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Abstract—Energy Harvesting Wireless Sensor Devices are
increasingly being considered for deployment in sensor networks,
due to their demonstrated advantages of prolonged lifetime
and autonomous operation. However, irreversible degradation
mechanisms jeopardize battery lifetime, calling for intelligent
management policies, which minimize the impact of these phe-
nomena while guaranteeing a minimum Quality of Service (QoS).
This paper explores a mathematical characterization of these
devices, focusing on the interplay between the battery discharge
policy and the irreversible degradation of the storage capacity.
We propose a stochastic Markov chain framework, suitable for
policy optimization, which captures the degradation status of the
battery. We present a general result of Markov chains, which
exploits the timescale separation between the communication
time-slot of the device and the battery degradation process,
and enables an efficient optimization. We show that this model
fits well the behavior of real batteries for what concerns their
storage capacity degradation over time. We demonstrate that a
degradation-aware policy significantly improves the lifetime of
the sensor compared to "greedy" policies, while guaranteeing
the minimum required QoS. Finally, a simple heuristic policy,
which never discharges the battery below a given threshold, is
shown to achieve near-optimal performance in terms of battery
lifetime.

Index Terms—Battery management systems; energy harvest-
ing; lifetime estimation; Markov processes; sensor phenomena
and characterization; wireless sensor networks.

I. INTRODUCTION AND MOTIVATION

RECENT technological advances and enhancements of
consumer electronics have led to the widespread diffu-

sion of networks of miniaturized devices with sensing and
communication capabilities, commonly referred to as Wireless
Sensor Networks (WSNs) [2].

One key requirement of such networks is a prolonged
and unsupervised sensor operation over time, which poses
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the problem of their energy autonomy. While the use of
primary (non-rechargeable) batteries is currently widespread
for powering WSN nodes, recent advances in the field of
small-scale energy harvesting will enable the sensors to use
ambient energy absorbed, for instance, from solar, mechanical,
thermal or RF sources [3]. Present technologies require a
local energy storage element to filter the intermittent harvested
energy, as data sensing and processing, transmission/reception
tasks, and higher layer operations (e.g., routing) rely on a
continuous and stable energy reserve. The energy harvesting
approach, combined with an intelligent use of the local energy
storage, is envisioned to greatly prolong the WSN operating
life [4], and could in principle lead to perpetual operation.

From an abstract perspective, a rechargeable battery is
typically modeled by an energy buffer, which stores the energy
supplied by the energy harvesting process, and provides it to
the device to perform sensing, processing and data commu-
nication tasks, whenever needed. An energy-aware operation
policy is an algorithm for the management of the energy
buffer, for example aimed at avoiding energy overflow or
battery depletion, so as to provide a stable operation of the
device over time, while guaranteeing a satisfactory Quality of
Service (QoS), e.g., throughput [5], delay [6] or network sum
rate [7]. In this context, most works in the literature assume
ideal and perpetual battery operation, and neglect any battery
degradation issues related to battery usage, e.g., see [8], [9].

In reality, batteries involve more complex mechanisms than
just storing and drawing energy on-demand and without side
effects. In this context, some works attempted to model
realistic battery imperfections and non-idealities, and their
impact on the performance of harvesting based devices and
networks, e.g., battery leakage [10], imperfect state of charge
knowledge [11], non-linearity between energy storage level
and power delivered by a battery [12], energy storage losses
[13]. References [14], [15] provide an overview of several
tractable mathematical models that capture battery discharge
characteristics for battery powered devices (no EH), which can
be employed to design optimal strategies that extract maxi-
mum charge. Reference [16] presents a stochastic model to
capture the recovery effect of electrochemical cells, based on
which efficient battery management policies can be designed.

The focus and novelty of this paper is on degradation
effects, which cause the storage capability of a battery to
diminish over time, depending on how the battery is used [17].
This is in contrast to the framework studied in [10], which
accommodates a deterministic battery capacity degradation
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over time that is not influenced by how the battery is used.
Degradation phenomena due to deep discharge are particularly
strong for Lithium-Ion (Li-Ion) batteries, which represent the
reference case of rechargeable batteries in consumer electron-
ics. Importantly, the deeper the discharge of the battery, the
faster the degradation. Thus, for example, an appropriate ap-
proach to enhancing the battery lifetime would be to have very
frequent and shallow discharge periods, compatibly with the
operating constraints of the network and the intermittent nature
of the ambient energy supply. In contrast, fully exploiting the
battery charge with deep discharge cycles should be avoided
as it is detrimental to battery lifetime.

In this paper, we develop a Markov model which explicitly
characterizes the degradation status of the battery and is
suitable for policy optimization. Secondly, we show that the
model accurately fits the behavior of real batteries for what
concerns their storage capacity degradation over time. A
discussion on the non-trivial consequences of this model on
the battery operation policies is also provided by formulating
an optimization problem which accounts for battery lifetime
explicitly. We believe that this evaluation represents an impor-
tant step towards the realistic characterization of rechargeable
batteries and, by extension, of WSNs and their management
strategies.

A strong suit of our approach is to join two different
perspectives, namely, those of microelectronics and network
engineering. Microelectronic characterizations of batteries of-
ten give a very detailed parametric description but fail to
provide a behavioral analysis over time and in a broader
context. Conversely, network models may be entirely flawed
if they do not properly account for a correct physical charac-
terization. This paper aims at bridging the gap between these
two approaches.

The rest of this paper is organized as follows. In Sec. II,
we survey the existing models of battery degradation available
in the literature. In Sec. III, we present the general frame-
work and define the optimization problem, which is further
developed in Sec. IV. In Sec. V, we extrapolate the battery
degradation probabilities from experimental data and models
available in the literature. In Sec. VI, we provide numerical
results. In Sec. VII, we discuss some possible extensions of
the model presented in this paper. Sec. VIII concludes the
paper.

II. BACKGROUND

The block diagram of an energy harvesting sensor node is
sketched in Fig. 1. From an energy flow standpoint, the system
load is the hardware that needs to be powered: microcontroller,
Rx/Tx transceiver and sensor fall in this category. The power
processing unit manages the ambient energy source and the
on-board battery to provide regulated energy to the load.

In such a system, the ambient energy source often provides
most of the energy within certain periods of time, during which
the on-board battery is recharged. In the remaining periods,
little or no energy is available from the source, and the on-
board battery is partially or totally discharged, depending on
the load demand. The charge/discharge process of the battery
is called cycling, and the percentage amount D of charge
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Fig. 1. Block diagram of a harvesting-based sensor node

withdrawn from the battery during discharge, with respect to
its nominal capacity, is termed Depth of Discharge (DoD).
In a photovoltaic scavenger, for instance, battery cycling is
determined on a daily basis by the availability of solar energy.
Other energy sources, such as RF, thermal or mechanical, may
present different trends. In general, the target application and
deployment scenario of the WSN play an important role in
determining the cycling period and its degree of randomness.

Denoting with C0 the nominal battery capacity in
milliampere-hours (mAh) and with Q(Ncyc) the total charge
delivered by the battery after Ncyc cycles at DoD D, one might
expect that

Q(Ncyc) = Ncyc · C0 ·D. (1)

Two fundamental facts, however, complicate the deceptively
simple scenario implied by (1). First, a rechargeable battery
has a finite cycle life, i.e., it cannot cycle indefinitely due to
irreversible degradation mechanisms, which ultimately reduce
C0 to unacceptable levels [17]. Manufacturers typically define
the battery cycle life Ncyc as the number of cycles a battery
delivers at DoD D = 1 before C0 drops below a given
threshold, e.g., 80% or 50% of the initial value [18]. Secondly,
the foregoing degradation process is strongly dependent on
how the battery is cycled. More precisely, shallow DoDs result
in a slower degradation of C0 and ultimately in increased cycle
life [17], [19]–[21]. For instance, a microbattery rated with
Ncyc = 100 cycles at 100% DoD may last up to Ncyc = 1000
cycles at 20% DoD, indicating that roughly twice the amount
of energy is extracted from the battery in the latter case [18].

A simple empirical model for the Ncyc vs D dependence is

Ncyc(D) = Ncyc,0 · eα(1−D), (2)

where Ncyc,0 represents the cycle life at 100% DoD, and α
is a characteristic constant of the battery. Exponential-based
models like (2) have been proven to be a good fit for data from
a rather wide range of battery chemistries and sizes [19]–
[22]. Equation (2) may therefore be taken as representative
also for microbatteries targeted for low-power equipment.
Note, however, that different Ncyc(D) relationships could be
employed depending on the available experimental data and
the desired accuracy.

Acknowledging the degradation of the battery capacity and
the dependence of Ncyc on D opens up intriguing options
for more advanced energy-aware policies, which represent the
main focus of this work. In the next section, the foregoing
qualitative discussion is formulated within the framework of a
stochastic model which captures the essential features of the



MICHELUSI et al.: ENERGY MANAGEMENT POLICIES FOR HARVESTING-BASED WIRELESS SENSOR DEVICES WITH BATTERY DEGRADATION 3

problem, such as source pseudo-periodicity, battery cycling
and cycle life vs DoD dependence found in commercial
microbatteries.

III. SYSTEM MODEL

We consider a slotted-time system, where slot k is the time
interval [kΔt, kΔt+Δt), k ∈ Z

+, and Δt is the slot duration.
The battery is modeled by a buffer with nominal capacity
C0, and is uniformly quantized to a number of charge levels,
using a quantization step (charge quantum) Δc � C0. The
maximum number of quanta that can be stored at the nominal
capacity is qmax =

⌊
C0

Δc

⌋
and the set of possible charge levels

is denoted by Q = {0, 1, . . . , qmax}.
Due to the aforementioned battery degradation mechanisms,

the nominal battery capacity qmax is not always entirely
available, but rather decreases over time. Let Qmax(k) be the
battery capacity at time k, with Qmax(k) ≤ Qmax(k− 1) and
Qmax(0) = qmax. Denote the (quantized) charge level of the
battery at time k as Qk. The evolution of Qk is given by

Qk+1 = min
{
[Qk−Ak]

+ +Bk, Qmax(k+1)
}
, (3)

where [x]+ = max{x, 0} and:

• {Bk} is the harvesting process, taking values in B �
{0, 1, . . . , Bmax}, which models the randomness in the energy
harvesting source, e.g., due to an intermittent energy supply.
We define an underlying scenario process {Sk} [23], and we
model it as an irreducible stationary Markov chain with tran-
sition probability pS(sk+1|sk) � Pr(Sk+1 = sk+1|Sk = sk)
and steady state distribution πS(s), taking values in a finite
state space S. Given Sk ∈ S, the energy harvest Bk is drawn
from B according to the distribution pB(bk|sk) � Pr(Bk =
bk|Sk = sk). Then, we denote the average harvesting rate as

b̄ �
∑
s∈S

πS(s)
∑
b∈B

bpB(b|s). (4)

We assume that a new energy quantum harvested in slot k can
only be used in a later slot.
• {Ak} is the action process, which is governed by the Energy
Harvesting Device (EHD) controller, as detailed in Sec. III-A,
and takes values in A � {0} ∪ {Amin, Amin + 1, . . . , Amax}.
Amin ∈ N and Amax ∈ N represent the minimum and
maximum load requirements, respectively. Action Ak = 0
accounts for the possibility to remain idle in a given time-
slot, due to either a controller’s decision or energy outage. Ak

may include the energy cost of performing data acquisition
and transmission.

Remark 1. Note that, if Ak > Qk, then more energy is
requested by the sensor node to run the task than the amount
currently available in the battery. In this case, the device starts
drawing energy from the battery to run the task, but energy
depletion occurs before its completion. The new battery charge
state becomes Qk+1 = min {Bk, Qmax(k+1)}, i.e., it equals
the amount of charge harvested in the current slot. In the
following, perfect knowledge of Qk is assumed at the EHD
controller, so that the latter can (and will always) choose
Ak ≤ Qk, and no energy is wasted. On the other hand, if
[Qk−Ak]

+ +Bk > Qmax(k+1), part of the harvested energy
is lost due to energy overflow.

Remark 2. Note that the harvesting model considered in this
paper is a special instance of the Generalized Markov model
presented in [23]. Therein, the scenario process is modeled
as a first-order Markov chain with two states, whereas the
harvest Bk statistically depends on (Bk−1, Bk−2, . . . , Bk−L)
and on the scenario Sk, for some order L ≥ 0. In particular,
it is shown that, by quantizing the harvest Bk with 20 states,
the order L = 0 models well a piezoelectric energy source,
whereas the order L = 1 models well a solar energy source.
In this paper, we employ L = 0 for simplicity. However, the
analysis can be extended to the case L = 1, as detailed in
Sec. VII.

Remark 3. The interaction between the EHD and the battery
is here modeled in terms of normalized charge quanta. In
reality, both the harvesting and the action, or load, processes
are energy-driven rather than charge-driven. Exchanged charge
and energy are proportional only as long as the battery voltage
is constant throughout the device operating life, which is
assumed to hold in this paper. Modeling battery voltage dy-
namics is out of the scope of this paper and can be considered
as a future refinement.

We model the battery degradation process, which causes the
battery capacity Qmax(k) to diminish irreversibly over time, as
follows. We define the battery health state, Hk, taking values
in H ≡ {0, 1, . . . , Hmax}, where Hmax > 0. For a given
Hk, the battery capacity at time k, i.e., the total amount of
charge which can be delivered by a fully charged battery over
a discharge phase, is given by

Qmax(k) =

⌊
Hk

Hmax
qmax

⌋
, (5)

and the set of available charge levels is denoted by
Q(Hk) =

{
0, 1, . . . ,

⌊
Hk

Hmax
qmax

⌋}
. We assume that

{History up to time k − 1} → (Hk, Qk) → Hk+1 forms a
Markov chain, i.e., Hk+1 is conditionally independent of the
history up to time k − 1, given (Hk, Qk). We denote the
transition probability from health state Hk = h to health state
Hk+1 = h− 1 as

pH(h; q) � Pr(Hk+1 = h− 1|Hk = h,Qk = q). (6)

Moreover, Pr(Hk+1 = h̃|Hk = h,Qk = q) = 0 if h̃ /∈
{h−1, h}, ∀q ∈ Q(h), so that no transition is possible between
two non-consecutive health states, or to a higher health state.
As a consequence, the probability of remaining in health state
h is 1−pH(h; q). We further make the following assumptions
on pH(h; q):

Assumption 1. a) pH(h; q) > 0, ∀h ∈ H, q ∈ Q(h),
b) pH(h; q) � 1, ∀h ∈ H, q ∈ Q(h),
c) pH(h1; q1) ≥ pH(h2; q2), ∀h2 ≥ h1, q2 ≥ q1.

Ass. 1.a) implies that the battery health state will eventually
reach state Hk = 0, so that the lifetime, defined in Def. 1
in Sec. III-A, is finite; Ass. 1.b) expresses the fact that
aging processes taking place in the battery operate over time
scales that are much longer than the cycling period and the
communication time-slot of the EHD; Ass. 1.c) means that
the more discharged and degraded the battery, the faster the
battery degradation process [17].
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Remark 4 (Choice of the number of health states Hmax). Note
that, in practice, the battery capacity degrades continuously
over the set [0, qmax]. The model (5) approximates such
behavior via quantization of the battery capacity to discrete
values, which brings the following trade-off: if the number of
health states Hmax is small, then the model is less likely to
closely replicate a realistic battery degradation profile. On the
other hand, if Hmax is large, then Ass. 1.b) becomes weaker,
so that Hmax should not be too large either. In fact, using
a fine-grained quantization of the health states, the optimal
policy, defined via (23) for each health state, does not vary
significantly over subsequent health states, leading to over-
parameterization.

Remark 5. Unlike the empirical degradation model (2), where
the battery lifetime is affected by the number of cycles at
a given DoD, our proposed model does not characterize
degradation via the cycle count. This is because one cycle
cannot be defined under the stochastic setting considered in
this paper. On the other hand, such choice of the health model
is suitable for policy optimization and analysis via the well
developed theory of Markov Decision Processes (MDPs) [24],
and captures a salient feature of battery based systems, i.e.,
the dependence of the battery degradation on the discharge
depth of the latter via the transition probability pH(h; q).

The EHD state at time k is Zk = (Qk, Hk, Sk−1), taking
values in the state space Q ×H × S. Note that the scenario
Sk is unknown at time k, as reflected by state Zk, since
Bk has not yet been observed. In practice, Zk should be
inferred and estimated from measurements of the battery state
of charge, capacity, and input energy flows. A cost-effective
technique for accurate estimation of the state-of-charge Qk

is presented in [25]. The health state Hk can be determined
by estimating the current battery capacity Qmax(k) [26]. The
posterior distribution of the scenario Sk−1 can be inferred
from the observed harvesting sequence {B0, . . . , Bk−1}, and
Sk−1 can be estimated via MAP, Ŝk−1 = argmaxs P(Sk−1 =
s|B0, . . . , Bk−1). In this work, for simplicity, we assume that
Zk is perfectly known to the EHD controller. However, the
analysis can be extended to the case where Zk is unknown,
by using the framework of POMDPs [27]. This extension is
left for future work.

A. Policy definition and Optimization problem

Given Zk = (Qk, Hk, Sk−1), the EHD controller deter-
mines Ak ∈ A at time k according to a given policy μHk

.
Formally, μHk

is a probability measure on the action space A,
parameterized by the state (Qk, Sk−1), i.e., μHk

(a;Qk, Sk−1)
is the probability of requesting a charge quanta from the
battery, when operating in state Zk.1 Under any policy μ,
the state process {Zk} is a Markov chain, so that the whole
decision problem is a MDP [24].

The instantaneous reward accrued in time-slot k, in state

1For the sake of maximizing an average long-term reward function of the
state and action processes, it is sufficient to consider only state-dependent
stationary policies [24].

Zk = (Qk, Hk, Sk−1) under action Ak, is defined as

g(Ak, Qk) =

{
0, Ak > Qk,
g∗(Ak), Ak ≤ Qk,

(7)

where g∗(Ak) is a non-decreasing function of Ak with
g∗(0) = 0, so that a larger reward is accrued by using a
larger amount of energy. As discussed in Remark 1, when
the amount of charge requested by the controller exceeds that
available in the battery (case Ak > Qk), the task cannot be
successfully completed, and the battery is depleted while no
reward is earned.

We define the hitting times of the health states as

Kh = min{k ≥ 0 : Hk = h}, h ∈ H. (8)

Kh is a random variable, which depends on the real-
ization of {(Bk, Ak, Hk)}. Given an initial state Z0 =
(Q0, Hmax, S−1) and a policy μ, we define the total average
reward Gtot

μ (h,Z0), the battery lifetime Tμ(h,Z0) and the
average reward per time-slot Gμ(h,Z0) of health state h as

Gtot
μ (h,Z0) = E

[Kh−1−1∑
k=Kh

g(Ak, Qk)

∣∣∣∣Z0

]
, (9)

Tμ(h,Z0) = E [Kh−1 −Kh |Z0] , (10)

Gμ(h,Z0) =
Gtot

μ (h,Z0)

Tμ(h,Z0)
, (11)

where the expectation is taken with respect to
{(Bk, Sk, Hk, Ak)} and Ak is drawn according to μ.
In particular, Gtot

μ (h,Z0) is the expected cumulative reward
earned over health state h; Tμ(h,Z0) is the expected number
of time-slots spent in health state h; and Gμ(h,Z0) represents
the expected reward per time-slot accrued in health state h.

Remark 6. The choice of g∗(Ak) depends on the specific
application considered. A widely used model in the literature
is to assume that g∗(Ak) is a concave increasing function of
Ak, e.g., see [28]. In particular, if g∗(Ak) = log2(1+σAk/b̄),
then g∗(Ak) is the Shannon capacity of the static Gaussian
channel, where σ is an SNR scaling parameter [29], and
Gμ(h,Z0) is the expected throughput in health state h. If
g∗(Ak) = χ(Ak ≥ Ā), for some Ā, where χ(·) is the indicator
function, then Gμ(h,Z0) is the probability that the load Ā is
successfully supported in health state h, and may be used to
model real time traffic where the QoS needs to be satisfied
(probabilistically) in each slot.

With these definitions at hand, let G∗ be a minimum QoS
requirement, which is met in health state h if Gμ(h,Z0) ≥ G∗.
We give the following definition.

Definition 1. (Battery Lifetime) If Gμ(Hmax,Z0) ≥ G∗, the
battery lifetime Tμ(G∗,Z0) under policy μ is defined as

Tμ(G∗,Z0) =
∑
h≥h∗

μ

Tμ(h,Z0), (12)

where h∗
μ = max {h : Gμ(h,Z0) < G∗}+ 1 (13)

is the index of the lowest health state in which the QoS is
met. If Gμ(Hmax,Z0) < G∗, then Tμ(G∗,Z0) = 0.

Note that the lifetime is defined for a specific policy μ and
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QoS requirement G∗. The condition Gμ(Hmax,Z0) ≥ G∗

implies that policy μ yields a satisfactory reward in the
healthiest state Hmax, so that the lifetime under μ is non-
zero; otherwise, the lifetime is zero as there is no satisfactory
reward even in the healthiest state. The lifetime is defined
such that the QoS requirement G∗ is guaranteed at each
health state h ≥ h∗

μ, i.e., Gμ(h,Z0) ≥ G∗. In particular, the
QoS constraint inherently assumes that the battery degradation
processes taking place in the battery operate over time scales
which are much longer than the communication time-slot
(Ass. 1.b)), so that the system approaches a steady state oper-
ation in each health state. For the lower health state h∗

μ−1, we
have Gμ(h

∗
μ−1,Z0) < G∗, i.e., the EHD can no longer sustain

the required QoS requirement, and battery failure is declared.
Note that a QoS requirement on each health state h ≥ h∗

μ

is stricter than an average QoS requirement over the entire
lifetime, defined as

∑
h≥h∗

μ
Gtot

μ (h,Z0)/
∑

h≥h∗
μ
Tμ(h,Z0).

The latter may induce policies that exhibit wide performance
variability across the health states, as made clear in the
following example.

Example 1. Consider a system with slot duration 1s, QoS
constraint G∗ = 1.5 and Hmax = 2, and a policy μ such that

Gμ(h,Z0) = h, Tμ(h,Z0) = 15× 106 slots 
 6 months,

∀h ∈ {0, 1, 2}. Then, according to Def. 1, the lifetime is
Tμ(G∗,Z0) = 15× 106, hence the QoS G∗ can be supported
only at health state 2 for 6 months. However, an average QoS
of

Gtot
μ (2,Z0) +Gtot

μ (1,Z0)

Tμ(2,Z0) + Tμ(1,Z0)
= 1.5 = G∗ (14)

can be supported over a time-interval of duration 30×106 
 1
year, which is twice as long as Tμ(G∗,Z0), despite the fact
that a poor performance is attained in health state 1.

The optimization problem at hand is to determine the
optimal μ∗ such that the battery lifetime is maximized, under
a given constraint on the minimum QoS G∗, i.e.,

μ∗ = argmax
μ

Tμ(G∗,Z0) = argmax
μ

∑
h≥h∗

μ

Tμ(h,Z0), (15)

where h∗
μ is given in (13). The solution to (15) is carried out

in the next section.

IV. OPTIMIZATION

In this section, we develop problem (15), showing that it
can be recast as an independent Linear Program (LP) on each
health state, under Ass. 1.b) on pH(h; q). The solution to
the optimization problem relies on the timescale separation
between the communication time-slot of the EHD and the
battery degradation process, so that the EHD achieves a steady
state operation in each health state. In this light, we give the
following definition.

Definition 2. (Steady State distribution of the non-absorbed
chain) Assume that the EHD operates indefinitely at health
state h ∈ H without being absorbed by the lower health
state, i.e., pH(h; q) = 0, ∀q ∈ Q(h). Denote the steady state

distribution of (q, s)∈Q(h)×S in health state h under policy
μh as2

πh
μh

(q, s) = lim
K→∞

1

K

K−1∑
k=0

P (k)(q, s|Z0), (16)

where Z0 = (Q0, h, S−1) is the initial state and

P (k)(q, s|Z0) = Pr (Qk = q, Sk−1 = s|Z0, pH(h; ·) = 0) .

We define the following quantities.

Definition 3. (Approximate reward per stage and lifetime of
health state h)

Ĝμh
(h) =

∑
(q,s)∈Q(h)×S

πh
μh
(q, s)Eμh(·;q,s) [g(A, q)] , (17)

T̂μh
(h) =

( ∑
(q,s)∈Q(h)×S

πh
μh
(q, s)pH(h; q)

)−1

, (18)

where Eμh(·;q,s) [g(A, q)] =
∑

a∈A μh(a; q, s)g(a, q) is the
expected reward in state (q, s).

Remark 7. Note that πh
μh

in (16) is computed under the
assumption that the EHD operates indefinitely in health state
h, i.e., pH(h; q) = 0, ∀q, whereas the term pH(h; q) in (18) is
the actual degradation probability. Ĝμh

(h) can be interpreted
as the average long-term reward per time-slot in health state
h, whereas T̂μh

(h)−1 can be interpreted as the average long-
term probability of making a transition to the lower health
state h− 1. Such observations are formalized in the following
lemma. Its proof is provided in the appendix as a general result
of Markov chains.

Lemma 1. Let p∗H(h) = maxq pH(h; q). For p∗H(h) → 0,

Gμ(h,Z0) = Ĝμh
(h) +O(p∗H(h)), (19)

Tμ(h,Z0) = T̂μh
(h) +O(1), (20)

where f(x) = O(v(x)) for x → 0 denotes a quantity such

that lim supx→0

∣∣∣ f(x)v(x)

∣∣∣ < +∞.

From Lemma 1, when maxq pH(h; q) � 1, the duration of
health state h, Tμ(h,Z0), can be approximated by T̂μh

(h),
up to a bounded additive factor. Since Tμ(h,Z0) → +∞ for
maxq pH(h; q) → 0 (in fact, the smaller maxq pH(h; q), the
less likely the health process to be absorbed by the lower
health state h − 1, hence the longer the amount of time
spent in health state h), (20) is a good approximation. On
the other hand, the average reward per time-slot in health
state h, Gμ(h,Z0), can be approximated by Ĝμh

(h) up to
an additive factor, which decays to zero at least as quickly
as maxq pH(h; q). Both approximations are independent of
the initial state Z0, and solely depend on the steady state
distribution (16) induced by policy μh in health state h, which
is approached in each health state.

Since maxq pH(h; q) � 1 by Ass. 1.b), we use Lemma 1

2We assume that μh induces a Markov chain with a single closed
communicating class, so that πh

μh
(q, s) exists and is independent of Z0 [30].
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and replace (19-20) in (12), yielding

Tμ(G∗,Z0) 

∑
h≥h∗

μ

T̂μh
(h),

where h∗
μ = max

{
h : Ĝμh

(h) < G∗
}
+ 1. (21)

Finally, substituting (21) in (15), we obtain the approximation

μ∗ = argmax
μ

∑
h≥h∗

μ

T̂μh
(h). (22)

Note that T̂μh
(h) and Ĝμh

(h) are independent of the policy
μh̃ for h̃ �= h. Therefore, (22) can be solved independently
for each health state h, yielding the following algorithm.

Algorithm 1. 1) INIT: set h = Hmax, REP=true
2) WHILE REP=true AND h>0 SOLVE

μ∗
h = argmin

μh

∑
(q,s)∈Q(h)×S

πh
μh
(q, s)pH(h; q) (23)

s.t.
∑

(q,s)∈Q(h)×S
πh
μh
(q, s)

(
Eμh(·;q,s) [g(A, q)]− G∗) ≥ 0.

If the problem is infeasible, set REP=false, h∗
μ∗ = h+1. If

it is feasible and h = 1, set REP=false, h∗
μ∗ = 1. Otherwise,

update h := h− 1. END WHILE
3) RETURN the optimal policy μ∗ = (μ∗

h)h≥h∗
μ∗ , with life-

time Tμ∗(G∗,Z0) 

∑

h≥h∗
μ∗ T̂μ∗

h
(h).

Remark 8. Step 2) is equivalent to

μ∗
h = argmax

μh

T̂μh
(h), s.t. Ĝμh

(h) ≥ G∗, (24)

and is obtained by substituting the expressions of T̂μh
(h) and

Ĝμh
(h) (see Def. 3) in (24). It can be solved numerically

via standard stochastic optimization tools, such as LP [24].
Thus, the optimal policy μ∗

h maximizes the lifetime of health
state h (equivalently, it minimizes the long-term probability
of battery degradation to the lower health state h−1) with
a constraint on the minimum average QoS in health state h.
Step 2) also determines h∗

μ∗ in (13), for the optimal policy μ∗.
Finally, in step 3) the optimal policy is found by concatenating
the sub-policies μ∗

h for h ≥ h∗
μ∗ , and the corresponding

lifetime defined in Def. 1 is computed using (20) and (12).
The main advantage of this approach over a standard approach
which solves the original optimization problem (15) jointly is
that (15) is decomposed into a sequence of independent sub-
problems (23) for each health state h, thus reducing the overall
computational burden.

V. EXTRAPOLATION OF THE DEGRADATION

PROBABILITIES FROM EXPERIMENTAL DATA

The battery degradation probabilities can be evaluated from
manufacturer-provided data [18] by employing the empirical
model (2). These probabilities should be denoted as pH(h; q),
depending on the health h and the charge q, as in (6). The
dependence of pH(h; q) on h is quite difficult to capture;
however, in our numerical evaluations we found that its effect
is generally very mild. Even by neglecting it entirely, one
can still obtain a very good match with manufacturer data.

Therefore, we drop any dependence on h and we denote the
degradation probability as pH(q), i.e., just depending on q.

In Sec. V-A, (2) is used to simulate an experiment where the
battery is cyclically discharged and recharged at a given DoD
until its capacity degrades to a fraction of the nominal capacity.
First, the number of cycles as a function of the DoD and of the
battery degradation rate function is derived. Then, the battery
degradation rate function is found by matching the theoretical
curve for the number of cycles to manufacturer data and the
exponential model (2). In Sec. V-B, the pH(q)’s are found
by matching the deterministic degradation times derived in
Sec. V-A with the average degradation times in the proposed
stochastic, discrete time model.

A. Deterministic Degradation Model

We employ model (2) for the relationship between number
of cycles and DoD, where the constants Ncyc,0 and α > 0
depend on the specific battery model employed. In particular,
Ncyc(D) is counted until the battery capacity degrades to a
fraction x ∈ (0, 1) of the initial capacity (e.g., x ∈ {0.5, 0.8}),
so that, in general, Ncyc,0 and α also depend on x.

Herein, we assume that the degradation process is a function
of the instantaneous state of charge of the battery only, as
discussed in the introduction to this section, and is described
by the rate of capacity degradation function ρ(qΔc/C0) (in
mAh/s) at the charge level qΔc ∈ [0, C0], where C0 is
the nominal capacity, Δc is the charge quantum and q is
the charge level normalized to the quantum Δc. Then, if the
battery operates at charge level qΔc for δ seconds, its capacity
degrades by δρ(qΔc/C0) mAh. Moreover, we assume that, for
proper coefficients θ > 0, ζ > 0,

ρ(qΔc/C0) = ζeθ(1−qΔc/C0). (25)

In the following analysis, and by simulation in Sec. VI, we
show that this choice fits well the exponential model (2) for
typical values of D (e.g., D ∈ [0.2, 1]). Let Cn, n ≥ 0 be the
battery capacity at the beginning of the nth discharge/recharge
cycle. In the nth cycle, the battery discharges from Cn to Cn−
C0D (with DoD D), and it then recharges from Cn − C0D
to Cn+1. Note that Cn+1 ≤ Cn, i.e., the capacity at the end
of the nth cycle cannot be larger than at the beginning of the
cycle, due to irreversible degradation mechanisms.

The battery degradation in the nth cycle as a function of
ρ and D is denoted by Δρ(D,Cn) = Cn − Cn+1. Assuming
that Δρ(D,Cn) � 2DC0, i.e., the battery degradation is much
smaller than the amount of charge exchanged by the battery
over each cycle (this is a good approximation for typical values
of D), and the discharge/recharge current is I , the duration of
the nth discharge/recharge cycle is denoted by Tn = [2DC0−
Δρ(D,Cn)]/I 
 2DC0/I , and the discharge and recharge
phases have the same duration (within one cycle). The charge
level over the nth cycle, Qn(t)Δc, t ∈ (0, Tn), evolves as

Discharge phase: Qn(t)Δc = Cn − It, t ∈ (0, Tn/2), (26)

Recharge phase: Qn(t)Δc = Cn −DC0 + I(t− Tn/2),

t ∈ (Tn/2, Tn). (27)

Moreover, due to the ongoing degradation, the instantaneous
battery capacity in the nth cycle, denoted by Cn(t), t ∈
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(0, Tn), obeys

dCn(t)

dt
= C′

n(t) = −ρ

(
Qn(t)Δc

C0

)
, t ∈ (0, Tn), (28)

with the boundary conditions Cn(0) = Cn, Cn(Tn) = Cn+1.
By integrating the charge flows in one cycle, we then have

Cn+1 = Cn +

∫ Tn/2

0

C′
n(τ)dτ +

∫ Tn

Tn/2

C′
n(τ)dτ, (29)

and, substituting (28) in (29) and using the expression of ρ
given in (25) and those for Qn(t) given in (26) and (27) for
the two integrals, we obtain

Δρ(D,Cn) =
2C0ζ

Iθ
eθ(1−Cn/C0)(eθD − 1). (30)

The term Ncyc(D) is equivalently defined as
Ncyc(D) = min{n : Cn < xC0}, since the number
of cycles is counted until the battery capacity degrades to a
fraction x of the nominal capacity. Herein, based on the fact
that the battery capacity slowly degrades from the nominal
value C0 to the target xC0, and that the number of cycles
to obtain a small capacity degradation dC � C0 from
C ∈ (0, C0] to C − dC are dC/Δρ(D,C), we approximate
Ncyc(D) with the integral expression

Ncyc(D) 

∫ C0

xC0

1

Δρ(D,C)
dC. (31)

Substituting (30) in (31), we thus obtain

Ncyc(D) 

(

I

2ζ

1− e−θ(1−x)

1− e−θD

)
e−θD. (32)

Note that the term within the parentheses is a decreasing
function of D, hence we obtain

Ncyc(D) ≥ I

2ζ

1− e−θ(1−x)

1− e−θ
e−θD � N̂cyc(D), (33)

where equality holds for D = 1. Finally, by approximating
Ncyc(D) with its lower bound N̂cyc(D) and by matching this
expression to the exponential model (2), we obtain

α = θ and ζ =
I

2Ncyc,0

1− e−α(1−x)

eα − 1
in (25).

Remark 9. Note that the approximation (32) does not follow
the exponential model (2). In particular, for D → 0, in (32) we
have Ncyc(D) → ∞. This is due to the fact that, in the deriva-
tion of (32), we have assumed that Δρ(D,Cn) � 2DC0, i.e.,
the DoD D is large with respect to the battery degradation in
each cycle. However, this is a good approximation for typical
values of D which the exponential model (2) has been fitted
to [19]–[22], e.g., D ∈ [0.2, 1].

B. Stochastic Degradation Model

Based on the deterministic battery degradation model ana-
lyzed in the previous section, we now derive the degradation
probabilities pH(q) for the stochastic model. To this end, we
compute the deterministic time it takes for the battery to
degrade from health state h, with capacity h

Hmax
C0, to the

next lower health state h − 1, with capacity h−1
Hmax

C0. Then,
we relate the deterministic degradation times to the average

degradation times in the discrete-time stochastic model, and
derive the corresponding transition probability.

Assume that the battery operates indefinitely at charge
level qΔc in the deterministic model studied in Sec. V-A.
The initial battery capacity is C(0) = h

Hmax
qmaxΔc. From

(28), the battery capacity as a function of time is given
by C(t) = C(0) − ρ(qΔc/C0)t and degrades to the next
health state with capacity h−1

Hmax
qmaxΔc over a time-interval

of duration

Tdet(q) =
qmaxΔc

Hmaxρ(qΔc/C0)
. (34)

On the other hand, in the stochastic, discrete-time model,
assuming that the battery operates indefinitely at charge level
q, measured in charge quanta, the average amount of time
(in s) it takes for the battery to degrade to the lower health
state is

Tstoc(q) =
Δt

pH(q)
, (35)

where Δt is the time-slot duration. By forcing Tstoc(q) =
Tdet(q), we finally obtain the relation

pH(q) = γ exp

{
α

(
1− q

qmax

)}
, (36)

where γ = Hmax

qmax

ζΔt
Δc is a dimensionless constant. We note that

(36) obeys Ass. 1.a) (as long as γ �= 0) and Ass. 1.c) (since
α > 0). Moreover, if γ � 1, also Ass. 1.b) holds.

Remark 10. It is worth noting that the absolute value of γ
does not affect the solution of the optimization problem (23),
which, under the relationship (36), becomes

μ∗
h = argmin

μh

∑
(q,s)∈Q(h)×S

πh
μh
(q, s) exp

{
α

(
1− q

qmax

)}

s.t.
∑

(q,s)∈Q(h)×S
πh
μh

(q, s)
(
Eμh(·;q,s) [g(A, q)]− G∗) ≥ 0.

VI. NUMERICAL RESULTS

In this section, we present numerical results. In particular,
we validate the proposed stochastic framework to model the
battery degradation process, and we assess the performance of
the proposed lifetime aware policies in terms of maximizing
the battery lifetime, while guaranteeing a target QoS to the
system. We consider a battery with capacity qmax = 500
charge levels and Hmax = 50 health states. The parameter
α, which determines the degradation probabilities pH(q) in
(36), is obtained by interpolating the data-sheet values of
two different Li-Ion rechargeable micro batteries: the battery
device MS920SE [18], which is declared to provide 100 cycles
at 100% DoD until the battery capacity degrades to 50% of
the initial capacity C0, and 1000 cycles at 20% DoD; and the
battery device MEC201-10P [31], which is declared to provide
5000 cycles at 100% DoD until the battery capacity degrades
to 80% of the initial capacity C0, and 100000 cycles at 10%
DoD. Using (2), we obtain Ncyc,0 = 100, α 
 2.88 for the
device MS920SE, and Ncyc,0 = 5000, α 
 3.33 for the device
MEC201-10P.

These values are then used to compute the degradation
probabilities pH(q) as in (36). As discussed in Sec. V-B, the
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Fig. 2. Number of cycles versus DoD. The curve for the stochastic model is
obtained by averaging the number of cycles over 100 iterations. The storage
capacity of MS920SE is degraded up to 50% of the nominal value. The storage
capacity of MEC201-10P is degraded up to 80% of the nominal capacity.

constant γ in (36) does not affect the optimization problem
(23), hence we choose a small value γ = 2.5 · 10−5 so as to
satisfy Ass. 1.b) and Lemma 1.

In Fig. 2, we validate the proposed stochastic model against
the experimental curve (2) for the Ncyc(D) versus DoD D
dependence, for the battery models considered. In particu-
lar, these curves are obtained by cyclically discharging and
recharging the battery with different values of the DoD D.
The curves associated with the stochastic model are obtained
by employing the stochastic model proposed in this paper
to generate the health state process {Hk}, which determines
the battery capacity via (5). The curves associated with the
deterministic model, instead, are obtained by employing the
deterministic degradation model developed in Sec. V-A to
generate the battery degradation process. The number of cycles
for a specific value of the DoD D are counted until the
capacity degrades to 50% and 80% of the initial capacity C0,
for the two devices MS920SE and MEC201-10P, respectively.
We notice that there is a good match between the deterministic
and stochastic models, which gives evidence of the fact that the
proposed Markov model captures the fundamental behavior
of real batteries for what concerns their storage capacity
degradation over time. Moreover, the stochastic model exhibits
a good fit to the experimental curve, which validates our
analysis in Sec. V. The values α = 2.88 and α = 3.33 give
the best match to the experimental curves for the two devices
MS920SE and MEC201-10P, respectively, and are employed
in the following numerical evaluations (we have verified that
these values minimize the mean square error with respect to
the experimental curve, in the logarithmic domain).

In the following figures, the scenario process {Sk} is mod-
eled as a two state Markov chain with state space S = {G,B}
[23] and transition probabilities pS(G|G) = pS(B|B) = 0.96,
where G and B denote the "good" and "bad" scenarios,
respectively. In the "bad" scenario (Sk = B), no energy is
harvested, i.e., Bk = 0; in the "good" scenario (Sk = G), the
harvested energy is Bk = 20 deterministically. The average
harvesting rate is thus given by b̄ = 10. In this case, we

have a one-to-one mapping between Sk and Bk, so that, by
measuring Bk, the state Sk is known exactly.

We employ the reward function g∗(Ak) = log2(1+σAk/b̄),
with σ = 10, which models the Shannon capacity of the
static Gaussian channel, where σ is an SNR scaling parameter
[29]. The action space is A � {0} ∪ {Amin, . . . , Amax} with
Amin = 10 and Amax = 20. Note that a large value of
Amax−Amin implies a highly adaptive system, and this value
depends on the specific application and system considered.

We consider the Constant Load Lifetime Unaware Policy
(CLLUP), which supports a constant load of Ak = Ā charge
quanta, for some Ā ∈ A, irrespective of the charge level
available in the battery, and remains idle under energy outage.
This policy requires minimal communication between the
EHD controller and the power processing unit (Fig. 1), since
the current charge level Qk need not be known (except when
Qk < Ā, in which case Ak = 0 as in (7)).

Moreover, we consider the Lifetime Unaware Policy (LUP),
which greedily maximizes the average long-term reward (17)
for the actual value of the battery capacity, without taking into
account the impact of the policy on the battery lifetime. It is
found via the Policy Iteration algorithm [24] as the solution of
μ∗
h = argmaxμh

Ĝμh
(h), ∀h ∈ H. This policy requires full

knowledge of the current charge level, hence communication
between the EHD controller and the power processing unit.

Finally, we consider the following policies, which explicitly
take into account battery lifetime:
• Lifetime Aware Optimal Policy (LAOP): this is the optimal
policy solution of problem (15), found via Algorithm 1.
• Constant Load Lifetime Aware Policy (CLLAP): This policy
supports a constant load of Ak = Ā charge quanta, when the
battery charge level is above a given DoD (with respect to the
nominal capacity), and remains idle otherwise (Ak = 0). If
the battery capacity degrades to a value such that the required
DoD cannot be supported anymore, battery failure is declared.
For both CLLUP and CLLAP, we choose Ā = b̄. However,
other values may be used, depending on the load requirement,
with no additional insights.

In the following plots, we evaluate the trade-off between
lifetime and QoS, by comparing, respectively, LUP with
LAOP and CLLUP with CLLAP. For a given policy and
QoS G∗, the battery lifetime is computed according to (12),
using standard results on absorbing Markov Chains, see [30].
The corresponding minimum reward supported by policy
μ over the battery lifetime is defined as Gmin(μ,G∗) =
minh≥h∗

μ
Gμ(h,Z0), where h∗

μ and Gμ(h,Z0) are defined in
(13) and (11), respectively. The minimum reward represents
the average reward per slot (averaged over a timescale much
larger than the communication time-scale, but smaller than the
battery degradation process) that is guaranteed over the entire
battery lifetime.

To further validate the stochastic model proposed in this
paper, in Figs. 3 and 4 we plot the result of a simulation, where
the battery degradation process follows either the stochastic
model of Sec. III, or the deterministic model of Sec. V-A.
However, notice that, in the latter case, the term deterministic
is only referred to the fact that, in each time-slot, the battery
capacity degrades by a deterministic quantity, which depends
on the charge level, as in Sec. V-A. On the other hand,
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the charge level is a stochastic process, induced by the
stochastic energy arrival and decision processes. In particular,
in Fig. 3, we plot the moving average curve associated with the
reward sequence {g(Ak, Qk)} for the battery device MS920SE
(similar considerations hold for the battery device MEC201-
10P), and, in Fig. 4, we plot the time-series of the battery
capacity for both devices. We notice a good match between
the curves associated with the deterministic and stochastic
models. It follows that a policy designed under the assumption
of a stochastic battery degradation model (LAOP) achieves
good performance even if the underlying degradation process
is deterministic. For the device MS920SE, as shown in Fig. 3,
LUP achieves a larger reward than LAOP in the time-horizon
[0, 18 × 104], where the battery capacity is larger than ∼ 50
(Fig. 4). This is because LUP exploits all the available
charge levels to earn the maximum reward, by performing
deep charge/discharge cycles. However, such behavior quickly
deteriorates the battery capacity, which decays to zero much
faster than LAOP. In contrast, LAOP performs close to the
QoS requirement, and it intelligently manages the battery
to prolong its lifetime. Finally, notice that the time-average
reward sequence exhibits fluctuations around its mean, and
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Fig. 5. Minimum reward over the battery lifetime versus normalized lifetime
for the battery device MS920SE. The dashed lines represent the minimum and
maximum lifetime and the maximum reward maxμHmax

ĜμHmax
(Hmax).

often falls below the QoS constraint, due to the stochastic
and time-correlated nature of the energy harvesting supply. A
practical approach to reduce this effect would be to enforce
a more stringent QoS constraint than the desirable one so
as to provide some margin. Alternatively, as discussed in
Remark 6, the reward function g∗(Ak) = χ(Ak ≥ Ā) can
be employed, and a constraint on the success probability
Gμ(h,Z0) = P(Ā ≤ Ak ≤ Qk) ≥ G∗ may be enforced.
Similar considerations hold for the device MEC201-10P.

In Fig. 5, we plot the minimum reward Gmin(μ,G∗) versus
the corresponding battery lifetime normalized to the maximum
lifetime, which is defined as the lifetime when the battery is
always fully charged, so that battery degradation mechanisms
are slower, according to our extrapolated model (36) and
Ass. 1.c). We note that, for a given minimum guaranteed
QoS (a value in the y-axis of the figure), LAOP achieves a
significant gain in terms of battery lifetime with respect to the
"greedy" policy LUP, which does not take into consideration
battery degradation mechanisms. In particular, the lifetime is
increased by a factor ∼ 3. The same observation holds when
comparing CLLAP and CLLUP. Moreover, although CLLAP
incurs a loss with respect to LAOP, it provides a good heuristic
to enhance the battery lifetime, that is, battery lifetime can
be significantly increased by allowing only shallow battery
discharges, and by avoiding battery discharge below a prede-
termined DoD value. Finally, for all policies, the longer the
lifetime, the smaller the minimum reward attained. This is
due to the inherent trade-off between lifetime and reward.
Namely, the battery lifetime is maximized by performing
shallow charge/discharge cycles, which in turn considerably
limits the usable charge levels, thus impairing the ability of the
battery to filter out the fluctuations in the intermittent energy
harvesting process, and to provide a satisfactory QoS over
time. Conversely, the QoS is maximized by performing deep
battery discharges, e.g., during a long period of energy short-
age, which inevitably shortens battery lifetime. This behavior
is not captured by the models commonly used in the literature,
which assume perpetual battery operation, e.g., [5], [6], [8],
[9], [32].

In Fig. 6, we plot the lifetime of each health state h ∈ H,
defined in (10) (lines). We also plot the lifetime approximation
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Approximation (18) (markers). QoS requirement G∗ = 2.13 for the battery
device MS920SE.

(18) (markers). We notice that the exact lifetime expression
(10) is closely approximated by (18), as proved in Lemma 1
when maxq pH(h; q) � 1. Moreover, LAOP maximizes the
lifetime of all health states. In fact, LAOP is found using
Algorithm 1, which, in step 2), determines the optimal policy
that minimizes, for each health state h ∈ H, the steady
state probability of degradation (equivalently, it maximizes
the lifetime of health state h), subject to a QoS constraint
G∗. Conversely, a much shorter lifetime is attained by LUP
in each health state, since this policy greedily maximizes
the reward, without taking into account its impact on the
battery degradation. Similar considerations hold for CLLAP
and CLLUP. Furthermore, CLLAP and CLLUP are unable
to provide a satisfactory QoS when the health state falls
below 8. In this case, adaptation of the action Ak becomes
critical. In general, the more degraded the battery, the faster
the degradation. This behavior is consistent with Ass. 1.c).

Finally, in Fig. 7, we plot the cumulative steady state
distribution of the charge levels, for the maximum health
state Hmax, for LUP and LAOP, for different QoS re-
quirements (corresponding, in sequence, to 74%, 82%,
86%, 90%, 94% and 98% of the maximum reward
maxμHmax

ĜμHmax
(Hmax) 
 3.06 in the maximum health

state). We note that the steady state distribution of LUP, which
does not take into account the ongoing battery degradation
mechanisms, is spread over all the battery charge levels. In
particular, this policy operates for a significant fraction of
the time at low charge levels, thus inducing a fast battery
degradation. Conversely, LAOP spreads the steady state dis-
tribution over the upper charge levels only, thus slowing down
battery degradation. Moreover, the more stringent the QoS
requirement, the more spread the steady state distribution
under LAOP over lower charge levels. This is because deeper
discharge cycles need to be performed, in order to meet a
stricter QoS requirement. Similar considerations hold for the
device MEC201-10P.

VII. EXTENSIONS

In this section, we show how the model (3) can be ex-
tended to include other non-idealities, such as battery leakage,
sensing, processing and activation costs. The impact of some
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Fig. 7. Cumulative steady state distribution of charge levels at the maximum
health state Hmax, for the battery device MS920SE.

of these phenomena has been analyzed from an information
theoretic perspective in [10], [33] (battery leakage) and [6]
(sensing and processing costs). Moreover, we show how this
model can be further extended to accommodate a more general
class of EH processes.

In particular, the model (3) can be extended to

Qk+1 = min
{
[Qk−Ak − Lk]

+ +Bk, Qmax(k+1)
}
, (37)

where Lk is the overall energy cost in slot k, not including
the control Ak, which includes the costs of battery leakage,
sensing, processing and activation of the circuitry after the
node goes to sleep (if Ak−1 = 0). We model Lk as a random
variable with probability distribution pL(Lk|Qk, Ak, Ik) tak-
ing values in the set L � {0, 1, . . . , Lmax}, possibly dependent
on the charge level Qk, action Ak, and idle state Ik . The idle
state Ik = χ(Ak−1 = 0) tracks the idle/active mode of the
sensor node, so that, if Ik = 0, then the node was active
in the previous slot k − 1 (Ak−1 > 0); otherwise, the node
was idle (Ak−1 = 0). The dependence of pL on Ik may be
used to model activation costs of the sensor circuitry, i.e.,
P(Lk ≥ l|Qk, Ak, Ik = 1) ≥ P(Lk ≥ l|Qk, Ak, Ik = 0),
∀l, ∀Ak > 0, so that a higher energy cost is incurred when
switching from idle to active mode (Ik = 1 and Ak > 0) than
when staying active (Ik = 0 and Ak > 0).

The harvesting process {Bk} can be generalized to include
the Generalized Markov model with order L = 1, presented
in [23]. In particular, as in (3), the scenario process {Sk} is
an irreducible stationary Markov chain with transition proba-
bility pS(sk+1|sk). Given the scenario Sk ∈ S, the energy
harvest Bk is drawn from B according to the distribution
pB(bk|sk, bk−1) � Pr(Bk = bk|Sk = sk, Bk−1 = bk−1),
which is also a function of the previous energy harvest Bk−1.
This model exhibits a good fit for the solar energy source [23].

For this more general model, the state in slot k is defined
as Zk = (Qk, Hk, Sk−1, Bk−1, Ik), taking values in the state
space Q×H×S×B×{0, 1}, and the policy μHk

is a probabil-
ity measure on the action space A, parameterized by the state
(Qk, Sk−1, Bk−1, Ik), i.e., μHk

(a;Qk, Sk−1, Bk−1, Ik) is the
probability of requesting a charge quanta from the battery,
when operating in state Zk. Note that also Bk−1 is part of
the state, since the statistics of Bk depends on both Sk and
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Bk−1. The instantaneous reward accrued in time-slot k, in
state Zk under action Ak, is redefined as

g(Ak, Qk, Lk) =

{
0, Ak > Qk − Lk,
g∗(Ak), Ak ≤ Qk − Lk,

(38)

Given the generality of the analysis in Sec. IV, Lemma 1
can be shown to hold for this more general model as well. The
policy μHk

can then be optimized via Algorithm 1, where,
letting U(h) ≡ Q(h)× S × B × {0, 1} (23) is replaced with

μ∗
h = argmin

μh

∑
(q,s,b,i)∈U(h)

πh
μh
(q, s, b, i)pH(h; q) (39)

s.t.
∑

(q,s,b,i)∈U(h)

πh
μh
(q, s, b, i)

(
Eμh(·;q,s,b,i) [g(A, q, L)]− G∗) ≥ 0.

VIII. CONCLUSIONS

In this paper, we have analyzed the impact of battery man-
agement policies on the irreversible degradation of the storage
capacity of realistic batteries, affecting the lifetime of har-
vesting based Wireless Sensor Networks. We have proposed
a general framework, based on Markov chains and suitable
for policy optimization, which captures the degradation status
of the battery. The proposed stochastic battery degradation
model has been extrapolated from manufacturer-provided data
and realistic deterministic models proposed in the literature,
and has been shown to fit well the behavior of real batteries
for what concerns their storage capacity degradation over
time. Note, however, that different battery degradation models
can be easily accommodated in the proposed framework,
depending on the available experimental data and the desired
accuracy. Based on the proposed model, we have formulated
the policy optimization problem as the maximization of the
battery lifetime, subject to a minimum guaranteed QoS in each
battery degradation status. We have shown that this problem
can be solved efficiently by a sequential linear programming
optimization algorithm over the degradation states of the
battery. The numerical evaluation gives evidence of the fact
that a lifetime-aware management policy can significantly
improve the lifetime of the sensor node with respect to a
"greedy" operation policy, while guaranteeing the QoS.

APPENDIX

Proof of Lemma 1: For the proof of the lemma, we
present a general result of Markov chains. The relationship to
the specific problem considered in this paper is provided at
the end of the proof. Consider a finite Markov chain {Zk} ⊆
Z ≡ {1, 2, . . . , Nt+1}, where the state space S is partitioned
into a set of transient states Zt ≡ {1, . . . , Nt} forming a
communicating class, and the absorbing state Za ≡ {Nt+1},
with transition matrix

Pε =

[
(INt − εPa)Pt εPa1Nt

0T
Nt

1

]
, (40)

where 0K is a K × 1 vector with all entries equal to zero;
1K is an K× 1 vector with all entries equal to one; IK is the
K×K identity matrix; Pt is the Nt×Nt transition probability
matrix associated with transitions in Zt, given that the Markov
chain is not absorbed by Za; Pa is an Nt×Nt diagonal matrix
with strictly positive diagonal elements, and εPa(i, i) ∈ (0, 1)

is the probability of moving from state i to the absorbing state
Nt + 1, where the scaling parameter ε can take any value in
(0, 1/maxi Pa(i, i)) (we will be interested in ε → 0). In the
following, e1,K denotes the first column of IK . Moreover, for
convenience we drop the dependence of 0K , 1K , IK and e1,K
on K in the notation whenever the size K can be deduced from
the context.

We assume that Pt is a regular stochastic matrix (i.e.,
the associated Markov chain is irreducible and aperiodic).
Therefore, Xε = (I− εPa)Pt is a primitive matrix and, from
the Perron-Frobenius Theorem [34], there is a real positive
eigenvalue λε of Xε, with algebraic multiplicity 1, such that
any other eigenvalue β of Xε has |β| < λε. Since Xε

is continuous in ε, λε is also continuous. We denote the
corresponding right eigenvector as vε, i.e.,

(Xε − λεI)vε = 0. (41)

We normalize the eigenvector vε so that the sum of its
elements equals Nt

3, i.e., 1Tvε = Nt, so that vε is uniquely
defined for each ε > 0, and is continuous in ε. Since X0 = Pt

is a regular stochastic matrix, we have λ0 = 1 and λε < 1 for
ε > 0. Moreover, v0 = 1 and there exists a unique πt,∞ such
that πt,∞ = πt,∞Pt. We can thus write X0 as

X0 = U0D0U
−1
0 , (42)

where D0 is the Jordan normal form of X0, and U0 is
the matrix whose columns are the corresponding generalized
eigenvectors [35]. Without loss of generality, D0 is given by

D0 =

[
1 0T

0 J0

]
, (43)

where J0 is a block diagonal matrix, whose diagonal blocks
are given by the Jordan blocks corresponding to the eigenval-
ues of X0 inside the unit circle. Therefore, U0e1 = 1 and
eT1 U

−1
0 = πt,∞, since 1 and πt,∞ are, respectively, the right

and left eigenvectors of X0 associated to the eigenvalue 1.

Recall, from standard results on absorbing Markov Chains
(see [30]), that the expected time until absorption is given by

Tε(πt,0) = πt,0 (I−Xε)
−1

1, (44)

where πt,0 is an initial distribution over Zt. Note that, when
ε > 0, the eigenvalues of Xε are all strictly inside the unit
circle, so that I − Xε is invertible and (44) is well defined.
We prove that

Tε(πt,0) =
1

επt,∞Pa1
+O(1), for ε → 0, (45)

or equivalently, by definition of O(x),

lim
ε→0

∣∣∣∣Tε(πt,0)−
1

επt,∞Pa1

∣∣∣∣ < ∞. (46)

3This is always possible since the Perron-Frobenius Theorem guarantees
that there always exists an eigenvector associated to the eigenvalue λε with
all positive elements [34].
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We have

Tε(πt,0)−
1

επt,∞Pa1

(a)
= πt,0 (I−Xε)

−1
1− πt,01

επt,∞Pa1

=
1

επt,∞Pa1
πt,0 (I−Xε)

−1 [ε1πt,∞Pa1− (I−Xε)1]

(b)
=

1

πt,∞Pa1
πt,0 (I−Xε)

−1
(1πt,∞ − I)Pa1

= πt,0 (I−Xε)
−1 (1πt,∞ − I)x, (47)

where we have defined the vector x = (πt,∞Pa1)
−1Pa1. In

step (a), we have used the fact that 1 = πt,01. In step (b), we
have used the fact that Xε1 = (I− εPa)Pt1 = (I− εPa)1.
Let

Uε = U0 + (vε − 1)eT1 . (48)

Since U0 is invertible, there exists εth > 0 such that Uε is
also invertible, for all ε ∈ (0, εth), by continuity. For any such
ε, we can thus write

Xε = UεDεU
−1
ε , where Dε =

[
λε rε
0 Jε

]
, (49)

and, using the fact that eT1 [0, I]
T = 0T , hence Uε[0, I]

T =
U0[0, I]

T ,[
rε
Jε

]
= U−1

ε XεUε

[
0T

I

]
= U−1

ε XεU0

[
0T

I

]
. (50)

Then, using (49) and the fact that I−Xε = Uε(I−Dε)U
−1
ε ,

we obtain

(I−Xε)
−1

= Uε

[
1− λε −rε

0 I− Jε

]−1

U−1
ε

= Uε

[
1

1−λε

1
1−λε

rε(I− Jε)
−1

0 (I− Jε)
−1

]
U−1

ε (51)

=
1

1− λε
vεe

T
1 U

−1
ε +

1

1− λε
vεrε(I− Jε)

−1 [0, I]U−1
ε

+Uε[0, I]
T (I− Jε)

−1[0, I]U−1
ε .

In the last step, we have used the fact that I = e1e
T
1 +

[0, I]T [0, I] and Uεe1 = vε, hence Uε = vεe
T
1 +

Uε[0, I]
T [0, I], U−1

ε = e1e
T
1 U

−1
ε + [0, I]T [0, I]U−1

ε and
(I − Dε)

−1 = 1
1−λε

e1e
T
1 + 1

1−λε
e1rε(I − Jε)

−1[0, I] +

[0, I]T (I−Jε)
−1[0, I]; the result is then obtained by substitut-

ing these expressions, by expanding the products and by noting
that [0, I]e1 = 0. Since J0 is the Jordan matrix corresponding
to eigenvalues of X0 within the unit circle, I−J0 is invertible,
hence, by continuity, I−Jε is invertible for sufficiently small
ε. By replacing (51) into (47), we thus get

Tε(πt,0)−
1

επt,∞Pa1
= A(ε) +B(ε) + C(ε), (52)

where we have defined

A(ε) =
1

1− λε
πt,0vεe

T
1 U

−1
ε (1πt,∞ − I)x, (53)

B(ε) =
1

1− λε
πt,0vεrε(I− Jε)

−1[0, I]U−1
ε (1πt,∞ − I)x,

C(ε) = πt,0Uε [0, I]
T
(I− Jε)

−1 [0, I]U−1
ε (1πt,∞ − I)x.

We finally show that the limit of each term above exists and

is finite for ε → 0, thus proving (46). Regarding the first term
A(ε), since eT1 U

−1
0 (1πt,∞ − I) = πt,∞ (1πt,∞ − I) = 0T ,

we obtain

A(ε) =
1

1− λε
πt,0vεe

T
1

(
U−1

ε −U−1
0

)
(1πt,∞ − I)x.

(54)

Moreover, from (48), we have

U−1
ε −U−1

0 = U−1
ε (U0 −Uε)U

−1
0

= −U−1
ε (vε − 1)eT1 U

−1
0 = −U−1

ε (vε − 1)πt,∞. (55)

Substituting (55) in (54), we obtain A(ε) = 0, since
πt,∞ (1πt,∞ − I) = 0T .

For the second term B(ε), substituting the expression of
rε = eT1 U

−1
ε XεU0[0, I]

T given by (50) into (53), and using
the fact that eT1 U

−1
0 X0U0 [0, I]

T = πt,∞U0 [0, I]
T = 0T ,

we obtain

B(ε) =
1

1− λε
πt,0vεe

T
1 (U

−1
ε Xε −U−1

0 X0)U0

× [0, I]
T
(I− Jε)

−1[0, I]U−1
ε (1πt,∞ − I)x. (56)

Moreover, using (48) and (42), UεU
−1
0 X0U0 = X0U0 +

(vε − 1)eT1 D0 = X0U0 + (vε − 1)eT1 , and therefore, since
Xε = (I− εPa)Pt,

(U−1
ε Xε −U−1

0 X0)U0=U−1
ε (XεU0 −UεU

−1
0 X0U0)

=−U−1
ε (εPaX0U0 + (vε − 1)eT1 ). (57)

Therefore, by substituting (57) into (56), and noting that
eT1 [0, I]

T = 0T , we obtain

B(ε) =− ε

1− λε
πt,0vεe

T
1 U

−1
ε PaX0U0

× [0, I]
T
(I− Jε)

−1[0, I]U−1
ε (1πt,∞ − I)x. (58)

Moreover, by left-multiplying each side of (41) by πt,∞, for
ε > 0 we obtain

1− λε

ε
=

πt,∞PaPtvε

πt,∞vε
→ πt,∞Pa1 > 0, (59)

where the limit holds for ε → 0, since vε → 1, Pt1 = 1
and πt,∞1 = 1. Therefore, B(ε) for ε → 0 is bounded, since
I − J0 is invertible. Similarly, the limit of C(ε) for ε → 0 is
bounded, and (45) is thus proved.

From [30], using a similar approach, the total cost/reward
accrued before the process is absorbed by Za is

Ctot
ε (πt,0) = πt,0 (I−Xε)

−1
c, (60)

where c = [c(s)]s∈S is the cost/reward vector. We prove that

Ctot
ε (πt,0)

Tε(πt,0)
= πt,∞c+O(ε). (61)

Equivalently,

lim
ε→0

∣∣∣∣C
tot
ε (πt,0)

εTε(πt,0)
− 1

ε
πt,∞c

∣∣∣∣ < ∞. (62)
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Using (60) and (44), we obtain

Ctot
ε (πt,0)

εTε(πt,0)
− 1

ε
πt,∞c =

Ctot
ε (πt,0)− Tε(πt,0)πt,∞c

εTε(πt,0)
(63)

=
πt,0 (I−Xε)

−1 (I− 1πt,∞) c

εTε(πt,0)
.

We now compute the limit of the numerator and denominator
of (63) separately. For the denominator εTε(πt,0), from (45),
εTε(πt,0) = (πt,∞Pa1)

−1
+O(ε), hence limε→0 εTε(πt,0) =

(πt,∞Pa1)
−1, which is positive and bounded. Therefore, (62)

holds as long as the numerator of (63) is bounded. This is
directly shown since the numerator of (63) equals the last
expression of (47) when c = −x, which, as previously shown,
is bounded for ε → 0, for any bounded x.

The connection to the problem at hand is obtained as
follows. In health state h, the set of transient states (Zt in
the proof of the lemma) is Q(h) × {h} × S. The absorbing
state Za corresponds to the set Q(h−1)×{h−1}×S, so that
Ctot
ε (πt,0) and Tε(πt,0) count, respectively, the expected total

cumulative reward earned and total time spent by the process
{Zk} while in health state h, until it is absorbed by the lower
health state h − 1. The initial distribution πt,0 corresponds
to the state distribution in the set Q(h)× {h} × S, when the
process {Zk} first hits health state h (this event occurs at time
Kh, as defined in (8)), as induced by policy μ, by (3) and
by the energy harvesting process. The transition probability
matrix Pt is associated to transitions within the set of transient
states Q(h) × {h} × S. Pt is a function of the policy μh

employed in health state h. The probability matrix Pa has
diagonal components given by the degradation probabilities
pH(h; q). Therefore, Tε(πt,0) and 1

επt,∞Pa1
correspond to (10)

and (18), and Ctot
ε (πt,0)
Tε(πt,0)

and πt,∞c correspond to (11) and (17),
respectively.
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