m] = δ[m−m̄],
centered on m̄ > 1. The present analysis instead can be
adapted to any pM of choice. The numerical evaluations use
the functions shown in Fig. 1, all with mmin=1, mmax=5, and
mean m̄=3: a truncated Gaussian distribution with standard
deviation σ=1, another truncated Gaussian with σ=2, and a
uniform distribution.

Thus, the feedback of a packet is known at the transmitter’s
side after m slots with probability pM [m]. After j<m slots the
packet is pending acknowledgement, which will be received
after m−j slots. A packet transmitted j slots ago whose rtt
is equal to m will be said to have a feedback delay equal to
m−j at present time. For discussion ease, the following work
assumptions, quite common for ARQ, are made; it would be
immediate to remove them at the price of a longer and tedious,
but substantially equivalent, analysis. Packet errors are inde-
pendent and occur with probability ε, and packet arrivals are
independently distributed, following a Bernoulli distribution,
i.e., at most one packet arrives at any slot with probability λ
(the system is stable if λ < 1 − ε). Also, consider error-free
feedback and unlimited retransmission attempts. The effects of
correlation, feedback errors, and limited retransmissions was
investigated in [11], [12], [14], respectively; yet, none of these
papers considers a variable rtt as done here. The reader is
referred to them for an in-depth discussion on these points.

1This may be justified by a stringent feedback time-out. The present
analysis can also be seen as a relaxation of this hypothesis.

III. ANALYSIS

A Markov analysis of SR ARQ systems [8] frames the
queue, the arrival process, the packet error process, and the
outcome of the past packets in the state of a chain whose
transitions are described by a matrix T(λ), depending on λ.
For the problem at hand, the system state is s = (q,d) with
q being the queue length, which can only increase/decrease
by 1, or stay unchanged, at each slot. The (mmax)-sized
vector d contains the feedback delays for the packets pending
acknowledgement. Any entry di represents a feedback due in
di slots; thus, there can be at most mmax pending feedbacks.

Zero-valued elements may be present in d, e.g., if some
of the past mmax time slots were without arrivals. In the
case of fixed rtt, all non-zero elements of d are different,
as the instantaneous value of the feedback delay is different
for each past packet. If M is variable, instead, there may be
duplications. However, it is immediate that, for any meaningful
state s, there is always at least one element in d that is either
0 or 1. Denote with ζ the lowest index of such elements, i.e.,

ζ = arg min
i=1...Ld

(di ≤ 1) . (2)

For s = (q,d), define u as the list of indices j for which
dj = 1. Thus, Lu is the number of feedbacks due to arrive
in the next time slot and the probability that none of them is
negative is α = (1 − ε)Lu . Also, for any k in {1, . . . ,Lu},
ak = ε(1− ε)k−1 is the probability that the lowest index of a
negative feedback is uk. Trivially, α+

∑Lu

k=1 ak = 1.
For a transition from s = (q,d) to s′ = (q′,d′), it is

important to represent the case where simultaneous feedbacks
reach the transmitter at the same time, which happens when
Lu > 1. The precise mathematical description of this situ-
ation depends on the nature of acknowledgement packets in
ARQ. Hereafter, it is assumed that simultaneous reception of
multiple acknowledgements is possible within the same time
slot (think of acknowledgements as much shorter than the data
packet sent in one slot). However, it is surely not possible to
have two or more simultaneous retransmissions in the same
slot.

The transitions when Lu > 1 are as follows. If all packets
are acknowledged, which happens with probability α, a new
packet is transmitted, if available; or, if all incoming feedbacks
are positive, the queue is empty, and no packet arrives, the
system stays idle until the next slot. Else, incoming feedback
messages are scanned in order of their index within vector d.
As long as those in u1, u2, . . . are correct, they are set to 0. If
the first negative acknowledgement is in uk (probability ak),
the corresponding packet is retransmitted and the evaluation
of other incoming feedbacks is deferred to the next time slot.

So, at most one negative feedback, the ukth one, is consid-
ered at a time, while all duj s with j = k+1, . . . ,Lu are kept
to 1 and evaluated at the next transition. The delay evaluations
are not affected, because, if all the feedbacks at positions
uk+1, uk+2 . . . , uLu are positive, they will be removed at the
next transition, with no impact on the delays. Conversely, if at
least one of them is negative, there will be a retransmission,
thereby increasing the delay, but not before the next slot, as
the current time slot already has one (that described by uk).
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Finally, consider the case where a new feedback delay,
either of a retransmission or a new packet, is stored in d′. To
simplify the matrix derivation, assume that this new value is
stored in position ζ, which guarantees to be available. In fact,
the value of dζ is either 0, which means no feedback delay
is recorded, or 1, i.e., the corresponding feedback arrives in
this time slot and a new feedback (possibly even of the same
packet if it is retransmitted) can be recorded instead. As per
(2), ζ is a valid position even when multiple simultaneous
feedbacks arrive.

Thus, the transition matrix T(λ) can be written by con-
sidering the following transition terms from s to s′, for all
j ∈ {mmin, . . . ,mmax}, k ∈ {1, . . . ,Lu}:

λα pM[j] if s′ = (q, d−+jeζ) (3)

(1−λ)α pM[j] if s′ = (q−1, d−+jeζ) and q>0 (4)

(1−λ)α if s′ = (0, d−) and q=0 (5)

λak pM[j] if s′ = (q + 1, d(k)−+jeζ) (6)

(1−λ) ak pM[j] if s′ = (q, d(k)−+jeζ) . (7)

Some equations may describe the same transition s → s′, for
instance (3) and (7) if k = Lu, thus the left-hand terms needs
to be summed in the corresponding element of T(λ).

The transition in (3) corresponds to all incoming feedbacks
being positive and the arrival of a new packet in the queue,
which happens with probability λα. A packet is taken from
the queue, whose size remains the same, and is placed in
ζ, i.e., the first available position of d; this is the result of
summing jeζ . The value of the new feedback delay is j with
probability pM[j]. All the non-zero delay values are decreased
by 1, which is represented by d transiting to d−. Identical
reasonings apply to (4) and (5), which assume instead no
packet arrival, therefore λ is replaced by 1−λ. Either q > 0,
as in (4), then the queue is decreased by 1 and the new
feedback delay is placed in position ζ, or the queue is empty,
so all non-zero delays in d are just decreased by 1, which is
described by (5). The two remaining equations report instead
the transitions when one of the arriving feedbacks, precisely
the kth one, is negative, which happens with probability ak.
Again, either a new packet arrives with probability λ, as per
(6), or none arrives with probability 1−λ, as per (7). This time,
no packet is taken from the queue, as the retransmission is
prioritized, therefore the queue size is either increased by 1 or
kept unchanged, respectively. As per the discussion above, the
evolution of d is to d′ = d(k)−, i.e., only the first k elements
equal to 1 are decreased, the remaining ones are kept at 1 and
evaluated at the next time slot, plus jeζ is added as before.

The vector σ of the steady-state probabilities satisfies
T(λ)σ = σ and

∑
i σi=1. To solve numerically, one needs to

set a sufficiently high maximum queue size Qmax, for which
Qmax+1 is replaced by just Qmax. The number of states, i.e.,
the size of T(λ), is a finite value N , which is upper bounded
by Qmax(mmax + 1)mmax . Then,

σ =

[
T(λ) − I

1

]−1

eN+1 . (8)

Despite N being large and exponential in mmax, matrix T(λ)
is sparse, see (3)–(7), thus (8) is relatively simple to compute.
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Fig. 2. Distribution of queueing delay τQ, for λ = 0.4 and ε = 0.2.

After deriving σ, the statistics of the delays can be found
by proceeding as sketched here (for more details, see [11]).
The probability that a packet arrives when the system is in
a given state s is the sth entry of vector T(1)σ. Note that
this is not the steady-state probability of s; the system was
in steady-state one step before the arrival (due to the Markov
property) and the last slot has surely seen an arrival, thus
λ = 1. After the arrival of this packet, none of the subsequent
arrivals will affect the delays [8], [15]. Thus, λ can be turned
off and the system evolves according to matrix T(0). The
queueing delay τQ is the first passage time through any state
with an empty queue (q = 0) and the overall delay τG is the
first passage time to the state without pending packets, i.e.,
q = 0 and d = 0 (all-zero vector). The delivery delay τD is
the difference τG − τQ.2

IV. NUMERICAL RESULTS

Through the analysis, the distribution of the queueing delay
τQ can be derived, as shown in Fig. 2, for λ = 0.4 and ε = 0.2.
Remarkably, the four distributions for various choices of pM
almost coincide. Although not shown due to space limitations,
the same holds for other choices of λ and ε, meaning that the
distributions are very similar, even though they all depend on
the load factor λ/(1−ε). The first point, i.e., Pr{τQ = 0} has
the exact same value for any choice of pM. This follows from
the probability of finding an empty queue being identical for
every pM with the same average of M . However, the curves
match with striking similarity also for higher values of τQ.

Fig. 3 shows the same pdf (zoomed) for λ=0.78 and ε=0.2,
so that the queue is closer to instability.This plot gives a better
view of the (rather limited) differences between the curves.
Only the two most diverse curves are plotted, i.e., those for
fixed rtt and uniform pM in {1, . . . , 5}. Simulation points are
plotted to confirm of the analysis (all the results have been
validated by simulation, they are shown only here to avoid
too dense graphs). It can be seen that a variable rtt implies a
lower value of the distribution for τQ = 1 and a higher value

2This is evaluated at the transmitter’s side. To evaluate it at the receiver’s
side, also the propagation delay (about half the rtt) must be summed. The
derivation would be similar and the conclusions almost identical.
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Fig. 3. Distribution of τQ, for λ = 0.78 and ε = 0.2, comparison between
fixed and variable rtt, and simulation results.

for subsequent τQs. However, after τQ = 6 the curves become
almost impossible to distinguish.

Fig. 4 shows the complementary cumulative distribution of
τD . A more visible effect is present, i.e., the curves for variable
rtt are smoothened. As argued in [11], [15], the statistics with
fixed rtt has a quasi-periodic behavior that the variable rtt
filters out. Interestingly, these curves would be very similar to
those (not shown due to lack of space) considering a different
λ. The fact that τD is almost unaffected by the arrival process
was found in [8],3 but it is now extended to the case of variable
rtt. Finally, the curves for variable rtt in Fig. 4 appear to have a
slightly higher tail. Hence, the delivery delay for a variable rtt
is larger, which was expected, as τD depends on all the delays
of past packets. However, the increase is relatively limited.
Even in the most variable case, i.e., the uniform distribution
between 1 and 5 (which has a 20% chance that the rtt is 67%
higher), the average τD is just 12% higher than when the rtt is
fixed to 3. Such a difference occurs for a relatively high load
factor (97.5%); if λ/(1− ε) is lower, the curves are closer.

V. CONCLUSIONS

This letter gives a Markov analysis of ARQ systems with
variable rtt. Methodology aside, a notable quantitative con-
clusion is that the queueing delay statistics is only marginally
affected by the rtt distribution. The results are almost identical
(not only in terms of average delay, but for the full distribution
of τQ) even if the rtt is variable, as long as the average
is the same. Therefore, it seems licit, for queueing statistics
purposes, to use a fixed rtt equal to the average value. As a
caveat, this holds true if the rtt is drawn independently for
each packet, some differences may arise in a correlated case.

For the delivery delay, the impact of a variable rtt is more
evident but still minor. Especially, a foreseeable smoothening
and a slight increase of the curves are observed, but the quali-
tative behavior is similar. Thus, the approximation induced by
assuming a fixed rtt can be regarded as limited.

3A recent contribution [16] argues that this may not hold under different
assumptions, specifically, a channel that can change even during a packet
transmission, and a strictly FIFO queue discipline. Surely this point deserves
further investigation, which is left for future studies.
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