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Abstract—We combine queueing theory and game theory to
evaluate the performance of a queueing system with multiple
strategic candidate servers. The intent is to model a transmission
system where packets can be sent via multiple options, each
incurring a cost and controlled by a distributed management.
Our purpose is to analyze the effects of the presence or the
lack of both cooperation and communication between servers.
The mathematical characterization of the uncertainty about
the characteristics of the transmission alternatives available is
captured through a Bayesian game formulation. In this setup,
we compute both the Price of Anarchy, quantifying the inherent
inefficiency arising from selfish management of each server, and
the Price of Stability, which is the loss due to distributed system
management, under different conditions of signaling exchange
among the servers.

Index Terms—Queueing analysis, telecommunication networks,
game theory, Bayesian games, Price of Anarchy.

I. INTRODUCTION

THE NEED for scalability of modern communication
networks has led to the practical establishment of sev-

eral distributed management algorithms. Keeping the network
intelligence spread throughout the network is both a low-cost
management solution and also the proper way to involve the
increased computational power of communication devices.

To mathematically characterize this aspect, in this paper we
consider a joint application of queueing theory [1] and game
theory [2]. In more detail, we consider a queueing system
with multiple candidate servers, whose clients can be thought
of as packets arriving for transmission. Each server represents
an option available at the device, which is managed by its
own controller, and has its own specific success probability
for transmission. We model this situation as a game, where
the servers are the players and they can decide to be inactive

or active; staying active has a fixed local cost for the server,
while a successful transmission is beneficial for the whole
system. Clearly, in a system with centralized supervision, it
would be best to only keep active the best server (i.e., the
one with highest success probability). In our scenario, this is
hindered by two facts: (i) servers act selfishly, as in any game
theory setup; (ii) servers do not even know who the “best”
server is, since they do not know each other’s characteristics.

While the former is a classic ingredient of game theory
capturing the lack of cooperation, the latter is due to the lack
of communication between the agents, which is represented by
modeling the problem as a Bayesian Game [3]. In this setup,
we compute the social welfare of our system seen as the sum

of the individual expected gains. As a measure of inefficiency
we compute (i) the Price of Anarchy (PoA), which indicates
the loss due to the lack of cooperation and measures how the
efficiency of a system degrades due to selfish behavior of its
agents; and (ii) the Price of Stability (PoS), i.e. the inefficiency
due to the lack of communication compared with respect to
the optimal outcome.

Up to our knowledge, this work is the first to combine these
two mathematical approaches in this way. Various works in
the literature study different characterizations of a queueing
model using game theory; however, they consider the point of
view of the customers, instead of the servers as we do. Indeed,
some research works include whether to avoid or follow the
crowd [4], and the proper period of time in which to arrive to
a queue in order to minimize waiting and tardiness costs [5].
Other papers study the network as a whole and its strategic
structure as a complex system made of customers and servers
[6], [7]. However, our contribution is novel in that it considers
multiple candidate servers of the queue as the players.

We remark that our analysis has strong consequences in
modeling a transmission system with multiple alternatives
controlled by distributed agents, a rationale that can be applied
throughout the entire protocol stack. For example, at the
network layer it can be exploited for a distributed routing
selection in multi-hop environments [8]. At the datalink layer,
multiple access techniques can be coordinated similarly [9].
Finally, at the physical layer, this can be applied for devices
powered by multiple energy sources [10].

In the present contribution, we use a game theoretic ap-
proach to describe the strategic behavior of the servers;
in particular, we refer to a game in which each player is
characterized by a type, which is unknown to the others. We
considered different levels of cooperation. Our goal is to com-
pare the effects of cooperation and communication between the
servers. For this reason, we consider different scenarios and
we compute the PoA, which is a measure of how much the
efficiency of a system is reduced due to the selfish behavior
of its members [3]. In our case the PoA is evaluated as the
ratio between the gain obtained in the best possible scenario,
in which everything is known and there is cooperation, and
the gain related to the worst scenario, in which just a single
server works and the others are off. Moreover, we compute
also the efficiency loss from a system in which communication
between servers is allowed to a system in which there is
no communication. For this evaluation, we consider the PoS,
whose definition relates the optimal solution with the results



obtained considering the best equilibrium. Not only do we find
that allowing signaling among the servers improves the system
efficiency, but we are also able to assess how much.

The rest of this paper is organized as follows. Section II
gives some preliminaries on game theory. In Section III, we
describe the system model and the game theory application,
we compute the NEs in Section IV. Section V presents some
numerical results and Section VI draws the conclusions.

II. PRELIMINARIES

Queueing system theory was developed to predict behaviors
of systems subject to randomly arising demands. This was also
the spirit of the early contributions by Erlang in 1909 [11],
the works by Pollaczek and Khinchine in the 1930s [1] and
subsequent studies such as [12] and [13]. Nowadays, queueing
theory finds many applications in management of communica-
tion networks or air traffic, planning of manufacturing systems,
computer program scheduling, and facility dimensioning.

The idea to use a mathematical theory to make predictions
on the behavior of multiple agents is also shared by game
theory, which is now becoming more and more commonly
applied to telecommunication problems [14], [15]. Differently
from queueing theory, which still adopts a system view, game
theory is even more extreme in considering that individual
agents, called players, interact according to their particular
interests that may be different for every one of them [2].

In game theory, players act towards the maximization of
their personal payoff, whose evaluation takes into account the
actions played by all players. This represents the quantification
of the goodness (utility) coming from the eventual outcome
that depends on the joint selection of actions. A static game of
complete information is expressed by a triple G = (N , S, U),
where N is the set of players, S is the set of all strategies
allowed to each player, and U includes the payoffs, which are
functions of the choice of actions by all players. In case of a
static game with complete information, a strategy corresponds
to playing an action, but this may become more complex under
more advanced setups. We remark that, for the problem at
hand, we compute payoffs as the sum of a positive profit due to
the transmission service regardless of which server transmits,
and a negative cost that depends on the server being active.

An equilibrium is a joint strategy profile where all individual
payoffs of players are locally maximized. In particular, starting
from the simplest case of a static game of complete informa-
tion, a Nash Equilibrium (NE) [3] is defined as strategy profile
where all players do not have an incentive to unilaterally
change their courses of action. This means that each player is
playing a best response to its belief about the strategy chosen
by the opponents. Within a game theoretic context, players can
either follow pure or mixed strategies. The former define the
move a player will make for any situation it could face, the
latter represents an assignment of a probability distribution to
the set of pure strategies.

For the case under exam, we consider a Bayesian Game, in
which players can be of different types, and each type has a
different utility function. This is actually a way to capture that
the players may behave in different ways. Also, we assume

that each player is aware of its own type only. About the
other players’ types, each player solely knows the probability
distribution over types, which is common knowledge among
the players [2]. Thus, Bayesian games are games of incomplete
information. In this setup, a strategy identifies a complete plan
of actions that covers every contingency of the game, also
including types. In game theory, players assume beliefs about
their opponents, to which they react; the equilibrium condition
holds whenever these beliefs are consistent and correct. The
crucial point in a Bayesian game is to require players to form
correct beliefs about both the actions and also the types of
their opponents.

In the sequel of the paper, we will exploit these concepts to
capture the inherent uncertainty of distributed systems, which
is very relevant to communication systems. We will show how
this theoretical background enables a descriptively powerful
evaluation of the system and paves the road to a useful
characterization for many distributed network problems. In
[8], nodes forward packets randomly and in an uncoordinated
behavior. It may be interesting, for example, to evaluate how
much efficiency is lost with respect to the case of coordinated
management. In [9], multiple access techniques are integrated;
this is a strong research topic also in view of upcoming
5G cellular networks. In this case, the access selection may
be done with or without coordination among the controllers
allowing a comparison between the different performance
evaluations obtained. Finally, in [10] the authors consider the
problem of optimizing the transmission strategy of two devices
with energy harvesting capability that share a wireless channel,
in order to maximize the long-term average importance of the
transmitted data. It is assumed that a central controller is kept
informed on the energy level and packet importance of both
nodes. Actually, it may be useful to compare the case of a
distributed behavior (either collaborative or competitive) of the
nodes and compare the resulting performance with respect to
the central controller case. Furthermore, in the same spirit also
the coexistence of multiple uncoordinated energy sources is a
relatively unexplored field that can be interesting to investigate
in light of the strong interest received by energy harvesting
as a way to achieve self-sustainable transmission and green
networking.

III. SYSTEM MODEL

We consider a system with a single queue and two candidate
servers, server 1 and server 2, which transmit packets arriving
to the system with rate λ. Each server can either be active or
inactive and has a certain probability µ1 or µ2, respectively,
of correct packet transmission when it is active; thus, service
has Bernoulli distribution with rate µj . This aspect general-
izes various cases of outage, for example related to energy
unavailability, collisions, and/or channel errors. We consider
that, when a packet arrive to the system, it can be transmitted
if an active server succeeds in transmitting it, otherwise it
is dropped (discarded). The cost of being active is the same
for each server and is some c ∈ (0, 1). Instead, dropping
the packet, either because the server is inactive or because
it is active but not able to ensure a successfully transmission,



causes a cost d for both servers. The packet is not dropped
if at least one of the servers takes care of its transmission.
Without loss of generality, we set d = 0. 1

The expected payoff obtained by each server depends on the
action chosen by the other server and the probability of success
of the packet transmission. We assume that successfully and
incorrect transmission of a packet involve a profit of 1 and
0, respectively, for both servers (even the one not performing
the transmission). If both servers are active, the packet will
be served by the one with higher rate (however, the additional
active server does not bring any benefit).

We can model this problem as a game, in which the two
servers are the players. The set of actions that players can
take is {active, inactive}; every pair of actions of the servers
yields an arbitrary quantification of the goodness coming from
choosing those actions. Based on the payoff associated to each
action, each player can choose a best move. According to
the state of the players, we have 4 different cases. If both
servers are inactive, neither attempts packet transmission and
both payoffs are 0. In the cases in which server i is active

and server j is inactive, the expected payoff of the former is
µi(1− c)+ (1−µi)(−c) = µi − c and that of the latter is µi.
If both servers are active, their payoffs are max(µ1, µ2) · (1−
c) + (1−max(µ1, µ2)) · (−c) = max(µ1, µ2)− c.

This game can be represented in an equivalent normal form
using a 2 × 2 matrix shown in Table I. Each entry indicates
the respective payoffs, for player 1 and player 2, associated to
the pair of actions chosen, on rows and columns for player 1
and 2, respectively.

Player 2
active inactive

Player 1
active max(µ1, µ2)− c, µ1 − c, µ1

max(µ1, µ2)− c

inactive µ2, µ2 − c 0, 0

TABLE I
NORMAL-FORM (MATRIX) OF THE GAME

IV. NASH EQUILIBRIUM COMPUTATION

We consider that each server i has a Bayesian type that
is the probability of successfully transmitting the packet µi.
These types follow a given joint distribution, that is common
knowledge among the players, but the actual values may not
be known. Actually, each player is always fully informed on
its own type, but not on the opponent’s. This value can be
communicated, or the players can form beliefs about it. Our
purpose is to compare systems with and without cooperation
and/or communication between servers. For this reason, we
evaluate the following four scenarios.

A. Scenario 1: Distributed service without signaling

In this scenario, each player does not know the opponent’s
type. In this context, a pure strategy si for player i identifies
the choice of being either active or inactive for every type µi.

1The case d > 0 can be included by just rescaling the utilities.

Server i will be surely inactive and surely active if µi = 0
and µi = 1, respectively. In the intermediate cases, server i
will be active if its expected payoff when active is greater than
when it is inactive. We can also state that, looking at a single
server i, if a given value of µi involves transmission for that
server, then any other µ̃i > µi will allow the transmission to
the server. This is due to the monotonicity of the expected pay-
off expression weighed on the type distribution as a function
of µi. Indeed, single server i will transmit if µi > c, therefore
if µi satisfies the inequality, also µ̃i > µi satisfies it. As a
consequence, we can conclude that the optimal strategy for a
server follows a threshold policy. From the definition of best
response to a belief, it is immediate to prove the following.

Proposition. The best response of player i will be to be
active and transmit if and only if

µi ≥
c

1− ρ
−i

(1)

where ρ
−i is the probability that server j %= i is active. If the

types of the players are uniformly distributed in [0, 1], then
(1) becomes µi = c/µ̂j .

If j is using threshold µ̂j so that j is active if and only if
µj ≥ µ̂j then it follows that j’s probability of being active

corresponds to the probability that its type is greater than
or equal to µ̂j , therefore 1 − ρ

−i = µ̂j . If i believes that
µ̂j < c then its best response is to never transmit, that is,
to set threshold µ̂i = 1. Otherwise, its best response is to
choose µ̂i = c/µ̂j . The following expression describes the best
response threshold strategy µ̂i of player i given that player j
is using threshold µ̂j

BRi(µ̂j) =

{

c
µ̂j
, if µ̂j ≥ c

1, if µ̂j < c
. (2)

If we plot the best response curves of the two players in this
scenario varying the possible values that µ1 and µ2 can take,
we observe that the curves coincide for c ≤ µi ≤ 1 and
i = {1, 2}. As a consequence, all pairs (µ1, µ2) satisfying
µ1µ2 = c with c ≤ µi ≤ 1 and i = {1, 2} are NEs.

For the computation of the expected payoff of each player
we averaged on the areas shown in Fig. 1 weighing on

A B

C
X

Y

μ2

μ2
^

μ1
^ μ11

1

Fig. 1. Areas for the players expected payoff computation.



the types distribution and summing the various contributions.
Considering player 1, the contributions for the expected payoff
evaluation are derived, after some integrals, as A = 0 and

B = µ̂2

[

1− µ̂2
1

2
− c(1− µ̂1)

]

(3)

C = µ̂1

[

1− µ̂2
2

2

]

(4)

X =
(1 − µ̂3

1)(µ̂2 − 1)

3(µ̂1 − 1)
+ cµ̂1(1− µ̂2) (5)

−
(1 + µ̂1)

2
(c+ µ̂1)(1 − µ̂2)

Y =
(1 − µ̂3

2)(µ̂1 − 1)

3(µ̂2 − 1)
+ cµ̂2(1− µ̂1) (6)

−
(1 + µ̂2)

2
(c+ µ̂2)(1 − µ̂1)

The expected payoff of player 1 is computed as A + B +
C +X + Y ; the expected payoff of player 2 is also obtained
similarly, with just minor changes in the integrals, which
basically imply to swap B with C and X with Y .

B. Scenario 2: Worst case allocation (lazy server)

This scenario refers to the situation in which one of the
two servers is always inactive. For this reason, we considered
this scenario divided in two sub-cases: case 2a corresponds
to the situation in which server 1 is actually the only one, as
server 2 is inactive, case 2b corresponds to the opposite in
which server 1 is inactive. This scenario represents the worst
case in which there is neither cooperation nor communication
between the servers.

For the sake of simplicity, in the following analysis we
focus on case 2a, taking into account that the same results
are obtained for case 2b after reversing the server roles.
Considering that player 2 is always inactive the best strategy
of player 1 is to be active if µ1− c > 0. Therefore, in case 2a
we have a single NE that is (µ̂1, µ̂2) = (c, 1) and the expected
payoff evaluation involves an unidimensional computation. As
a consequence, player 1 expected payoff is
∫ µ̂1

0

0 dµ1 +

∫ 1

µ̂1

(µ1 − c) dµ1 =
1− c2

2
− c(1− c) (7)

considering that µ̂1 = c. Whereas, for player 2 we obtain
∫ µ̂1

0

0 dµ1 +

∫ 1

µ̂1

µ1 dµ1 =
1− c2

2
. (8)

Thus the two cases of scenario 2 are two special cases of
the scenario 1; they are obtained considering scenario 1 at the
equilibria (µ̂1, µ̂2) = (c, 1) and (µ̂1, µ̂2) = (1, c).

C. Scenario 3: Distributed service with signaling

We consider scenario 3 as a modified version of scenario 2.
In this case, we allow communication between servers when
they are both active; indeed, they can exchange information
about their types in order to decide which of them is better to
be active so that it transmits, and which of them should turn
inactive. Therefore, the analysis shown for scenario 1 holds

also for this environment. As a consequence, as well as for
scenario 1 in which we found an infinite number of NEs, also
for scenario 3 we have infinite NEs.

The computation of the contributions A, B, C, and X for
the expected payoff of player 1 is the same as previously
discussed for scenario 1; the only difference lies in the fact that
for the evaluation considering area Y in Fig. 1 the integrand
is now µ2 because players realize that server 2 has the highest
rate and therefore server 1 is forced to inactivity in region Y .
Therefore, in this scenario, the contribution for region Y is

∫ 1

µ̂2

(

∫

µ̂1−1

µ̂2−1
µ2−

µ̂1−µ̂2

µ̂2−1

µ̂1

µ2 dµ1

)

dµ2. (9)

Similar observations can be made for computation of the
expected payoff of player 2, which is identical to the previous
case but for region X where 2 is turned inactive.

D. Scenario 4: Coordinated service

Scenario 4 represents the situation in which players have
complete knowledge about the game and, therefore, the values
of their opponent type. It describes a situation in which both
cooperation and communication are allowed to the servers. In
this case, the best response threshold strategy µ̂i of player i
given that player j is using the threshold µ̂j is

BRi(µ̂j) =

{

c, if µ̂j ≤ c

1, if µ̂j > c
. (10)

Indeed, for example focusing on player 1, since it is known
that µ1 > µ2, then player 1 will be active if µ1 − c > 0,
otherwise if µ2 > µ1 it will be inactive. A similar reasoning
holds for player 2 behavior. As a consequence, this scenario
has a unique NE (c, c) and lower thresholds µ̂1 = µ̂2 = c.

Our purpose is to compare the case of non-cooperation,
i.e., scenario 2, with the best case in which everything is
known, i.e., scenario 4, to compute the PoA and measure
the inefficiency suffered by the system due to the lack of
cooperation. On the other hand, we also compute the PoS to
measure the price paid by the systems that consists of servers
which cooperate but could not exchange information.

V. NUMERICAL RESULTS

We take the distribution of types as uniform in (0, 1). For
scenario 1 and scenario 3 we consider these NEs: (c, 1),
(c

2

3 , c
1

3 ), (c
1

2 , c
1

2 ), (c
1

3 , c
2

3 ), and (1, c). Fig. 2 and Fig. 3 show
the social welfare for scenario 1 and scenario 3, respectively,
for the different NEs previously listed. In our analysis, given
a certain scenario, the social welfare is defined as the sum of
the expected payoff obtained for the two players. As it can be
noted from these figures, it is reasonable to focus simply on
(c

1

2 , c
1

2 ) as a NE because it gives the highest total expected
payoff, that is the highest social welfare.

Fig. 4 shows the expected payoff of player 1 in the various
scenarios considered; the values of cost vary from 0.02 to 0.5
because for higher values of c the performance degrades in all
cases. The results shown are computed at points (c

1

2 , c
1

2 ) for
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Fig. 2. Total expected payoff for the distributed case without signaling.
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Fig. 3. Total expected payoff for the distributed case with signaling.

scenario 1 and scenario 3, (c, c) for scenario 4, and (c, 1) and
(1, c) for scenario 2a and 2b.

The payoff for scenario 4 is an upper bound due to the
assumption of complete knowledge, instead the payoff for
scenario 2a is a lower bound; Fig. 4 confirms this theoretical
result. Moreover, by looking at case 2b, for small values
of c it is not advantageous to be always inactive, indeed
the player could have a higher expected payoff being active

and cooperating with the other player. Conversely, for higher
values of c, case 2b gives a higher expected payoff with respect
to scenario 1 and scenario 3. Another important remark is that
the expected payoff related to scenario 3 is slightly higher
than its counterpart in scenario 1; this is due to the addition of
partial information through signaling. For symmetry reasons,
the expected payoffs for player 2 are the same as those shown
for player 1 in Fig. 4.

Given the expected payoff of each player in each of the
cases considered, we evaluate how much does the social wel-
fare decrease due to the lack of cooperation and communica-
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Fig. 5. Prices paid due to lack of cooperation/communication.

tion. In Fig. 5 we show the PoA computed as the ratio between
the social welfare found in the best case (scenario 4) and the
social welfare in the worst case (scenario 2). An increase of the
cost c implies an increase in the PoA, meaning that increasing
the transmission/service cost the social welfare is most affected
by non-cooperation in terms of payoff. Moreover, as c goes to
0, the PoA approaches 4

3
(from above); this lower bound on the

PoA is the same found for example in [16] in the evaluation of
selfish routing, as well as other classical mathematical models
involving self-interested users.

In the same figure, Fig. 5, we illustrate the price that the
system has to pay because of the lack of communication,
quantified through the PoS. The curves corresponding to PoS
evaluation without or with signaling are computed as the ratio
between the social welfare in scenario 4 and the social welfare
reached considering the best NE in scenario 1 for the case
without signaling and the social welfare obtained considering
the best NE in scenario 3 for the case with signaling. Also
in this evaluation, an increase of c implies a price increase,



i.e., in this case, a higher PoS. Moreover, as it can be noted,
for scenario 1, in which no communication between players
is considered, the increase of the price is more pronounced
respect to scenario 3. This means that PoS could be improved
with signaling, for example through carrier sense mechanisms.
Moreover, as it can be observed, in both cases in which we
computed the PoS, as c goes to 0, PoS goes to 1 and its values
are always lower than the PoA values.

VI. CONCLUSIONS

We considered a queueing system with candidate strategic
servers that transmit packets paying an individual cost. We
analyzed this system under different cooperation and commu-
nication assumptions and we applied game theory to evaluate
the servers’ behavior. We quantified the impact of the lack of
cooperation and of communication among the servers on the
social welfare.

Considering the individual expected payoff, as the service
cost increases, the payoff of the player always active is a
lower bound. The behavior of always staying inactive is not
advantageous for small values of c. An increase of the cost
implies a higher PoA. On the other hand, we obtained that also
the lack of communication affects the social welfare; we found
that an increase in the cost c involves an increases in the PoS.
Moreover, comparing the PoS values obtained considering the
scenarios with or without signaling, we found that the lack of
communication involves a higher PoS.
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